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Abstract
The uses of biochar as soil fertilizer can offset global warming and reduce dependence on limited mineral resources in 
the future circular economy, yet biochar may contain contaminants that can ultimately enter the food chain. In particular, 
persistent free radicals are emerging contaminants previously detected in biochar but underlying mechanisms of radical 
formation are not yet established. Here we studied radical generation during hydrothermal carbonization of waste sludge at 
160–220 ºC for 0.5–2 h with solid weight ratios of 10%w–40%w using electron paramagnetic resonance and Fourier trans-
form infrared spectrometry. Results reveal that radical concentration increases with temperature, reaction time, and weight 
ratio in sludge biochars, reaching a content of 47.2 × 1015 spins/g for 220 ºC, 2 h heating, and 40%w solid ratio. Moreover, 
low temperature of about 160 ºC favors the production of oxygen-centered radicals, whereas higher temperature of 220 ºC 
produces carbon-centered radicals. Our findings imply that biochar ecotoxicity should be assessed prior applications to 
prevent adverse health effects.
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Introduction

Waste sludge is the byproduct produced from wastewater 
treatment process, containing organic matter, minerals, and 
various contaminants (Gao et al. 2016a, b; Lichtfouse et al. 
2005; Raheem et al. 2018). In China, the production of waste 

sludge is increasing sharply and reaching approximately 56.6 
million tons with a moisture of 80% in 2018 (GEP Research 
2018). Recycling waste sludge for recovery of resources and 
energy is favorably recommended by the Chinese govern-
ment and is actively studied (Peccia and Westerhoff 2015). 
Waste sludge is commonly valued as soil fertilizer or adsor-
bent (Devi and Saroha 2017; Seleiman et al. 2020). Waste 
sludge has been recently upgraded as biochar by hydro-
thermal carbonization for energy recovery (Coronella et al. 
2017), yet its environmental consequences are still discussed 
(Tasca et al. 2019; Xu and Jiang 2017). In particular, owing 
to the presence of organics and metals in sludge, radicals are 
expected to be formed during hydrothermal conversion, but 
this fact has not been established (Khachatryan et al. 2011). 
Temperature and other factors were reported to influence 
radical formation during hydrothermal carbonization of sew-
age sludge (Zhu et al. 2019), but little information on their 
influencing patterns and mechanisms is available for biochar.

Persistent free radicals (PFRs) have been identified as 
emerging contaminants (Vejerano et al. 2018) in various 
environmental matrix including contaminated soils (dela 
Cruz et al. 2012; Jia et al. 2017), sediments (dela Cruz et al. 
2014), aerosol particles (Arangio et al. 2016; Yang et al. 
2017; Xu et al. 2019), and fly ashes (Zhao et al. 2019). These 
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radicals are of increasing concern owing to their strong dura-
bility and potential toxicity. Indeed, several studies suggest 
that PFRs produce reactive oxygen species (ROS) that can 
damage biological systems and cause adverse effects on 
infant health (Lieke et al. 2018; Reed et al. 2015; Saravia 
et al. 2013). Radicals are known to be primarily generated 
during heat treatment such as thermal decomposition of 
biomass during high-temperature pyrolysis and relatively 
low-temperature hydrothermal carbonization (Dellinger 
et al. 2007; Qin et al. 2018; Volpe et al. 2019). Ruan et al. 
(2019) summarized sources, formation, and characteristics 
of PFRs in biochars produced by pyrolysis and hydrothermal 
carbonization. Temperature controls the hydrolysis degree of 
raw materials and formation of final products during hydro-
thermal process (Brindhadevi et al. 2021; Zhang et al. 2019).

Although biochar radicals are less active than ROS 
such as the hydroxyl radical •OH, they can act as electron 
donors and carriers to promote electron transfer in chemical 
reactions (He et al. 2019; Wang et al. 2019). In particular, 
biochar generates ROS such as •OH, sulfate radical anion 
SO4

•−, hydrogen peroxide H2O2, and ozone O3, thus enhanc-
ing decomposition of organic contaminants (Chen et al. 
2017; Qin et al. 2017). For example, biochar radicals have 
increased the production of •OH and H2O2 under daylight 
irradiation and, in turn, have enhanced the degradation of 
sulfadimidine (Chen et al. 2017). Similarly, Qin et al. (2017) 
observed that biochar radicals acted as electron donors for 
Fe(III) reduction, thus promoting •OH generation and ala-
chlor degradation. PFRs are usually sorted as carbon- and 
oxygen-centered radicals (dela Cruz et al. 2011), of which 
the oxygen-centered radicals appeared to be more reactive 
than carbon-centered radicals (Zhang et al. 2020). Thus, the 
concentration and type of radicals influence their catalytic 
ability and, in turn, the transformation of contaminants, yet 
knowledge of radical formation is limited (Fang et al. 2015; 
Wang et al. 2019).

Practical applications suggested that a temperature range 
of 180–210 ºC is suitable for hydrothermal carbonization 
of sewage sludge in terms of performance and profitability 
(HTCycle 2021). Therefore, here we studied the concentra-
tion, abundance, and type of PFRs during hydrothermal con-
version of waste sludge at 160- 220 ºC for 0.5–2 h with solid 
weight ratio of 10%w–40%w, using electron paramagnetic 
resonance (EPR) and Fourier transform infrared spectrom-
etry (FTIR).

Experimental

Materials and chemicals

Waste sludge was collected from a municipal sewage 
treatment plant located at Songjiang in Shanghai. The 

raw sludge was first precipitated for 24 h for solid–liq-
uid separation. The resulting residues were centrifuged 
at 4000 rpm, then freeze-dried for 24 h with a LGJ-10E 
from Sihuan, Beijing, China. Dried solids were ground 
into powder, passed through a 40-mesh sieve, then stored 
in an amber glass bottle at 4 ºC prior to use. Potassium 
bromide (KBr) was purchased from Sinopharm Chemical 
Reagent Co., Shanghai, China. 2, 2-diphenyl-1-picrylhy-
drazyl (DPPH) from Sigma-Aldrich was used as a stable 
radical standard.

Hydrothermal preparation of sludge biochar

The apparatus and procedures for sludge biochar have been 
previously reported (Gao et al. 2016b, 2018). Typically, the 
preparation was performed in a para-polyphenylene (PPL) 
lined 100-mL stainless steel autoclave at a stirring speed of 
800 rpm with the aid of magnetic stirrer. The samples were 
heated at 160, 180, 200, and 220 °C for 0.5, 1 h, and 2 h, 
with solid weight ratios of 10%w, 20%w, and 40%w. After 
completion of the reaction, the reactors were allowed to cool 
down to room temperature. The solid residues were washed 
with ethanol and deionized water several times, followed by 
centrifuging and freeze-drying.

Characterization

Persistent free radical (PFRs) formation in biochar samples 
was measured at room temperature with a Bruker EMX 
micro-6/1/P/L EPR instrument (Karlsruhe, Germany). 
Approximately 50 mg of each sample was transferred into 
a 4-mm-inner-diameter electron paramagnetic resonance 
(EPR) quartz micro-tube. The micro-tube was sealed 
with grease at one tip and placed in the EPR instrument 
for measurement. Free radical signals were continuously 
recorded. EPR running parameters were microwave fre-
quency 9.8 GHz (X-band), central field 3504.3 G, micro-
wave power of 0.5024 MW, modulation frequency 1.0 G, 
scanning width 80 G, time constant 0.01 ms and scanning 
time 30 s. Then, radical concentrations were obtained using 
the Bruker’s Xenon program and comparison with standard 
based on the quantitative theory of spin calculation. Fou-
rier transform infrared spectrometry (FTIR) spectra were 
recorded with a Bruker Tensor 27 spectrometer, Ettlingen, 
Germany. Approximately 3 mg of each biochar sample was 
mixed with 300 mg of KBr, ground uniformly with an agate 
mortar, and compressed for scanning over wavelength range 
of 4000–400 cm−1 with a resolution of 4 cm−1. Metal con-
tents in raw sludge and biochar samples were measured by 
an inductive coupled plasma emission spectrometer (ICP-
OES) Prodigy from Leeman Labs, USA.



Statistical analysis

Averages and standard deviations of data for PFRs were 
calculated by Microsoft Excel 2016. Statistical analyses 
were performed using SPSS 19.0 from SPSS Inc., Chicago, 
IL, USA, and significance was accepted at p below 0.05. 
All plots were generated with OriginPro 9.0 software from 
OriginLab Corporation, USA.

Results and discussion

We studied the concentration, abundance, and type of persis-
tent free radicals (PFRs) during hydrothermal conversion of 
municipal waste sludge at 160–220 ºC for 0.5–2 h with solid 
ratios of 10%w–40%w, by electron paramagnetic resonance 
(EPR) and Fourier transform infrared spectrometry (FTIR). 
Data is given in Table S1.

Effect of temperature

Figure 1 shows the effect of heating sludge at 160–220 °C. 
Figure 1a displays a single signal between 3480 and 3520 G 
for the raw sludge and sludge biochars. The weak signal of 
the raw sludge is most probably due to the presence of iron 
at 35.2 mg/g and aluminum at 5.4 mg/g (Table S2, Dellinger 
et al. 2007). The concentration of radicals increases sharply 
from 19.7 × 1015 spins/g at 160 ºC for 0.5 h to 47.2 × 1015 
spins/g at 220 ºC for 2 h (Fig. 1b). This increase is ten-
tatively explained by the hydrolysis of sludge cellulose at 
high temperature, which induces the formation of func-
tional groups bearing free radicals (Gao et al. 2012). Other 
reactions are likely to generate radicals. For instance, it has 
been shown that C–C and C-heteroatom bonds are broken by 
catalysis and oxidation in the presence of subcritical water 
(Hu et al. 2014). Then, as temperature and time increase, 
reactions such as dehydration, decarboxylation, condensa-
tion, polymerization, and aromatization take place and could 

Fig. 1   Effect of temperature on the formation of persistent free radicals (PFRs) in biochars produced by hydrothermal conversion of waste sludge 
with a weight ratio of 40%w. a–c electron paramagnetic resonance (EPR) and d Fourier transform infrared spectrometry (FTIR)



generate radicals (Demirbaş 2000). Noteworthy, similar 
reactions involving free radicals occur over geological ages 
during the formation of coal and petroleum (Rouxhet and 
Robin 1978; Tissot and Welte 1984; Lichtfouse et al. 1994).

Figure  1c shows that g-factors are in the range of 
2.0030–2.0040 and vary with temperature. This implies the 
coexistence of oxygen- and carbon-centered radicals (Jia 
et al. 2017). The sharp decrease of g-factor with tempera-
ture for the longest time treatment of 2 h is likely to result 
from declining oxygen-centered radicals and rising carbon-
centered radicals because the latter are more stable at high 
temperature.

In Fig. 1d, peaks at around 1050 cm−1, attributed to C–O 
stretching vibrations of phenolic groups according to Ishi-
zaki and Martí (1981), are rising with temperature. Whereas 
peaks at around 1240 cm−1 due to C–O–H bend according 
to Zhang et al. (2018) are declining then almost disappear 
above 180 ºC. This suggests that C–O–H groups are trans-
formed into phenoxyl radicals at elevated temperatures. 
Moreover, single-molecule free radicals can be formed from 
the cleavage of some weak chemical bonds such as β-O-4 
(Sabio et al. 2016). The increase of newly-formed phenolic 
C-O structures may also represent potential precursors 
of phenoxyl radicals (Fig. 1d). Peaks at 1550–1670 cm−1 
related to carboxyl, quinonyl, and aldehyde C=O are weak-
ened with increasing temperature, which suggests the forma-
tion of oxygen- and carbon-centered radicals in the presence 
of transition metals (Zhu et al. 2019). Last, the presence of 
aromatic rings is suggested by the presence of a C=C infra-
red peak at around 1440 cm−1 (Fig. 1d). Indeed, such a peak 
has been attributed to C=C in aromatic and heterocyclic 
rings (He et al. 2013), suggesting that aromatic radicals were 
possibly generated by electron migration in the presence of 
metal oxides (Fang et al. 2014; Jia et al. 2016). Overall, 
our findings show an increase of radical concentration with 
temperature, which is likely to result from various chemi-
cal reactions such as formation of phenoxyl radicals then 
carbon-centered radicals at higher temperature.

Effect of reaction time

Figure 2 shows the effect of reaction time from 0.5 to 2 h on 
PFRs formation during hydrothermal conversion of waste 
sludge into biochar. The results show that radical concentra-
tions increase highly with reaction time at any temperature 
(Fig. 2a,b). Specifically, radical concentration increases from 
11.9 × 1015 to 47.2 × 1015 spins/g with reaction time from 
0.5 to 2 h at 220 °C. Previous studies revealed that, on the 
contrary, the concentration of biochar radicals declined con-
tinuously from 1 to 6 h of reaction time (Gao et al. 2018; Lu 
et al. 2013). This opposite trend is probably due to different 
raw materials and reaction conditions, such as rice straw 
under hydrothermal conditions, the radical concentration of 

which reduced rapidly when reaction time increased (Gao 
et al. 2018). Different raw materials and reaction conditions 
may change the nature of chemical reactions, inducing in 
particular formation of precursors such as phenolic and poly-
cyclic compounds.

Figure 2c shows that g-factors rise or decrease slightly 
from 0.5 to 1 h reaction time. Then g-factors either increase 
sharply at 160 °C or decrease sharply at 180–220 °C for 
2 h of reaction time. These findings support the stepwise 
formation of oxygen-centered radicals then carbon-centered 
radicals. Indeed, we speculate that the lowest temperature of 
160 °C induces generation of oxygen-centered radicals, but 
is not high enough to raise the proportion of carbon-cen-
tered radicals within 2 h, whereas, carbon-centered radicals 
become predominant at 180–220 °C.

Figure  2d displays the evolution of biochar infrared 
spectra with reaction time. The results show that peaks of 
C–O–H, around 1240  cm−1, and quinonyl C=O, around 
1550 cm−1, are weakened, while peaks associated with phe-
nolic C-O and aromatic C=C are enhanced. These trends 
thus partly explain the increase of radical concentrations. 
The increase of aromatic C=C peak at about 1440 cm−1 sup-
ports the formation of carbon-centered radicals, according to 
Fang et al. (2014). Overall, our findings reveal the increase 
of PFRs with reaction time in biochars from hydrothermal 
treatment of sludge, and strengthen the stepwise formation 
of oxygen-centered radicals followed by carbon-centered 
radicals.

Effect of solid weight ratio

Figure 3 shows the effect of solid weight ratio from 10%w 
to 40%w on the production of PFRs during hydrothermal 
conversion of waste sludge into biochar. The results show a 
gradual increase of radical concentration with solid weight 
ratio (Fig. 3a,b). Specifically, radical concentration increases 
from 29.5 × 1015 to 47.2 × 1015 spins/g when the weight ratio 
increases from 10%w to 40%w at 220 ºC during 2 h of reac-
tion time. This result indicates that the higher weight ratio 
results in higher abundance of PFRs in biochars. Normally, 
a higher weight ratio provides more active moieties for PFRs 
formation from the cleavage of bonds in sludge components, 
and also weakens interactions between water molecules and 
sludge components. By contrast, a lower weight ratio facili-
tates complete hydrolysis of sludge components owing to the 
solvent and catalytic effects of subcritical water, promoting 
saturation of PFR-forming compounds by donation of suf-
ficient hydrogen ions and enhancing recombination of PFRs 
(Sabio et al. 2016). Moreover, water protons can promote 
ring-opening of heterocycles under subcritical conditions 
(Ogunsola and Berkowitz 1995), thus reducing formation 
of PFRs in biochars.



Figure 3c shows slight decreases of g-factors when the 
solid weight ratio increases from 10%w to 20%w, then 
slight increases when the weight ratio increases to 40%w. A 
higher solid weight ratio may cause insufficient carboniza-
tion of sludge, while a lower ratio should result in generation 
of more oxygen-centered radicals, because more oxygen-
containing moieties are likely to be formed. The g-factors 
exhibit a variation in the range of 2.0032- 2.0034 at 200–220 
ºC for 2 h of reaction time. This indicates the dominance of 
carbon-centered radicals at high temperatures.

Figure 3d displays the evolution of biochars infrared 
spectra with solid weight ratio. Results show that peak of 
aromatic C=C at about 1440 cm−1 is enhanced, while peak 
associated with quinonyl C=O at around 1550 cm−1 is weak-
ened and almost disappear when the weight ratio is 40%w. 
This suggests the formation of carbon-centered radicals. 
Overall, our findings indicate that weight ratio also has an 
effect on the abundance and type of PFRs in biochars from 
hydrothermal treatment of sludge.

Conclusion

The formation of persistent free radicals (PFRs) in bio-
chars from hydrothermal carbonization of municipal waste 
sludge was investigated. The results showed that PFRs 
formation in biochars depends on temperature, reaction 
time, and weight ratio. Radical concentration increased 
with increasing temperature (160–220 ºC), reaction time 
(0.5–2 h), and weight ratio (10%w–40%w). A lower tem-
perature of 160 ºC facilitated the formation of oxygen-cen-
tered radicals, whereas a relatively higher temperature at 
220 ºC produced carbon-centered radicals. These finding 
can provide a new route for recycling of waste sludge to 
produce valuable PFRs-containing biochars, which can be 
used as an alternative for transformation of environmental 
contaminants.

Supplementary Information  The online version contains supplemen-
tary material available at (https​://doi.org/10.1007/s1031​1-021-01198​
-8).

Fig. 2   Effect of reaction time on the formation of persistent free radicals (PFRs) in biochars produced by hydrothermal conversion of waste 
sludge with a weight ratio of 40%w. a–c electron paramagnetic resonance (EPR) and d Fourier transform infrared spectrometry FTIR
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