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Improved deconvolution of mineral reflectance
spectra

Ronan Rialland, Charles Soussen, Member, IEEE, Rodolphe Marion, and Véronique Carrère

Abstract—Reflectance spectroscopy is a widely used technique
for mineral identification and characterization. Since modern
airborne and satellite-borne sensors yield an increasing number
of hyperspectral data, it is crucial to develop unsupervised
methods to retrieve relevant spectral features from reflectance
spectra. Spectral deconvolution aims to decompose a reflectance
spectrum as a sum of a continuum modeling its overall shape and
some absorption features. We present a flexible and automatic
method able to deal with various minerals. The approach is
based on a physical model and allows us to include noise
statistics. It consists of three successive steps: (i) continuum pre-
estimation based on non-linear least-squares; (ii) pre-estimation
of absorption features using a greedy algorithm; (iii) refinement
of the continuum and absorption estimates. The procedure is
first validated on synthetic spectra, including a sensitivity study
to instrumental noise and a comparison to other approaches.
Then, it is tested on various laboratory spectra. In most cases,
absorption positions are recovered with an accuracy lower than 5
nm, enabling mineral identification. Finally, the proposed method
is assessed using hyperspectral images of quarries acquired
during a dedicated airborne campaign. Minerals such as calcite
and gypsum are accurately identified based on their diagnostic
absorption features, including when they are in a mixture. Small
changes in the shape of the kaolinite doublet are also detected and
could be related to crystallinity or mixtures with other minerals
such as gibbsite. The potential of the method to produce mineral
maps is also demonstrated.

Index Terms—Mineral reflectance spectra, hyperspectral im-
ages, HySpex, EGO model, AGM procedure.

I. INTRODUCTION

DURING the past thirty years, numerous studies have
demonstrated the importance of hyperspectral remote

sensing for mapping surface composition and properties, e.g.,
the structure, pigment composition, dry matter and water
content of vegetation, coastal and inland water quality, and
snow properties [1]. Modern airborne and spaceborne imaging
spectrometers such as AVIRIS [2], [3], HySpex, PRISMA [4]
or EnMAP [5] give rise to hyperspectral images of various
parts of the world. These sensors provide reflectance spectra
in the visible near-infrared (VNIR, [400− 1300] nm) and the
short-wave infrared (SWIR, [1300− 2500] nm). Mapping the
physico-chemical properties of soil and rock from hyperspec-
tral data is of great interest for ore exploration, environmental
monitoring, and climate change estimation [6].
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Mineral reflectance spectra have been extensively ana-
lyzed [7]–[9]. They are composed of diagnostic and secondary
absorption bands, the position of which mainly depends on the
chemical composition [10]. Absorptions in the SWIR range are
generally narrow and deep, whereas VNIR absorptions tend to
be broader and weaker. These absorption features are respec-
tively related to vibrational processes in the SWIR (rotation,
vibration, stretching, and bending of molecule bonds) versus
electronic processes (transitions and charge transfers) in the
VNIR [10]. The number of absorption features as well as their
position, shape and amplitude depend on mineral composition
and concentrations [10], mixture with other components [11],
observation scale, and instrumental noise [12]. The overall
shape of a mineral reflectance spectrum, called continuum,
depends on the surface (e.g, grain size, roughness, humidity)
and illumination conditions [10].

The paper aims to develop an unsupervised method to
retrieve relevant spectral features from mineral reflectance
spectra. It is well-known that a given mineral exhibits con-
siderable spectral variability, which can be intrinsic, extrinsic,
or due to environmental conditions [13]. In this respect,
the identification and characterization of minerals from their
reflectance spectra is a challenging problem. More specifically,
the number of absorption features is related to the observed
minerals, and the absorption shapes depend on many physico-
chemical properties [10]. Also, the continuum part of the
spectra is induced by environmental conditions. It prevents
a direct comparison of an unknown spectrum with established
reference spectra, i.e., from spectral libraries.

The advanced spectral processing methods can be cate-
gorized into two broad groups: data-driven and knowledge-
based approaches [14]. Data-driven approaches are model-free
methods aiming to learn how to identify and characterize the
minerals from a set of training data. They include classification
algorithms [15], [16] based on reflectance spectral libraries,
e.g., ASTER and USGS [17], [18]. However, classical spectral
libraries only have from 10 to 15 reflectance spectra per
mineral, which is a major bottleneck for classification and
learning approaches. Feature reduction techniques cope with
the limited availability of training samples [16]. However,
they may induce a loss of information. Unmixing approaches
are alternative data-driven techniques aiming to automatically
retrieve endmembers and their abundances from a set of
observed spectra [19]. One can use them in a blind context,
where no training data are available. However, they may yield
inaccurate results when no pure pixels are present in the data.
Also, classical unmixing methods are based on linear mixing
models and do not account for endmember variability [20],
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leading to possible unrealistic results [14]. A recent trend is to
resort to nonlinear mixing models [21] and augmented linear
models designed to address spectral variability [22], [23].

Contrary to data-driven approaches, knowledge-based ap-
proaches incorporate prior knowledge about the spectral in-
formation embedded in a single mineral reflectance spectrum.
They make use of the characterization of absorption features
described for various minerals in the literature [7]–[9], [24].
Several reviews of these methods are available [14], [25]. One
can first distinguish direct methods such as band ratioing [25]
and spectral indices [26]. The latter use spectrum amplitudes
for specific known wavelengths but do not exploit information
regarding the shape of the absorption features. On the other
hand, spectral feature analyses were designed for mineral iden-
tification based on absorption’s position, amplitude and shape.
They include frameworks such as Tetracorder and extended
versions [27], [28] dedicated to local spectral analysis and the
spectral deconvolution techniques [29]–[31] aiming to capture
complete information regarding the whole spectrum.

Spectral deconvolution attempts to decompose a given re-
flectance spectrum as a sum of a continuum and an absorption
part. The latter gathers a set of localized parameterized fea-
tures corresponding to absorptions embedded in the spectrum;
see Fig. 1. Several physical models describe the reflectance
spectrum, including the Modified Gaussian Model (MGM)
[29] and the Exponential Gaussian Optimization (EGO) model
[30], [32]. The main difference is that MGM features are
symmetric (standard Gaussians), whereas EGO features could
be asymmetric. When the asymmetry parameter is 0, the EGO
model reduces to the MGM. It is noticeable that absorption
features appearing in the VNIR range are symmetric and can
be accurately described using the MGM. On the contrary, the
EGO model is better suited to absorption features in the SWIR
that could be asymmetric [33].

The deconvolution of mineral reflectance spectra has un-
dergone several improvements over the years with increas-
ingly automatic algorithms [31], [34]–[38]. These approaches
include the following steps:

1) continuum removal,
2) MGM or EGO parameter estimation,
3) refinement of the estimated continuum and absorption

parameters.
In [37], this three-step approach was dubbed Automatized
Gaussian Model (AGM). Although specific algorithmic solu-
tions were put forward in [37] and other references, AGM
can be seen as a unifying framework encompassing various
contributions. Let us now briefly recall the available solutions
for each step and their limitations.

Continuum removal may be carried out using parametric
or non-parametric models. The latter usually rely on convex
shape assumption, which enables applying geometric methods
[34], [39]. This approach is easy to implement but highly
sensitive to noise. Indeed, the convex shape is constrained
to lie above the data spectrum, which results in artifacts and
further false detection of MGM/EGO Gaussians in the case
of noisy data. On the other hand, parametric models include
second-order polynomials [35] as well as the physical model of
[39]. The former are coarse approximate models, whereas the

(a)

(b)

Fig. 1: Logarithm of goethite (a) and kaolinite (b) reflectance
spectra as a function of wavelength, derived from the USGS
spectral library [18]. The estimated continuums and absorption
features are shown with dashed lines and solid red line,
respectively. The vertical green lines indicate the positions of
the theoretical absorptions used to identify the mineral.

latter is more realistic but exhibits a nonlinear behavior with
respect to the physical parameters. This requires to solve a
difficult nonlinear least-square problem, with carefully chosen
initialization of parameters [30], [35], [37], [40].

The absorption estimation step attempts to determine the
number of MGM/EGO Gaussians and estimate the related
parameters. Several procedures have been proposed based on
spectral derivatives [36], [37] and the continuous wavelet
transform [41], [42]. The former retrieve the local minima
of the spectrum but are sensitive to noise. Therefore, they
may overestimate the number of Gaussians. The latter aim to
separate the absorptions from the noise. However, the related
threshold parameters are difficult to set. These methods also
fall short of estimating the asymmetry parameter.

The refinement step aims to readjust the pre-estimated con-
tinuum and absorption features using nonlinear least-squares.
It is noticeable that some authors also carry out a post-
processing aiming to remove over-estimated Gaussians [37].

The main contribution of the paper is to revisit the AGM
procedure for spectral deconvolution. The proposed procedure,
named greedy-AGM, includes several substantial improve-
ments. The key novelty is that the number of absorption
features is automatically estimated using a greedy strategy.
Moreover, the continuum estimation step outperforms classical
geometric approaches [39] for noisy data and limits the
creation of artifacts. Also, the procedure is designed to avoid
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error propagation. Notably, the method is easy to use since no
pre-processing of data is required and no expert knowledge is
necessary. Note that a preliminary version of this procedure
was sketched in the conference paper [43].

The paper is organized as follows. In Section II, we first
review the EGO physical model. Then, the proposed greedy-
AGM procedure for retrieval of EGO parameters is detailed
in section III. Note that greedy-AGM can also be coupled
with the MGM physical model with very few adaptations. In
section IV, the method is validated on synthetic (noise-free and
noisy) data. In section V, it is applied to various experimental
spectra related to laboratory measurements and hyperspectral
images. This illustrates the potential of greedy-AGM to han-
dle heterogeneous data related to many minerals of interest
including calcite, dolomite, goethite, gypsum, kaolinite, and
nontronite. Section VI includes a discussion summarizing the
main findings and perspectives of this work.

II. EGO MODEL

A. Presentation

The EGO model [30], [32] aims at decomposing the log-
arithm of a mineral reflectance spectrum ρ as a continuum c
and a sum of N asymmetric (modified) Gaussian features:

ln ρ (λ,θ) = c (λ,θc)−
N∑
i=1

G (λ,θGi) + n(λ) (1)

where λ is the wavelength and n(λ) is the noise process.
Eq. (1) expresses the dependency upon both continuum (θc)
and EGO Gaussian (θG = {θG1

, . . . ,θGN }) parameters,
respectively. Bold notations refer to a set of parameters.

The continuum part models the overall shape of the spec-
trum. The drop-off towards the ultraviolet (uv, below 400
nm) is essentially due to iron and towards the SWIR (water,
beyond 2500 nm) is due to water and OH absorption. The
continuum is then expressed as

c (λ,θc) = − c0 − c1λ−1 −Guv (λ, suv, µuv, σuv)
−Gwater (λ, swater, µwater, σwater) (2)

with θc = {c0, c1, suv, µuv, σuv, swater, µwater, σwater}. Guv
and Gwater are standard Gaussians with amplitudes suv and
swater, positions µuv and µwater and widths σuv and σwater,
respectively. The offset c0 and slope c1 deal with the overall
shape.

EGO Gaussians model the wide variety of encountered
absorption shapes in the VNIR and SWIR ranges. They are
defined as asymmetric functions:

G (λ,θGi) = si exp

(
−1

2

(λ− µi)2

(σi − ki (λ− µi))2

)
(3)

where si is the amplitude, µi the position, σi the width and ki
the asymmetry of the absorption. Thus, θGi = {si, µi, σi, ki}
gathers the parameters of the i-th EGO Gaussian. Note that
the EGO model proposed in [30] includes an extra parameter
to take the saturation of the absorption bands into account.
This complete EGO model is not taken into account here
for simplicity. Fig. 1 illustrates the EGO models for goethite

and kaolinite spectra with continuum and absorption features
estimated by the solution proposed in this paper (note that only
the EGO Gaussians corresponding to the mineral diagnostic
absorption features are shown).

B. Accuracy and identifiability of the EGO model

The EGO model was successively used to provide informa-
tion on both the chemical and physical properties of the surface
of minerals [33], [34], [37], [44]. Nevertheless, one might
encounter the following numerical errors. First, the Gaussians
Guv and Gwater may not be able to adjust the edges of the
spectrum perfectly. Also, the VNIR part of the spectrum is
modeled by the c1λ−1 and Guv(λ) which influence the drop-
off at the edge of the spectrum. Note also that the range of
variation of c1 is large, from 0 to ∼ 103 nm, since c1 is
weighted by λ−1 in Eq. (1).

Moreover, the EGO model may not be identifiable since
the decomposition (1) could hold for different sets of EGO
parameters (θc,θG). For instance, a sum of EGO Gaussians
may be confused with a single EGO Gaussian. Furthermore,
large values of the asymmetry parameter k may create un-
realistic absorption shapes. Finally, a large number of EGO
Gaussians N may lead to overfitting when absorptions are
close in position [37].

To avoid identifiability issues, most semi-automatic methods
require (i) initialization based on prior knowledge of the num-
ber of absorption features and/or their center positions [30],
[32], [34], [35], [44]; and (ii) bounds on the feature parameters
[45]. In this paper, we aim at automatically estimating the
complete set of EGO parameters N , θc, and θG.

III. THE GREEDY-AGM PROCEDURE

A. Overview

The input of the greedy-AGM procedure includes a mineral
reflectance spectrum ρ(λ) and the associated noise covariance
matrix Σ. The noise component is assumed to be zero-mean,
Gaussian, and independent between spectral bands. However,
the noise variance σ2

λ is known to depend on the spectral
band λ. The noise covariance matrix Σ = diag(sigma2λ) is
thus diagonal and can be either calculated knowing the sensor
characteristics or estimated from the data [46].

Following the AGM methodology proposed in [37], the
method is composed of three steps: (i) continuum pre-
estimation, (ii) absorption pre-estimation, and (iii) joint refine-
ment. Continuum pre-estimation is carried out using a non-
linear least-squares formulation. The resulting pre-estimated
continuum is then subtracted from the spectrum:

a(λ) = c(λ,θprec )− ln ρ (λ) (4)

where θprec and a(λ) respectively refer to the pre-estimated
continuum parameters and the absorption part, that is, the
sum of EGO Gaussians in (1). Absorption pre-estimation then
automatically retrieves the parameters of the EGO Gaussians,
noted θpreG from a(λ). The joint refinement step updates the
continuum and absorption estimates.

The three steps of greedy-AGM are detailed in the next sub-
sections. The column vector gathering the reflectance values
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ρ(λ) for every λ is denoted by ρ ∈ RNλ , with Nλ the number
of wavelengths. Similarly, the vectors c (θc), a (θG) and σ
gather the values of c (λ, θc), a (λ,θG) and σλ, respectively,
for all λ. The outputs of greedy-AGM will be denoted with
hat notations: N̂ , θ̂c, θ̂G.

B. Continuum pre-estimation
The following least-squares formulation corresponds to the

maximum likelihood estimation of parameters θc:

min
θc
‖Σ− 1

2
(
c (θc)− lnρ

)
‖2 s.t.

{
c (θc)− lnρ ≥ ασ

θminc ≤ θc ≤ θmaxc

(5)

where ‖ . ‖ refers to the Euclidean norm, and the compact
writing c (θc)− lnρ ≥ ασ refers to Nλ constraints, one per
wavelength. In a nutshell, the latter constraints aim to impose
that the absorption a(λ) defined in (4) is non-negative valued,
that is, the amplitude of the EGO Gaussians are positive.
The coefficient α is set empirically to adapt the tolerance to
the noise standard deviation. The θminc and θmaxc bounds are
defined in subsection III-E.

The least-squares problem (5) is solved using the COBYLA
algorithm [47]. Since (5) is a non-linear least-squares problem,
the numerical solution θprec is likely to be a local minimizer,
which depends on the initial value of θc, denoted θstartc . Fig. 2
illustrates the initialization strategy. The offset c0 is set to the
maximum value of the spectrum, and the continuum slope
c1 is set to 0 [37]. Starting values of the standard Gaussians
Guv and Gwater are computed similarly in the VNIR and
SWIR spectral ranges. Their positions are set to predefined
values µuv = 200 nm and µwater = 2800 nm [40]. Then, we
draw the line l1 joining the point of the spectrum of minimal
wavelength and the point λ of the VNIR range for which ρ(λ)
is maximum. The line l2 is drawn similarly by considering the
last point of the spectrum and the point of maximum amplitude
in the SWIR range. The amplitudes suv and swater are set to
the values of l1 and l2 at µuv and µwater, with c0 removed. The
widths σuv and σwater are computed according to the settings
of Fig. 2. This strategy is adapted to various continuum shapes
of the minerals of interest, as Guv and Gwater only influence
the VNIR and SWIR ranges, respectively.

C. Pre-estimation of absorption characteristics
Once the continuum is pre-estimated, Eq. (4) yields the

absorption signal a(λ), which rereads

a(λ) =

N∑
i=1

G (λ,θGi)− n(λ) + e(λ) (6)

according to (1), where e(λ) refers to the estimation error
in the continuum pre-estimation step. Absorption estimation
consists of decomposing a(λ) into a weighted sum of EGO
Gaussians with positive weights. This problem can be effec-
tively solved using greedy algorithms [48], which select the
EGO Gaussians one by one in a dictionary containing a large
number of synthetic EGO Gaussians. This approach is detailed
hereafter. Moreover, the number of selected Gaussians will be
adaptively estimated using an information-theoretic criterion.

Fig. 2: Computation of the initial continuum parameters θstartc

for a goethite reflectance spectrum from the USGS spectral li-
brary [18]: sample splib07b_Goethite_GDS134_ASDFRb_AREF.
The lines l1 and l2 are drawn in blue, and the maximum of
the spectrum c0 is in dashed red. The parameters of Guv and
Gwater are in green.

1) Estimation of EGO Gaussian parameters: Starting
from (6), we adopt an optimization approach akin to (5), which
consists of minimizing the negative log-likelihood∥∥∥∥Σ− 1

2

(
a−

N∑
i=1

G (λ,θGi)
)∥∥∥∥2 (7)

with respect to the EGO Gaussian parameters θG. The dif-
ficulty of this optimization problem is twofold. First, this is
a non-linear least-squares problem. Thus the cost function is
likely to be multimodal, i.e., with many local minimizers.
Moreover, the number of EGO Gaussians N is unknown.

We propose to solve the latter optimization problem for
consecutive values of N , yielding absorption decompositions
for many N values. Then, a model order selection rule [49] is
applied to select one particular decomposition among all. An
attractive feature of greedy algorithms is that they provide so-
lutions to the minimization problems (7) for N = 1, . . . , Nmax
with a single run. N and Nmax are the current iteration of
the algorithm and the total number of iterations, respectively.
The absorption decomposition found for a given N is used as
initialization to search the decomposition with N+1 Gaussians
at the next iteration.

The greedy approach is based on the creation of a very
large dictionary G ∈ RNλ×Natom containing possible spectral
features where Natom refers to the number of spectral features
in the dictionary (also called atoms). Each atom of G refers
to a specific EGO Gaussian with predefined shape parameters
(µ, σ, k), and magnitude s = 1. The EGO Gaussian model (3)
thus reads as si gi where gi refers to a column of G related to
the i-th absorption. In turn, the sum of EGO Gaussians in (7)
reads as a matrix-vector product Gs where s ∈ RNatom are
the (non-negative) magnitudes. Thus, the minimization of the
residual error (7) rereads:

min
s
‖Σ−1/2(a−Gs)‖2 s.t.

{
s ≥ 0

‖s‖0 ≤ N
(8)

where ‖s‖0 counts the number of non-zero entries in vector
s and N is the number of absorption features embedded in a
mineral reflectance spectrum.
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Algorithm 1 Solve problem (8) for N = 1, . . . , Nmax. The
support S gathers the indices of the nonzero elements in s.
gi refers to the i-th column of G. GS refers to the submatrix
gathering the columns of G indexed by S.
inputs: a, Σ, G, Nmax
outputs: sN , rN for all N
r ← Σ−1/2a
s← 0
S ← ∅
for N = 1 to Nmax do
`← argmaxi

{
gTi Σ−1/2r / ‖Σ−1/2gi‖, i /∈ S

}
S ← S ∪ {`}
s(S)← argminz{‖Σ

−1/2(a−GSz)‖2, z > 0}
sN ← s

rN ← Σ−1/2(a−GsN )

end for

2) NNOMP, a greedy algorithm: Non-Negative Orthogonal
Matching Pursuit (NNOMP) [50], [51] is a greedy search
algorithm dedicated to solving problem (8) for consecutive
N = 1, . . . , Nmax. As shown in Algorithm 1, NNOMP
gradually selects atoms in G to refine the approximation
a ≈ Gs. Initially, no atom is selected, then s = 0. At each
iteration, a new atom of G is added to the current support S,
gathering the previously selected atoms. Their amplitudes are
then adjusted using a Non-Negative Least-Squares solver [51].
The residual r = Σ−1/2(a−Gs) is updated accordingly.

The atom selection rule of NNOMP aims at decreasing at
most the norm of the residual r. Thus, in practice, the main
absorptions of the spectrum are retrieved in the first iterations,
then smaller absorptions are gradually retrieved.

3) Model order selection: Model order selection aims at
automatically selecting a solution sN among the outputs sN ,
N = 1, . . . , Nmax. Many rules such as the Akaike information
criterion tend to overestimate the actual number of features
because they are designed based on an asymptotic information
theory analysis, where the number of observations tends to
infinity [49]. Minimum Description Length (MDL) criteria are
easily adaptable to greedy algorithms [52]. Moreover, they
were adapted to short data records, where the number of
parameters is moderately smaller than the data size as in our
case [53]. In the case of known noise statistics, they read:

N̂ = argmin
N

(
ln ‖rN‖+ lnNλ (N + 1)

Nλ −N − 2

)
. (9)

This criterion is thus evaluated at each iteration of NNOMP.
Then, the NNOMP output s = sN for N = N̂ is selected.

4) Dictionary creation and θG pre-estimation: The dictio-
nary G gathers a large number of synthetic EGO Gaussians
computed for a set of position (µ), width (σ), and asymmetry
(k) parameters. Each EGO parameter is discretized over a
pre-defined grid whose resolution is related to the size of
the dictionary. Fine grids induce a greater precision at the
cost of increased memory storage and computational time. We
emphasize that the dictionary G is not related to any spectral

library of known minerals, e.g., the acquisition of annotated re-
flectance spectra. The construction of the dictionary is generic
and simply relies on the simulation of EGO Gaussians.

The NNOMP algorithm yields the number N̂ of selected
atoms, their column indices gi in the dictionary G and their
magnitudes si. Since there is a one-to-one correspondence
between a column of G and a set of parameters (µ, σ, k),
the parameters related to the i-th selected atom, i.e., θpreGi

=
{si, µi, σi, ki} can be retrieved from the knowledge of the
location of gi in the dictionary G and from the magnitude si.

D. Joint refinement

Once the continuum parameters θprec , the number of EGO
Gaussians N̂ and the associated parameters θpreG have been
pre-estimated, the pre-estimated parameters are refined using
a joint optimization process. The non-linear least-squares
minimization problem:

min
θc,θG

∥∥∥∥Σ− 1
2

(
lnρ− c (θc) +

N∑
i=1

G (θGi)

)∥∥∥∥2 (10)

is solved for N = N̂ using the trust region reflective algorithm
[54] with initial parameters θprec and θpreG .

E. Algorithm parametrization

This section summarizes the parameter settings within
greedy-AGM.

Bounds on the continuum parameters θc are defined in (5)
to ensure that the range of EGO parameters is consistent with
their physical interpretation. As ln ρ(λ) is negative valued, the
parameters c0, c1, suv and swater in (2) are imposed to be
positive. Also, this ensures the drop-offs of the continuum
to appear on the edges of the spectrum. The Gaussians Guv
and Gwater are supposed to be centered outside the spectral
range of the acquisition sensors with µuv ∈

[
0 , λmin

]
nm and

µwater ∈ [λmax , 3000] nm. To avoid unrealistic values, lower
(0 nm) and upper (3000 nm) bounds are set for both µuv and
µwater. The widths of Guv and Gwater are unconstrained. The
tolerance α in (5) deals with the noise standard deviation. α
is set to 3 in the noisy case, and 0 in the noise-free case.

In Algorithm 1, the maximum number of selected atoms
Nmax is set to 20 to limit the possible number of absorptions.
Since the estimation of N is adaptive, N̂ = Nmax is rarely
reached in practice. Indeed, N often ranges between 1 and 5
for mineral reflectance spectra. To create the dictionary G, we
define two grids adapted to the various absorption shapes in the
VNIR and SWIR ranges, respectively. The VNIR absorptions
tend to be broad, whereas the SWIR absorptions are narrow
and occasionally asymmetric. In the VNIR, ki is set to 0,
as VNIR absorptions are generally symmetric. The width σi
varies between 30 and 380 nm with increments of p

2 , where
p is the wavelength sampling step of the sensor (for AVIRIS,
p ∼ 10 nm). The latter minimum width is set experimentally
to avoid selecting atoms of small amplitudes that do not
identify with an absorption. The maximum width corresponds
to maximum ferric goethite absorption at 920 nm, measured
on goethite spectra from the USGS spectral library [18]. The
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positions are set on a scale from λmin to 1300 nm in steps
of p

2 . In the SWIR, ki varies between −0.2 and 0.2 in steps
of 0.05 to avoid the creation of unrealistic EGO Gaussians.
These values were chosen after several experiments on mineral
spectra with asymmetric absorptions in the SWIR. The width
varies in the range of 5 to 45 nm in steps of p

2 . The maximum
width is fixed experimentally, based on the application of the
greedy-AGM procedure on an alunite spectrum. The positions
vary between 1300 nm and λmax in steps of p

10 .

IV. VALIDATION ON SYNTHETIC DATA

The greedy-AGM procedure is first validated on noise-free
data. Then, it is compared to classical algorithmic solutions
under the AGM framework.

A. Synthetic data description

Three synthetic spectra are generated using the EGO model
to represent various continuum and absorption shapes (ampli-
tude, width, asymmetry). They are shown in Fig. 3, and their
parameters are given in Tab. I. Spectra 1 and 2 and spectrum
3 have three and four absorption features, respectively. The
spectra are convolved to the AVIRIS spectral response func-
tion. The objective is to focus on difficult cases with broad
and shallow absorptions in the VNIR (like for goethite and
hematite), close and narrow absorptions in the SWIR (like
for kaolinite), asymmetrical absorptions (like for alunite and
calcite). Hereafter, the discrepancy between a synthetic (noise-
free) spectrum ysyn and its recovered version yest is assessed
using the goodness of fit, expressed in dB:

r = 10 log10
‖ysyn‖2

‖ysyn − yest‖2
. (11)

This indicator is computed for each step of the greedy-AGM
procedure, yielding ratios r1, r2 and r3 between the synthetic
and estimated continuums csyn and cest, absorption spectra
asyn and aest, and spectra lnρsyn and lnρest, respectively.
Furthermore, the accuracy of recovery of absorption positions
µ is assessed using the signed error δµ = µest − µsyn.

B. Algorithm validation in the noise-free case

Each synthetic spectrum is deconvolved with the greedy-
AGM procedure, see Fig. 3. For this noise-free scenario, the
noise covariance Σ is set to the identity matrix.

In the continuum pre-estimation step (Fig. 3(d-f)), r1 rises to
30 dB for all spectra. The errors on the continuum amplitudes
are always lower than 10%. These errors are related to the fact
that Guv and Gwater are broad absorptions centered outside
the [400− 2500] nm range, where data are missing. One
can distinguish three kinds of artifacts. First, the amplitudes
and shapes of broad absorptions can be impacted (e.g., the
absorption at 960 nm of spectrum 1). Notably, errors in the
VNIR are larger as the continuum is modeled by both and Guv
c1λ

−1, and λ−1 is large. Then, broad false absorptions with
small amplitude may appear at central wavelengths. Finally,
small and narrow false absorptions may appear on the edges
of the spectra. Such artifacts are not specific to the proposed

continuum removal procedure. For example, the solution in
[39], used in the GMEX (Guide for Mineral EXploration) [24]
also creates artifacts at both edges of the spectral range.

Fig. 3(g-i) illustrates the absorption pre-estimation step.
First, r2 is close to 20 dB, and the synthetic absorption features
are all detected. Isolated absorptions are retrieved with high
accuracy, while broad and overlapping absorptions may be
slightly shifted from their synthetic positions. The creation of
false EGO Gaussians is due to continuum removal artifacts, but
their amplitudes are small. For example, in spectrum 1, two
false absorptions appear around 1900 and 2500 nm and are
fitted by four EGO Gaussians. To further illustrate the impact
of continuum artifacts, the absorption pre-estimation step is
applied to spectrum 1, where the synthetic continuum has
been removed (corresponding to a perfect continuum removal
scenario). In Fig. 5, the greedy algorithm retrieved only three
absorption features, with no false EGO Gaussian. The first
selected Gaussian is the one whose energy is maximal. Then,
the isolated Gaussian of largest amplitude and the small
overlapping absorption in the VNIR are accurately retrieved.

Finally, in Fig. 3(j-l), r3 is close to 60 dB, which confirms
that the recovered spectrum ρest perfectly identifies with ρsyn.
The estimated continuums are consistent with the shape of
the three spectra. Absorptions are retrieved with small errors,
especially on their positions. The maximum position error is
reached for the broad and overlapping absorption at 960 nm
of spectrum 1 (δµ = 40 nm). We have δµ < 3 nm for other
absorptions, which is lower than the spectral resolution of
airborne sensors such as AVIRIS (∼ 10 nm). Also, absorption
shape parameters are accurately retrieved such as the broad and
overlapping absorption asymmetry at 2165 nm of spectrum 2
(k = −0.2). For isolated absorptions, errors on the amplitudes,
width, and asymmetry are lower than 1%.

C. Algorithm comparison in the noisy case

The three synthetic spectra are now corrupted with a zero-
mean, additive Gaussian noise whose variance is identical on
each spectral band. The noise variance is expressed as σ2 =
10−SNR/10 ln ρ, where ρ is the mean of the synthetic spectrum
and SNR is the Signal-to-Noise Ratio, expressed in dB.

The greedy-AGM procedure is compared to classical algo-
rithmic solutions under the AGM framework. The competing
procedure will be simply denoted by “AGM”. In the latter,
continuum removal is carried out in two stages [37], by apply-
ing the geometric approach of [39] (convex hull computation),
and then adjusting the parametric model (2). Then, the spectral
deconvolution algorithm of [34], [36] is applied to retrieve the
number of EGO Gaussians and their parameters. The refine-
ment step is identical to the one proposed in subsection III-D.
The algorithm outputs are shown in Fig. 4 for SNR = 30 dB.

In noisy cases, greedy-AGM outperforms AGM. In the sim-
ulation of Fig. 4, greedy-AGM retrieves the main absorption
features (vertical lines). For spectrum 3, the small ones (at
2312 and 2380 nm) cannot be found because their amplitude
is lower than the average noise level. On the contrary, some of
the main features are not found by AGM, e.g., the one at 2324
nm for spectrum 2. Moreover, a single EGO Gaussian retrieves
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Continuum parameters Absorption parameters
c0 c1 Guv Gwater Abs 1 Abs 2 Abs 3 Abs 4

spectrum 1 0.5 500

µ = 200 µ = 2800 µ = 660 µ = 960 µ = 2283
σ = 250 σ = 200 σ = 40 σ = 125 σ = 7
s = 1.2 s = 1.0 s = 0.1 s = 0.25 s = 0.4

k = 0.0 k = 0.0 k = 0.2

spectrum 2 0.5 0.01

µ = 200 µ = 2800 µ = 1760 µ = 2165 µ = 2324
σ = 250 σ = 400 σ = 12 σ = 45 σ = 10
s = 1.2 s = 0.8 s = 0.3 s = 0.4 s = 0.25

k = 0.0 k = −0.25 k = 0.0

spectrum 3 0.2 0.01

µ = 200 µ = 2800 µ = 2162 µ = 2206 µ = 2312 µ = 2380
σ = 250 σ = 400 σ = 15 σ = 17 σ = 10 σ = 10
s = 1.2 s = 1.0 s = 0.35 s = 0.45 s = 0.05 s = 0.05

k = 0.0 k = 0.0 k = 0.0 k = 0.0

TABLE I: Synthetic EGO parameters.

Spectrum 1 Spectrum 2 Spectrum 3

(a) (b) (c)

St
ep

1

(d) (e) (f)

St
ep

2

(g) (h) Zoom in, [1600− 2500] nm (i) Zoom in, [1600− 2500] nm

St
ep

3

(j) (k) (l)

Fig. 3: Results of the greedy-AGM procedure on three synthetic spectra. (a,b,c) Synthetic spectra ρsyn (solid black curve),
absorption asyn (solid blue line) and continuum csyn (dashdot blue line). The absorption positions are shown with vertical
dashed lines. (d,e,f) Starting cstart (purple - dashdot) and pre-estimated continuum cpre (green - dashdot). (g,h,i) Absorption
spectra after the continuum pre-estimation step (green) and EGO Gaussians selected by NNOMP (orange). Their positions
are shown with vertical dashed lines. (j,k,l) Estimated absorption spectra aest and continuum cest (red). For each step, the
goodness of fit (r1, r2, r3) is given in dB.
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Fig. 4: Assessment of the AGM (top) and greedy-AGM (bottom) procedures for the three noisy synthetic spectra. Noisy and
estimated spectra are shown in red and black, respectively. Synthetic absorption positions are represented as vertical dashed
blue lines. Green arrows indicate the location of false EGO Gaussians.

Fig. 5: Synthetic absorption part of spectrum 1 (blue) and
EGO Gaussians selected by NNOMP (orange). The order of
selection is also indicated. The true absorption positions and
their estimates are shown as vertical dashed lines.

the absorption doublet around 2200 nm in spectrum 3. Notably,
AGM strongly overestimates the number of EGO Gaussians.
Green arrows indicate false EGO Gaussians in Fig. 4. They are
due to the creation of artifacts in the continuum pre-estimation
step and also to the spectral derivative algorithm for absorption
feature retrieval, known to be sensitive to noise.

For SNRs lower than 25 dB, AGM still fails to estimate
the number of EGO Gaussians and their parameters without
any user supervision. On the contrary, greedy-AGM does
not require expert empirical tuning of parameters, save the
automatic rules stated in Section III-E. Moreover, the broadest
and deepest absorptions are retrieved. The number of estimated
EGO Gaussians is underestimated for low SNR, which is a
desirable property. Indeed, absorption features of small ampli-
tudes are hidden in the noise, so they cannot be recovered.

Let us remark that the asymmetry parameter k of EGO
Gaussians can hardly be recovered from noisy data since a
wide range of values of θG yield similar spectral shapes. k
can be recovered though for denoised data (SNR > 50 dB).

V. APPLICATION TO REAL DATA

A. Greedy-AGM procedure for real data

In hyperspectral imaging, spectral ranges around 1400 and
1900 nm may be affected by the main saturated atmospheric
water vapor absorptions. Spectral masks (represented as grey
areas in Figs. 6, 8 and 9) are thus applied to remove these
spectral bands. The dictionary creation is slightly adapted
within greedy-AGM to cope with these missing data, by
including dictionary atoms centered in the spectral masks. This
allows us to retrieve absorptions inside the spectral masks from
available data on the edges of the spectral masks, which avoids
the creation of artifacts. Interestingly, the algorithm accuracy is
not impacted by the spectral masks. Hereafter, spectral masks
are applied to laboratory and image spectra.

B. Results on laboratory data

Here, the goal is to analyze the advantages and limits of
the method for minerals often encountered in hyperspectral
imaging, that entail spectral features difficult to deconvolve.
The ability to identify minerals from their estimated EGO
parameters is also discussed.

1) Spectral library description and data preparation: We
use the USGS spectral library [18], which gathers laboratory
VNIR and SWIR reflectance spectra of various materials. Six
reference minerals are considered, for which the electronic and
vibrational processes are well-known (Tab. II). The continuum
and absorption bands (shape, position of absorptions) differ for
each spectrum since the studied minerals belong to different
mineralogical classes. To obtain results comparable to those on
synthetic data, the spectra are convolved to AVIRIS spectral
responses. The estimates yielded by the greedy-AGM will be
numerically compared to the theoretical values in Tab. II, seen
as ground truth.

Goethite (α-FeO (OH)) is a Fe-hydroxyde mineral. Its re-
flectance spectrum exhibits two diagnostic absorption features
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Mineral - Group Sample Diagnostic Secondary
absorption (nm) absorption (nm)

Calcite - Carbonate splib07b_Calcite_GDS304_75-150um_ASDFRb_AREF 2342 2156
Dolomite - Carbonate splib07b_Dolomite_HS102.4B_ASDNGb_AREF 2324 2140

Goethite - Fe-hydroxyde splib07b_Goethite_GDS134_ASDFRb_AREF
660 500
960

Gypsum - Sulphate splib07b_Gypsum_HS333.4B_(Selenite)_ASDFRa_AREF
1750 1538

2215

Kaolinite - Phyllosilicate splib07b_Kaolinite_CM9_ASDNGb_AREF
2162 2312
2206 2380

Nontronite - Smectite splib07b_Nontronite_NG-1.a_ASDNGb_AREF
2283 2378
660
960

TABLE II: Some minerals of interest in the USGS spectral library [18].

at 660 and 960 nm, which are attributed to Fe3+ electronic
processes that include transition in the iron cations

(
Fe3+

)
from ground state 6A1ν to 4T1ν [55]. The fall-off short of
550 nm is attributed to a conduction band, typical of the trans-
opaque iron oxides. We are here evaluating the efficiency of
the method to model typically broad absorptions related to
ferric iron in the VNIR.

Kaolinite (Al2Si2O5 (OH)4) is a phyllosilicate mineral. Its
reflectance spectrum exhibits a doublet of diagnostic absorp-
tions at 2162 and 2206 nm. This doublet is related to the
Al-OH combination band. It is an indicator of the two-layer
dioctahedral structure of kaolinite [56]–[58]. We are here
evaluating the ability of the method to estimate a doublet of
narrow absorptions with small amplitudes in the SWIR.

Nontronite
(
Na0.33Fe3+2 (Si,Al)4 O10 • nH2O

)
is a smectite

clay. Its reflectance spectrum exhibits three diagnostic absorp-
tions at 660, 960 and 2283 nm. Like goethite, the 660 and
960 nm absorptions are attributed to electronic transition in
the Fe3+ion. The 2283 nm absorption is a Fe-OH combination
band [58], [59]. The objective here is to test the accuracy of
the method in both VNIR and SWIR ranges.

Gypsum (CaSO4 • 2H2O) is a sulphate mineral. Its re-
flectance spectrum exhibits several absorptions including the
diagnostic absorption centered at 1750 nm, whose origin
is controversial. It is either associated to H2O combination
overtones [60], to OH− or H2O bending, stretching and
rotational overtones and/or S − O bending overtones [61]. It
has been partly associated to H2O because various experiments
involving dehydration of gypsum demonstrated an attenuation
of this specific absorption with increasing temperature. Also,
it becomes narrower and less structured starting at 100◦C [60].
The objective here is to evaluate the capacity of the method to
detect a diagnostic absorption feature when it is close to the
“atmospheric” spectral mask.

Calcite (CaCO3) and dolomite (CaMg (CO3)2) are carbon-
ate minerals with respective diagnostic absorption features at
2342 and 2324 nm, and secondary ones at 2156 and 2140 nm.
These absorptions are attributed to overtones and combinations
of bending and stretching vibrations of the CO2−

3 ion [62]–
[64]. The slight shift for dolomite is due to the presence of Mg
in addition to Ca associated with the CO2−

3 ion. The objective
here is to evaluate the capacity of the method to discriminate
calcite from dolomite despite their close diagnostic absorption
features. The influence of the asymmetry factor on the estimate
of absorption characteristics is also evaluated.

Note that a post-processing step on the greedy-AGM results
could be applied to remove unrealistic or overfitted EGO
Gaussians (represented in blue in the following figures).

2) VNIR absorptions: goethite ferric iron absorptions:
Fig. 6 shows the results for goethite. First, the continuum is
correctly estimated. It fits the overall shape of the spectrum
in the SWIR, where no absorption of mineralogical interest
is present. In the VNIR, the position of Guv is close to the
edge of the spectrum with a small width (µuv = 402 nm,
σuv = 65 nm). Also, c1 is large (c1 = 1110). Thus, the fit
with EGO Gaussians of the absorption at 500 nm is mainly
affected by Guv while the ones at 660 and 960 nm depend on
c1. However, the estimated continuum in the VNIR lies above
the spectrum, and its shape is consistent with the results on
synthetic data; see spectrum 1 in section IV-B.

Fig. 6: Goethite spectrum (black), estimated continuum (black-
dashed), diagnostic and secondary EGO Gaussians (red), other
EGO Gaussians (blue). The true positions of the diagnostic and
secondary absorptions are shown as vertical lines.

As expected, the absorption at 960 nm is fitted by a broad
EGO Gaussian whose position is slightly shifted (δµ = 11
nm). The shift impacts the absorption at 660 nm and tends to
adjust both absorptions simultaneously. The absorption at 660
nm is fitted by an EGO Gaussian of reduced amplitude. In
addition, NNOMP selects three EGO Gaussians (at 880, 997,
and 1079 nm) of low amplitudes to reduce the reconstruction
error. An EGO Gaussian accurately adjusts the absorption at
500 nm (µ = 494 nm), together with Gaussians of small
amplitudes.

3) SWIR absorptions: kaolinite doublet and secondary ab-
sorptions: Fig. 7 shows the results for kaolinite. The estimated
continuum is removed to improve readability.
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Fig. 7: SWIR kaolinite absorption spectrum (continuum re-
moved, black), diagnostic and secondary EGO Gaussians
(red), other Gaussians (blue). The true positions of the diag-
nostic and secondary absorptions are shown as vertical lines.

Three EGO Gaussians fit the main kaolinite doublet. The
broad Gaussian at 2189 nm (in blue in Fig. 7) models the
shape of the absorption while the other two (in red), narrow
and deep, are located close to the theoretical positions of the
doublet (δµ < 4 nm). This result is explained by the fact that
NNOMP first selects the broad Gaussian to capture the main
trends of the spectrum.

Two EGO Gaussians fit the secondary absorptions at 2312
and 2380 nm. Their positions are close to the theoretical ones
(δµ < 3 nm). The absorptions being close, their amplitudes
and shapes are difficult to separate. Thus, the EGO Gaussian
centered at 2380 nm is asymmetric (k = 0.43), which reduces
the amplitude of the one at 2312 nm.

The range at the edge of the spectrum (for the highest
wavelengths) is modeled by three EGO Gaussians. The red
Gaussian centered at 2458 nm corresponds to an absorp-
tion embedded in the spectrum that is not characteristic of
kaolinite. Both Gaussians in blue, centered around 2500 nm,
compensate for a continuum artifact. These three Gaussians
are not helpful for identification purpose since they either fit
a non-diagnostic absorption or compensate for artifacts on the
edge of the spectrum.

4) VNIR and SWIR absorptions: nontronite continuum and
absorptions: Fig. 8 shows the results for nontronite.

Fig. 8: Nontronite spectrum (black), estimated continuum
(black-dashed), diagnostic and secondary EGO Gaussians
(red), other Gaussians (blue). The true positions of the diag-
nostic and secondary absorptions are shown as vertical lines.

The estimated continuum lays above the spectrum and

fits the overall shape. Several artifacts appear due to the
presence of broad absorptions in the VNIR. Three small and
narrow EGO Gaussians are selected in the VNIR edge of the
spectrum. Their positions being close to 450 nm, they cannot
be interpreted as absorptions. The artifact between 600 and
1250 nm impacts the amplitude of the absorptions at 660 and
960 nm. A smaller EGO Gaussian compensates it at 971 nm.
The broad artifact between 1250 and 2100 nm is fitted by three
EGO Gaussians centered within the spectral masks (at 1470,
1816, and 2027 nm).

Nevertheless, all the absorptions of interest are retrieved and
fitted by unique EGO Gaussians, highlighted in red in Fig. 8.
Specifically, one can distinguish two Gaussians in the VNIR,
the Gaussian of largest width being slightly shifted from its
theoretical position at 960 nm. Two other Gaussians are found
in the SWIR part of the spectrum. They correspond to the
diagnostic absorption at 2283 nm and the secondary one at
2378 nm. Positions and widths are consistent with theoretical
knowledge. However, due to a gap between the continuum
and the spectrum, the shape of the secondary absorption is
modified. This results in a strong asymmetry of the Gaussian
at 2378 nm (k = −0.73).

5) Spectral mask: gypsum absorptions: Fig. 9 presents the
results for gypsum. The estimated absorptions located outside
and within the spectral mask are shown in Fig. 9(a) and
Fig. 9(b), respectively. Note that the absorptions at 1538 and
1750 nm are close to the spectral masks. Therefore, they are
more difficult to retrieve.

(a)

(b)

Fig. 9: Gypsum absorption data spectrum including miss-
ing data in the spectral masks (plain black; continuum has
been removed. The dashed curve indicates the full absorption
spectrum). (a). Diagnostic and secondary EGO Gaussians
(red), and other EGO Gaussians (blue). The positions of true
absorptions are shown as vertical lines. (b) Estimated EGO
Gaussians located in the spectral mask (orange).
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In Fig. 9(a), the diagnostic absorption at 1750 nm is
fitted by an EGO Gaussian whose position and shape are
slightly impacted by missing data within the spectral mask
(δµ = 2 nm). Regarding the secondary absorption at 1538
nm, two Gaussians are retrieved. The first, centered at 1555
nm (in blue), is wide and deep and fits the right edge of
the absorption. The second, of lower amplitude and width,
gives the exact position of the absorption (in red). At last,
the broad absorption at 2215 nm is fitted by a broad EGO
Gaussian giving the shape of the absorption and a smaller
one, in amplitude and width, positioned at the center of the
absorption (µ = 2218 nm). Note that an absorption that is not
characteristic of gypsum is retrieved at 1198 nm.

In Fig. 9(b), the edges of each spectral mask centered
around 1400 and 1900 nm, respectively, are fitted by unique
EGO Gaussians whose positions are close to the center of
the masks. Their shape and position are consistent with the
spectral mask’s theoretical absorptions, shown in the dashed
curve. A third (broad) Gaussian is retrieved at 1386 nm, which
models the left edge of this spectral mask.

This example shows that it is possible to retrieve absorptions
centered close to the spectral masks despite the missing
data. The NNOMP algorithm indeed selects EGO Gaussians
centered in the spectral mask in order to adjust the edges of
the spectrum.

6) Discrimination of close absorptions: calcite and
dolomite SWIR absorptions: Fig. 10 gathers the results for
calcite and dolomite spectra, with similar spectral shapes.
We focus on their close absorptions (diagnostic is separated
by 18.5 nm and secondary by 16 nm). Given the AVIRIS
spectral resolution, i.e., 10 nm, it is theoretically possible

(a)

(b)

Fig. 10: Calcite (a) and dolomite (b) absorption spectrum
(black), diagnostic and secondary absorptions (red) and other
absorptions (blue). The positions of the true diagnostic and
secondary absorption features are shown as vertical lines.

to distinguish the two minerals based on their diagnostic
absorption positions. For improved readability, the estimated
continuum is removed from the spectrum of Fig. 10.

The absorptions of both spectra are retrieved similarly. Two
EGO Gaussians fit the main diagnostic absorption, and a
separate one is related to the secondary absorption. Similar to
kaolinite, the blue Gaussian, broad and asymmetric (σ = 37.5
nm and k = 0.13 for calcite, σ = 27.8 nm and k = 0.22 for
dolomite) models the main trend of the diagnostic absorption.
The narrower Gaussian in red (σ = 13.7 nm for calcite and
σ = 16.5 nm for dolomite) is located at the theoretical center
of the absorption (δµ < 2 nm). Its amplitude varies depending
on how the Gaussian shape models the trend. Thus, for calcite,
the amplitude of the Gaussian is lower than for dolomite. The
secondary absorption is found close to the theoretical position
(δµ < 2 nm) with a visually coherent shape. However, for
dolomite, its amplitude is attenuated by the presence of a wide
Gaussian (not represented in Fig. 10(b)), centered before 2050
nm and resulting from a continuum estimation artifact.

This example shows that the diagnostic and secondary
absorptions of calcite and dolomite could by successfully
retrieved by the method and be used to distinguish calcite
from dolomite.

C. Results on hyperspectral images

1) Campaign and data description: The goal is to apply
the proposed method to real world image data acquired
from airborne sensors. The hyperspectral data of Fig. 11
were acquired during a dedicated campaign over two quarries
in France, with HySpex cameras (https://www.hyspex.com).
Three minerals of interest are present with specific spec-
tral signatures: gypsum, carbonates (Cherves-Richemont), and
kaolinite (Chevanceaux). The minerals entail different physical
and chemical characteristics and are used in the production
of plasterboard or as aggregates (Cherves-Richemont) and
refractory ceramics (Chevanceaux). Images were acquired in
September 2019, with 0.5 m and 1.0 m spatial resolution in the
VNIR and SWIR ranges, respectively. The number of spectral
bands and the spectral resolution in the VNIR and SWIR are
160 and 162 and ∼ 4 and 7 nm, respectively. In this study,
only SWIR images were used. Images were atmospherically
corrected using the ATCOR4 algorithm [65]. Reflectance
images were spatially downsampled to 5 m to improve the
SNR. Two spectral masks were applied around 1400 and 1900
nm to avoid the effects of saturated atmospheric water vapor
absorptions. Representative samples were collected after image
acquisition aiming to create a database gathering the possible
spectral signatures in the quarries. An ASD FieldSpec R©FR3
was used for laboratory measurements.

We analyzed a mixture of gypsum and carbonate (here
calcite) and spectra of kaolinite. To apply the method on
SWIR spectra, we removed c1 and Guv from the continuum
model (2), and generated a NNOMP dictionary based on the
procedure described in section III-C4, without EGO Gaussians
centered shorter than 1500 nm. The noise covariance Σ was
estimated using HySime [46].
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(a)

(b) Red star.

(c) Green star.

(d) Blue star.

(e)

(f) Red and green stars.

Fig. 11: Hyperspectral images acquired over (a) Cherves-
Richemont and (e) Chevanceaux quarries. (b) Gypsum spec-
trum on the quarry layer. (c) Calcite spectrum from piles
used as aggregates. (d) Gypsum-calcite mixture. (f) Kaolinite
spectra from two piles.

2) Spectral mixture of gypsum and carbonates: In the
Cherves-Richemont image, gypsum and calcite can be eas-
ily identified from their reflectance spectra (Figs. 11(b,c)).
However, for some areas, especially near the roads and the
plants, gypsum and calcite constitute mixtures. This results
in a spectrum including all the diagnostic and secondary
absorptions of gypsum and calcite (Fig. 11(d)). We thus apply
the method to three spectra shown in Fig. 12.

The results on gypsum and calcite can be easily compared to
the evaluation on laboratory data, see sections V-B5 and V-B6.
In Fig. 12(a), the gypsum absorption at 1750 nm is retrieved
at µ = 1749 nm with an amplitude of 0.16 (i.e., the sum of all
estimated EGO Gaussians at 1749 nm). The broad absorption
at 2215 nm is retrieved at µ = 2208 nm using three EGO
Gaussians. Also, the continuum parameter c0 is equal to 0.67.
In Fig. 12(b), as expected, the calcite diagnostic absorption is
fitted by two EGO Gaussians at ∼ 2269 nm, and one for the
theoretical position (µ = 2341 nm). The secondary absorption

(a)

(b)

(c)

Fig. 12: Deconvolution of gypsum (a) and calcite (b) spectra,
and a mixture of both (c). The true positions of the diagnostic
and secondary absorptions are shown as vertical lines.

at 2156 nm is retrieved at µ = 2160 nm. The continuum
parameter c0 is equal to 0.07.

The diagnostic absorptions of gypsum and calcite and the
secondary absorption of gypsum at 2215 nm are retrieved in
the mixture (Fig. 12(c)). First, the absorption at 1750 nm is
retrieved at µ = 1749 nm with an amplitude of 0.08 (i.e., the
sum of all estimated EGO Gaussians at µ = 1749 nm), which
is half the one of pure gypsum. Then, the absorption at 2215
nm is also retrieved at µ = 2209 nm. The calcite absorption
at 2340 nm does not match the shape of pure calcite, and
only one asymmetric EGO Gaussian is retrieved at 2235 nm.
Finally, the continuum parameter c0 is equal to 0.54, which is
between the values for gypsum and calcite.

Based on the estimated EGO Gaussian positions and ampli-
tudes, one can identify the spectrum as a gypsum-calcite mix-
ture (positions) and possibly evaluate the relative concentration
of both (amplitudes and c0). This illustrates the high potential
of spectral deconvolution for mineralogical interpretation.

3) Deconvolution of kaolinite spectra: On the Chevanceaux
image, kaolinite is easily identifiable from its reflectance
spectra (Fig. 11(f)). However, depending on the pile, the
kaolinite doublet is more or less well-formed, which may
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(a)

(b)

Fig. 13: Deconvolution of kaolinite spectra from two piles.
The true positions of the diagnostic and secondary estimated
absorptions are shown as vertical lines.

be related to well-ordered kaolinite [10]. Results for each
spectrum of Fig. 11(f) are shown in Fig. 13. They can be
easily compared to those of the laboratory data in paragraph
V-B3. Note that an absorption at 2260 nm, probably due to
the presence of gibbsite (AlOOH), is visible in the spectrum
of Fig. 13(b).

For both spectra, the absorption doublet is fitted by a broad
EGO Gaussian (in blue) capturing the main shape and two
narrow ones (in red). The broad Gaussian is positioned at
2201 and 2193 nm with a width equal to 17.6 and 21.5 nm,
respectively. The two narrow EGO Gaussians in red model
the absorption doublet and are shifted by less than 1 nm from
their true positions. For the spectrum of Fig. 13(a), the small
absorptions at 2315 and 2355 nm are well retrieved. On the
contrary, in Fig. 13(b), the strong asymmetry of the gibbsite
absorption at 2259 nm does not make it possible to detect the
small absorptions.

Similar to the gypsum-calcite mixture from the Cherves-
Richemont image in paragraph V-C2, the diagnostic absorp-
tions of gibbsite and kaolinite are retrieved, which allows one
to identify these two minerals. Also, the kaolinite absorption
doublet is fitted similarly for both spectra. So, studying the
evolution of its shape over the piles should be possible.

4) Kaolinite mapping: The spatial distribution of kaolinite
can be mapped, see Fig. 14. For this purpose, let us first define
the following band ratio:

R =
0.275ρ(λ = 2127 nm) + 0.725ρ(λ = 2236 nm)

ρ(λ = 2206 nm)
. (12)

This ratio highlights the presence of kaolinite by quantifying
the depth of its absorption band at 2206 nm.

First, a spatial mask is empirically defined to keep only
the pixels inside the quarry. The band ratio is calculated for
all selected pixels and only those having a value greater than

(a)

(b)

Fig. 14: Kaolinite mapping at Chevanceaux obtained by (a) the
band ratioing technique and (b) the greedy-AGM procedure.
Piles are clearly visible in the lower left part of the quarry.

1.25 are kept (corresponding to 6721 pixels). We thus obtain
the map in Fig. 14(a) where the different piles are visible
(higher ratios). Then, greedy-AGM is applied to the same
pixels. Here, we calculate the sum of the amplitudes of the
broad EGO Gaussian and the right narrow EGO Gaussian of
the doublet, around 2200 and 2206 nm, respectively (blue and
red Gaussians in Fig. 13). Fig. 14(b) shows the resulting map,
where the piles are also visible.

The visual comparison of both maps demonstrates the
potential of greedy-AGM for mineral mapping. It is worth
mentioning that several maps of mineralogical parameters can
be generated since one run of greedy-AGM yields the full
set of EGO parameters, unlike simpler methods such as band
ratioing.

VI. DISCUSSION AND CONCLUSION

A. Highlights of the greedy-AGM approach

In the literature, several methods were proposed to retrieve
the parameters of physical models from mineral reflectance
spectra for feature reduction and classification purpose [16]
or for mineral identification and characterization [29], [34].
These methods suffer from several shortcomings as they need
empirical initialization or tuning of algorithm parameters [30],
[34], [35]. In particular, estimating the number of absorption
features is known to be complicated. Also, propagation of
errors often arises with methods that sequentially retrieve the
continuum and absorption parts of the spectrum, leading to
possible false detection of absorption features [37] and noise
sensitivity [34], [37].

We proposed a new automatic approach to retrieve the
parameters of physical models. The greedy-AGM procedure
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includes several substantial improvements over classical meth-
ods. First, the number of absorption features is automati-
cally estimated using a greedy algorithm coupled with an
information-theoretic criterion. Second, the continuum esti-
mation step outperforms classical geometric approaches [39]
for noisy data and limits the creation of artifacts. Third, the
method is easy to use, as no pre-processing of data is re-
quired. Automatic rules for setting the algorithmic parameters
(number of dictionary atoms, maximum number of absorption
features) are given in subsection III-E. We stress that no expert
knowledge is necessary for practical use of greedy-AGM.

B. Experimental validation and perspectives

Another significant contribution of the paper is the val-
idation of the greedy-AGM procedure on a rich collection
of spectra, including synthetic and laboratory data and real
hyperspectral images related to various minerals. This ex-
tensive validation illustrates the potential of the method to
extract useful spectral information of minerals from noisy
reflectance spectra. Greedy-AGM is easily adaptable to ab-
sorption features representative of various difficult situations
that can be encountered in spectral signatures of minerals:
broad and shallow absorptions such as those related to iron
in the VNIR, narrow and sharp, close absorptions like the
kaolinite doublet, absorptions located close to the atmospheric
water vapor absorptions, and asymmetric absorptions. The
number of absorptions and their respective parameters were
well retrieved. For example, errors on the centers of the
absorption features are less than 20 nm and 5 nm for VNIR
and SWIR absorptions, respectively. We also demonstrated
that the method could deal with complex cases of missing
hyperspectral data related to spectral masks.

When applied to hyperspectral images, greedy-AGM was
able to handle mixtures of gypsum and calcite, and the kaoli-
nite absorption doublet was well retrieved. We plan to produce
maps of diverse geological environments by intensively apply-
ing the greedy-AGM procedure in future work. Another critical
perspective is to develop an automatic identification procedure
from the retrieved EGO parameters. A solution based on a
fuzzy logics is currently under study [66].
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