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Improved deconvolution of mineral reflectance
spectra

Ronan Rialland, Charles Soussen, Member, IEEE, Rodolphe Marion, and Véronique Carrère

Abstract—The identification and characterization of a mineral
from its reflectance spectrum is based on the analysis of the
continuum (i.e., the overall shape) and its diagnostic absorptions.
The development of automatic methods to retrieve such useful
information is a key challenge as new airborne and satellite-
borne sensors are developed. We present a flexible and automatic
deconvolution procedure able to deal with various minerals
and sensors. The approach is based on a physical model and
offers the possibility to include noise statistics. It is composed
of three successive steps: (i) the continuum is pre-estimated
and removed using a non-linear least-squares algorithm with
adapted constraints; (ii) the absorptions are pre-estimated using
a greedy algorithm; (iii) the continuum and absorption estimates
are jointly refined using a non-linear least-squares procedure.
Each step is validated first on synthetic spectra, including the
sensitivity of the full procedure to instrumental noise. Then, the
procedure is applied to diverse laboratory spectra. In most cases,
absorption positions are recovered with an accuracy lower than 5
nm, enabling mineral identification. The potential of the proposed
deconvolution procedure is finally assessed on hyperspectral
images acquired over quarries during a dedicated airborne
campaign. Here, minerals such as calcite and gypsum are clearly
identified based on their diagnostic absorption features, including
when they are in a mixture. Small changes in the shape of the
kaolinite doublet are also clearly detected and could be related
to crystallinity or mixture with other minerals such as gibbsite.

Index Terms—Mineral reflectance spectra, Hyperspectral im-
ages, HySpex, EGO model, AGM procedure.

I. INTRODUCTION

A. Spectroscopy, mineralogy and hyperspectral imaging

HYPERSPECTRAL imaging in the solar reflective do-
main (VNIR, Visible Near-InfraRead [400 − 1300] nm

and SWIR, Short-Wave InfraRed [1300−2500] nm) provides a
reflectance spectrum for each pixel of an image allowing one to
retrieve and map physico-chemical properties of the observed
surface. In particular, spectra of minerals are composed of
specific or diagnostic absorption bands, the position of which
mainly depends on the chemical composition [1]. Absorptions
in the SWIR are generally narrow and deep, whereas in
the VNIR they tend to be broader and weaker because they
correspond to various physical phenomena: rotation, vibration,
stretching and bending of molecule bonds in the SWIR, crystal
field, electronic transitions in the VNIR. The overall shape
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of a mineral reflectance spectrum, called continuum, depends
on surface conditions (e.g, grain size, roughness, humidity)
and illumination. The shape and strength of the diagnostic
absorptions depend on concentrations, potential mixtures and
observation conditions, so that a simple comparison of a
spectrum with an extensive database using an arbitrary metric
generally fails. In the following, we focus on a set of minerals
of interest [2] that can be identified and characterized from
their reflectance spectra and are often encountered in airborne
and satellite-borne hyperspectral images.

New airborne and satellite-borne sensors such as the
Airborne Visible InfraRed Imaging Spectrometer, Classic
(AVIRIS) [3] and Next Generation (AVIRIS-NG) [4], the
HySpex sensors such as Mjölnir (https://www.hyspex.com),
the PRecursore IperSpettrale della Missione Applicativa
(PRISMA) [5] or the Environmental Mapping and Analysis
Program (EnMAP) [6] gave rise to an increased number of
hyperspectral images over large areas of mineralogical interest,
so that detailed spectral analysis can be performed. Developing
flexible and automatic algorithms able to deal with various
sensor characteristics and a wide variety of minerals is an
important objective which still remains challenging.

B. Models and methods
Several approaches (see [7] and references therein for a

review) have been proposed for analyzing mineral reflectance
spectra from hyperspectral images. First, unmixing methods
[8] are based on endmembers which can be chosen in a
database or retrieved from the image. Also, classification
algorithms identify the dominant mineral based on similarity
measures with reference spectra [9]. These solutions as well
as those based on machine learning, rely on reference spectral
libraries such as the USGS spectral library [10], which in-
cludes more than 1200 reflectance spectra of various minerals.
However, these databases are scarce and the number of spectra
per mineral is often low. Thus, specific databases have to
be created to analyze the physical properties of minerals.
Moreover, the spectral signatures may vary depending on the
acquisition sensor and the measurement conditions.

Then, knowledge-based approaches, such as spectral indices
[11], Tetracoder c©[12], Wavelength Mapper [13] and Quan-
tools [14], aim to analyze specific spectral features of the min-
eral reflectance spectrum. Spectral features yield quantitative
information that can be used to identify the mineral. However,
they often need prior initialization or expert knowledge and are
ill-suited to analyze the full VNIR and SWIR ranges.

Finally, spectral deconvolution approaches rely on a
physically-based reflectance model, e.g., the Modified Gaus-
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sian Model (MGM) [15] or the Exponential Gaussian Opti-
mization (EGO) model [16], [17]. The deconvolution of min-
eral reflectance spectra has undergone several improvements
over the years with increasingly automatic algorithms [18]–
[21] and various applications from iron absorption estimation
in the VNIR range [15], [22] to minerals with various chemical
compositions such as phyllosilicates [23], [24]. Among them,
the Automatized Gaussian Model (AGM) proposed by the
authors in [2], is based on the EGO model and is able to
deal with both VNIR and SWIR ranges in a same process.
The estimated parameters can be used for identification and
characterization of a large variety of minerals.

In this paper, we first review the EGO model and the AGM
procedure (section II). Then, several substantial improvements,
such as a new continuum removal procedure or the use of a
greedy algorithm for absorption pre-estimation, are proposed
to yield a flexible and automatic procedure (section III). The
method is validated on synthetic data (section IV) and then
applied to various experimental spectra related to laboratory
measurements and hyperspectral images (section V).

II. EGO MODEL

A. Presentation

The EGO model [16], [17] aims at decomposing the log-
arithm of a mineral reflectance spectrum ρ as a continuum c
and a sum of N asymmetric (modified) Gaussian features:

ln ρ (λ,θ) = c (λ,θc)−
N∑
i=1

G (λ,θGi) + n(λ) (1)

= Φ(λ,N,θc,θG) + n(λ) (2)

where λ is the wavelength and n(λ) is the noise process. The
generic notation Φ(λ,N,θc,θG) expresses the dependency
upon both continuum and Gaussian parameters, respectively
θc and θG = {θG1

, . . . ,θGN }. Bold notations refer to a set
of parameters.

The continuum part models the overall shape of the spec-
trum. The drop-off toward the ultraviolet (below 400 nm),
denoted uv, is essentially due to iron whereas the one in the
SWIR (beyond 2500 nm), denoted water, mostly depends on
water and OH absorption. The continuum is then expressed as

c (λ,θc) = − c0 − c1λ−1 −Guv (λ, suv, µuv, σuv)

−Gwater (λ, swater, µwater, σwater) . (3)

Guv and Gwater are two standard Gaussians with re-
spective amplitudes suv and swater, positions µuv and
µwater and widths σuv and σwater. They model the
drop-offs on the edges of the spectrum. The offset c0
and slope c1 deal with the overall shape. Thus, θc ={
c0, c1, suv , µuv , σuv , swater, µwater, σwater

}
gathers the

continuum parameters.
EGO Gaussians model the wide variety of encountered

absorption shapes in the VNIR and SWIR ranges. They are
defined as asymmetric functions:

G (λ,θGi) = si exp

(
−1

2

(λ− µi)2

(σi − ki (λ− µi))2

)
(4)

with si the amplitude, µi the position, σi the width and ki
the asymmetry of the absorption. Thus, θGi = {si, µi, σi, ki}
gathers the parameters of the i-th Gaussian. The EGO model
is illustrated in Fig. 1 for goethite and kaolinite spectra with
continuum and absorption features estimated by the solution
proposed in this paper (only the EGO Gaussians corresponding
to the absorptions used to identify the mineral are shown).

(a)

(b)

Fig. 1: Logarithm of goethite (a) and kaolinite (b) reflectance
spectra from the USGS spectral library [10]. The estimated
continuums are shown with dashed lines and the estimated ab-
sorptions in red. The vertical green lines indicate the positions
of the theoretical absorptions used to identify the mineral.

B. Limits and identifiability

An attractive feature of the EGO model is that it is in-
dependent of site or measurement conditions. Therefore, it
has been used in several studies [18], [21], [24]. It provides
information on both chemical and physical properties of the
surface, and has proven to be one of the most powerful tools
for deconvolution of the reflectance spectrum of binary or
ternary mixtures as well as overlapping absorption features
[2]. However, the EGO model may not be identifiable, since
some spectral features may be accurately adjusted by different
sets of EGO parameters, as discussed hereafter.

The physics of the continuum remains not fully understood
and several continuum models have been proposed, e.g., a
convex hull [25], a second-order polynomial [19], a linear
spline interpolator [18]. They all lead to errors on the con-
tinuum removed spectrum. In the case of the EGO model,
we may encounter the following ones. First, the Gaussians
Guv and Gwater may not perfectly adjust the edges of the
spectrum which may yield artifacts, similar in shape to EGO
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Gaussians. Then, the VNIR part of the spectrum is modeled
by the parameter c1 and Guv which both influence the drop-
off at the edge of the spectrum. Note also that the range of
variation of the parameter c1 is large, from 0 to ∼ 103 nm,
since c1 is weighted by λ−1 in (1). Finally, EGO Gaussians of
low amplitude, wide and located at the center of the spectrum
or strongly asymmetric can reduce the estimated value of c0.

Moreover, a sum of EGO Gaussians may be confused with
a single EGO Gaussian. One may note that some authors
have introduced a parameter to take the saturation of the
absorption bands into account [16]. However, the resulting
shape of a saturated EGO Gaussian may also be confused with
a sum of two Gaussians. For simplicity reasons, the saturation
parameter is not considered here. Furthermore, large values of
the asymmetry parameter k may create unrealistic absorption
shapes. Bounds based on experiments will be set to avoid this
problem. Finally, the number of Gaussians N may lead to
overfitting when absorptions are close in position.

To limit these identifiability issues, most semi-automatic
methods require initialization based on priors [16]–[19], [24]
and bounds [22]. In this paper, we aim at estimating the full
set of EGO parameters N , θc and θG. The challenges are
to adaptively estimate the model order, i.e., the number of
unknown parameters, related to the unknown number of Gaus-
sians N , and to automatically initialize the EGO parameters
with mineralogically coherent values.

C. Spectral deconvolution issues

The proposed AGM procedure includes continuum removal
and absorption estimation steps. Let us review the main
technical challenges.

Continuum removal may be carried out using parametric
or non-parametric methods. The latter usually rely on convex
shape assumption, which makes it possible to apply geometric
methods [18]. This approach is fast and easy to apply to
various mineral spectra but can be sensitive to noise [26].
Parametric methods are model dependent and suffer from
parameter initialization issues [16], [19], [21], [27]. Hereafter,
we make use of a parametric method, based on the EGO
continuum model, with adapted initialization of parameters θc.

Absorption estimation deals with two objectives: determine
the number of Gaussians N and estimate the EGO Gaussian
parameters θG. Several solutions have been proposed such as,
e.g., spectral derivatives [20], [21] and the Continuous Wavelet
Transform [28], [29]. The former retrieves the local minima of
the spectrum but is sensitive to noise and may over-estimate
the number of Gaussians. The latter aims to separate the
absorptions from the noise. However, the related parameters
are difficult to set, because they strongly depend on the mineral
reflectance spectrum, and the number of Gaussians is often
under-estimated. Note also that these methods do not estimate
the asymmetry parameter. On the contrary, our method re-
trieves the EGO (asymmetric) Gaussian features. Importantly,
the proposed approach includes an adaptive estimation of the
number of EGO Gaussians depending on the noise statistics.

III. IMPROVED AGM PROCEDURE

A. Overview

The improved AGM procedure takes as input a mineral
reflectance spectrum ρ (λ) and the associated noise covariance
matrix Σ. It is composed of three steps: (i) continuum pre-
estimation, (ii) absorption pre-estimation, and (iii) joint op-
timization. Continuum pre-estimation is carried out using a
non-linear least-squares formulation, with initial values of θc
defined beforehand. The resulting pre-estimated continuum
can then be subtracted from the data spectrum:

a(λ) = c(λ,θprec )− ln ρ (λ) (5)

where θprec and a(λ) respectively refer to the pre-estimated
continuum parameters and the absorption part, that is, the
sum of EGO Gaussians in (1). Absorption pre-estimation then
automatically retrieves the parameters of the EGO Gaussians,
noted θpreG from a(λ). These continuum and absorption es-
timates are refined during the joint optimization step, which
boils down to a least-squares post-processing stage. The im-
proved AGM procedure is summarized in Fig. 2.

In the following, the noise is assumed to be zero-mean,
Gaussian and independent from one spectral band to another.
However, the noise variance σ2

λ is known to depend on the
spectral band λ. The noise covariance matrix Σ = diag(σ2

λ) is
thus diagonal and can be either calculated knowing the sensor
characteristics or estimated from the data [30].

The three steps of the AGM procedure are detailed in the
next subsections. The column vector gathering the reflectance
values ρ(λ) for every λ is denoted by ρ ∈ RNλ , with Nλ
the number of wavelengths. Similarly, the vectors c (θc),
a (θG) and σ gather the values of c (λ, θc), a (λ,θG) and
σλ, respectively, for all λ.

ρ (λ) ,Σ

Continuum pre-estimation

Absorption pre-estimation
and model order selection

Joint optimization

N̂ , θ̂c, θ̂G

a(λ)

θprec

N̂ , θpreG

Fig. 2: Flowchart of the improved AGM procedure.
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B. Continuum pre-estimation

The following least-squares formulation corresponds to the
maximum likelihood estimation of parameters θc:

min
θc
‖Σ− 1

2
(
c− lnρ (θc)

)
‖2 s.t.

{
c (θc)− lnρ ≥ ασ

θminc ≤ θc ≤ θmaxc

(6)

where ‖ . ‖ refers to the Euclidean norm, and the compact
writing c (θc) − lnρ ≥ ασ refers to Nλ constraints, one per
wavelength. In a nutshell, the latter constraints aim to impose
that the absorption a(λ) defined in (5) is non-negative valued,
that is, the amplitude of the EGO Gaussians are positive. The
coefficient α is set empirically to adapt the tolerance to the
noise standard deviation. Bounds θminc and θmaxc are defined
in subsection III-E. Other constraints may be used to impose a
specific continuum shape, e.g., concavity constraints. However,
such constraint is not always suited to deal with a large
variety of minerals. The least-squares problem (6) is solved
using the Constrained Optimization BY Linear Approximation
(COBYLA) algorithm [31].

Since (6) is a non-linear least-squares problem, the numer-
ical solution θprec is likely to be a local minimizer, which
depends on the initial value of θc, denoted θstartc . The
initialization strategy is illustrated in Fig. 3 for goethite. The
offset c0 is set as the maximum value of the spectrum and
the continuum slope c1 is set to 0 [21]. Starting values of
the Gaussians Guv and Gwater are computed similarly in the
VNIR and SWIR spectral ranges. Their positions are set to
predefined values µuv = 200 nm and µwater = 2800 nm [27].
Then, the lines l1 and l2 are computed between respectively the
values of the spectrum at the first and last wavelength and the
maximum values of the spectrum in the VNIR, at λρmaxVNIR

, and
in the SWIR, at λρmaxSWIR

. The amplitudes suv and swater are set
to the values of l1 and l2 at µuv = 200 nm and µwater = 2800
nm with c0 removed. Finally, the widths σuv and σwater are
computed according to the settings of Fig. 3. This strategy is
adapted to the various continuum shapes of the minerals of
interest, as Guv and Gwater only influence their own spectral
range, i.e., the VNIR for Guv and the SWIR for Gwater.

C. Pre-estimation of absorption characteristics

Once the continuum is pre-estimated, (5) yields the absorp-
tion signal a(λ), which rereads

a(λ) =

N∑
i=1

G (λ,θGi)− n(λ) + e(λ) (7)

according to (1), where e(λ) refers to the estimation error in
the continuum pre-estimation step. Absorption estimation con-
sists in decomposing a(λ) into a weighted sum of Gaussians
with positive weights. This problem can be effectively solved
using greedy algorithms, which select the EGO Gaussians
one by one in a large dictionary containing all possible
EGO Gaussians. This greedy approach is detailed hereafter.
Moreover, an information theoretic criterion will be used to
adaptively estimate the number of selected Gaussians.

Fig. 3: Computation of the initial continuum parame-
ters θstartc from a goethite reflectance spectrum, in
black, from the USGS spectral library [10], sample:
splib07b_Goethite_GDS134_ASDFRb_AREF. The lines l1 and
l2 are drawn in blue, and the maximum of the spectrum c0
in dashed red. The wavelengths λρmaxVNIR

and λρmaxSWIR
of the

maximum of the spectrum in the VNIR and SWIR are in
dashed black. The parameters of Guv and Gwater are in green.

1) Estimation of EGO Gaussian parameters: Starting
from (7), we adopt an optimization approach akin to (6), which
consists of minimizing the negative log-likelihood

∥∥∥∥Σ− 1
2

(
a−

N∑
i=1

G (λ,θGi)
)∥∥∥∥2 (8)

with respect to the EGO Gaussian parameters θG. The dif-
ficulty of this optimization problem is twofold. First, this is
a non-linear least-squares problem, thus the cost function is
likely to be multimodal, i.e., with many local minimizers.
Moreover, the number of Gaussians N is unknown.

We propose to solve the latter optimization problem for
consecutive values of N , yielding absorption decompositions
for many N . Then, a model order selection rule [32] is applied
to select one particular decomposition among all. An attractive
feature of greedy algorithms is that they provide solutions to
the minimization problems (8) for N = 1, . . . , Nmax with
a single run. N and Nmax are the current iteration of the
algorithm and the total number of iterations, respectively. The
absorption decomposition found for a given N is used as
initialization for the search of the decomposition with N + 1
Gaussians at the next iteration.

The greedy approach is based on the creation of a very
large dictionary G ∈ RNλ×Natom containing all possible
spectral features. Each column (also called atom) of G refers
to a specific EGO Gaussian with predefined shape parameters
(µ, σ, k), and magnitude s = 1. The EGO Gaussian model (4)
thus reads as si gi where gi refers to a column of G related to
the i-th absorption. In turn, the sum of EGO Gaussians in (8)
reads as a matrix-vector product Gs where s ∈ RNatom are
the (non-negative) magnitudes. Thus, the minimization of the
residual error (8) rereads:

min
s
‖Σ−1/2(a−Gs)‖2 s.t.

{
s ≥ 0

‖s‖0 ≤ N
(9)
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Algorithm 1 Solve problem (9) for N = 1, . . . , Nmax. The
support S gathers the indices of the nonzero elements in s.
gi refers to the i-th column of G. GS refers to the submatrix
gathering the columns of G indexed by S.
inputs: a, Σ, G, Nmax
outputs: sN , rN for all N

r← Σ−1/2a
s← 0
S ← ∅
for N = 1 to Nmax do
`← arg maxi

{
gTi Σ−1/2r / ‖Σ−1/2gi‖, i /∈ S

}
S ← S ∪ {`}
s(S)← arg minz{‖Σ−1/2(a−GSz)‖2, z > 0}
sN ← s

rN ← Σ−1/2(a−GsN )

end for

where ‖s‖0 counts the number of non-zero entries in vector
s and N is the number of absorption features embedded in a
mineral reflectance spectrum.

2) NNOMP, a greedy algorithm: Non-Negative Orthogonal
Matching Pursuit (NNOMP) [33], [34] is a greedy search
algorithm dedicated to solving problem (9) for consecutive
N = 1, . . . , Nmax. As shown in Algorithm 1, NNOMP gra-
dually selects atoms in G in order to refine the approximation
a ≈ Gs. Initially, no atom is selected, then s = 0. At each
iteration, a new atom of G is added to the current support S
gathering the previously selected atoms. Their amplitudes are
then adjusted using a Non-Negative Least-Squares solver [34].
The residual r = Σ−1/2(a−Gs) is updated accordingly.

The atom selection rule of NNOMP aims at decreasing at
most the norm of the residual r. Thus, in practice, the main
absorptions of the spectrum are retrieved in the first iterations,
then smaller absorptions are gradually retrieved.

3) Model order selection: Model order selection aims at
automatically selecting a solution sN among the outputs sN ,
N = 1, . . . , Nmax. Many rules such as the Akaike information
criterion tend to overestimate the true number of features,
because they were designed based on an asymptotic informa-
tion theory analysis, where the number of observations tend
to infinity [32]. Minimum Description Length (MDL) criteria
are easily adaptable to greedy algorithms [35]. Moreover, they
were adapted to short data records, where the number of
parameters is moderately smaller than the data size as in our
case [36]. In the case of known noise statistics, they read:

N̂ = arg min
N

(
ln ‖rN‖+

lnNλ (N + 1)

Nλ −N − 2

)
. (10)

This criterion is thus evaluated at each iteration of NNOMP.
Then, the NNOMP output s = sN for N = N̂ is selected.

4) Dictionary creation and θG pre-estimation: The dictio-
nary G gathers a large number of EGO Gaussians computed
for a set of position (µ), width (σ) and asymmetry (k)
parameters. To do so, each EGO parameter is discretized over
a pre-defined grid whose resolution is related to the size of the

dictionary. Fine grids induce a greater precision at the cost of
increased memory storage and computational time.

The NNOMP algorithm yields the number N̂ of selected
atoms, their column indices gi in the dictionary G and their
magnitudes si. Since there is a one-to-one correspondence
between a column of G and a set of parameters (µ, σ, k),
the parameters related to the i-th selected atom, i.e., θpreGi

=
{si, µi, σi, ki} can be retrieved from the knowledge of the
location of gi in the dictionary G and from the magnitude si.

D. Joint optimization

Once the continuum parameters θprec , the number of Gaus-
sians N̂ and the associated parameters θpreG have been pre-
estimated, a joint optimization process is performed to refine
the continuum and absorption estimates, whose accuracy de-
pends on the discretization of the parameters in the dictionary
G. We define the following non-linear least-squares minimiza-
tion problem with N = N̂ :

min
θc,θG

∥∥∥∥Σ− 1
2

(
lnρ− c (θc) +

N∑
i=1

G (θGi)

)∥∥∥∥2. (11)

The problem is solved by the Trust Region Reflective algo-
rithm [37] using initial parameters θprec and θpreG .

E. Algorithm parametrization

This section summarizes the parameter settings within the
proposed AGM procedure. We first state the constraints related
to the continuum pre-estimation step and then the parameters
and constraints used in the absorption pre-estimation step.

Bounds on the continuum parameters θc are defined in (6)
to ensure that the range of EGO parameters is consistent with
their physical interpretation. As ln ρ(λ) is negative valued, the
parameters c0, c1, suv and swater in (3) are imposed to be
positive. Also, this ensures the drop-offs of the continuum
to appear on the edges of the spectrum. The Gaussians Guv
and Gwater are supposed to be centered outside the spectral
range of the acquisition sensors with µuv ∈

[
0− λmin

]
nm

and µwater ∈ [λmax − 3000] nm. To avoid unrealistic values,
lower (0 nm) and upper (3000 nm) bounds are set for both
µuv and µwater. Widths of Guv and Gwater are unconstrained.
The tolerance α in (6) deals with the noise standard deviation.
α is set to 3 in noisy cases, and to 0 in the noise-free cases.

In Algorithm 1, the maximum number of selected atoms
Nmax is set to 20 to limit the possible number of absorptions.
Since our estimation of N is adaptive, N̂ = Nmax is rarely
reached in practice. Indeed, N often ranges between 1 and
5 for mineral reflectance spectra. To create the dictionary
G, we define two grids adapted to the various absorption
shapes in, respectively, the VNIR and SWIR ranges. VNIR
absorptions tend to be broad whereas SWIR absorptions are
narrow and occasionally asymmetric. In the VNIR, ki is set to
0, as VNIR absorptions are generally symmetric. The width
σi varies between 30 and 380 nm with a step p

2 , where p is the
wavelength sampling step of the sensor (for AVIRIS, p ∼ 10
nm). The latter minimum width is set experimentally to avoid
selecting atoms of small amplitudes that do not identify with



TECHNICAL REPORT, MAY 3, 2021 6

an absorption. The maximum width corresponds to maximum
ferrous goethite absorption at 920 nm, measured on goethite
spectra from the USGS spectral library [10]. The positions
vary between λmin and 1300 nm, with step p

2 . In the SWIR, ki
varies between−0.2 and 0.2 to avoid the creation of unrealistic
EGO Gaussians with a step of 0.05. These values were chosen
after several experiments on mineral spectra with asymmetric
absorptions in the SWIR. The width varies between 5 and
45 nm with a step equal to p

2 . The maximum width is fixed
experimentally, based on the application of the improved AGM
procedure on an alunite spectrum. The positions vary between
1300 nm and λmax with a step of p

10 .

IV. VALIDATION ON SYNTHETIC DATA

In this section, the improved AGM procedure is validated
on noise-free and noisy synthetic data.

A. Synthetic data description and error metrics

Three synthetic spectra are generated using the EGO model
in order to represent various continuum and absorption shapes
(amplitude, width, asymmetry). These spectra are shown in
Fig. 4. Their parameters are given in Tab. I. Spectra 1 and
2 have three absorptions and spectrum 3 four. The spectra
are convolved to the AVIRIS spectral response function. The
objective is to focus on difficult cases with broad and shallow
absorptions in the VNIR (like for goethite and hematite),
close and narrow absorptions in the SWIR (like for kaolinite),
asymmetrical absorptions (like for alunite and calcite), and to
assess the impact of the continuum shape and the Gaussians
used to model the typical drop-offs in the UV and SWIR.

Hereafter, the discrepancy between a synthetic (noise-free)
spectrum ysyn and its recovered version yest is assessed using
the goodness of fit, expressed in dB:

r = 10 log10

‖ysyn‖2

‖ysyn − yest‖2
. (12)

This indicator is computed for each step of the improved AGM
procedure, yielding ratios r1, r2 and r3 between the synthetic
and estimated continuums csyn and cest, absorption spectra
asyn and aest, and spectra lnρsyn and lnρest, respectively.
Furthermore, we introduce metrics to compare the synthetic
parameters θsyn and their estimates θest. For the absorption
positions µ, we use the signed error δµ = µest − µsyn. As
for other EGO parameters θi, the error is expressed as the
normalized ratio

∆θi = 100

∣∣∣∣θesti − θsyni

θsyni

∣∣∣∣ . (13)

B. Algorithm validation in noise-free cases

Each synthetic spectrum is deconvolved with the improved
AGM procedure, see Fig. 4. For noise-free cases, the noise
covariance Σ is set to the identity matrix.

In the continuum pre-estimation step (Fig. 4(d-f)), the
goodness of fit between the pre-estimated continuum and the
synthetic one is r1 ∼ 30 dB for the three spectra. The errors
on the continuum amplitudes are lower than 10%. They mostly

occur in the spectral ranges of broad absorptions (e.g., at 960
nm for spectrum 1), at central wavelengths (e.g., between
1300 and 2000 nm for spectrum 1), and near the edges of
the spectrum (e.g., for wavelengths larger than 2450 nm for
spectrum 1). These errors are related to the presence of broad
absorptions in the spectrum and to the fact that Guv and
Gwater are centered outside the [400− 2500] nm range, where
data are missing. These errors may create three kinds of
artifacts in the absorption spectra. First, the amplitudes and
shapes of broad absorptions can be impacted (e.g., absorption
at 960 nm of spectrum 1 and at 2160 nm of spectrum 2).
Notably, errors in the VNIR are larger as the continuum is
modeled by both c1 and Guv . Then, small and broad false
absorptions may appear at central wavelengths. Finally, small
and narrow false absorptions may appear on the edges of
the spectra. Note that such artifacts are not specific to our
continuum removal procedure. For example, the Clark and
Roush procedure [25], used in the GMEX (Guide for Mineral
EXploration) [38] also creates artefacts at both edges of the
spectral range.

The absorption pre-estimation step, applied to the synthetic
absorption spectra (i.e., simulated without continuum), is il-
lustrated in Fig. 5(a-c). First, r2 is close to 20 dB for the
three spectra as broad and overlapping absorptions may be
slightly shifted (e.g., ∼ 20 nm for the absorption at 960 nm
of spectrum 1, ∼ 10 nm for the absorption at 2160 nm of
spectrum 2) from their synthetic positions. When overlapping
absorptions are similar in amplitude and shape, as for the
absorption doublet at 2162 and 2206 nm of spectrum 3, three
EGO Gaussians are recovered including a false absorption. On
the contrary, isolated absorptions are well retrieved with errors
lower than 0.5% for all parameters.

The absorption pre-estimation step, applied to the absorption
spectra after the continuum pre-estimation step (i.e., with
continuum artifacts) is illustrated in Fig. 4(g-i). Compared to
the results of Fig. 5, the number of false EGO Gaussians
is increased due to the artifacts, but their amplitudes are
small. For example, in spectrum 1, two false absorptions
appear around 1900 and 2500 nm and are fitted by four EGO
Gaussians. Note that, these false EGO Gaussian may be easily
handled in a mineral identification procedure as they do not
correspond to known mineral absorptions.

Finally, the goodness of fit r3 is around 60 dB for the
three spectra, which confirms that the recovered spectrum ρest

perfectly identifies with ρsyn, see Fig. 4(j-l). The estimated
continuums are consistent with the shape of the three spectra.
Absorptions are retrieved with small errors, especially on
their positions. As an example, the maximum position error
is reached for the broad and overlapping absorption at 960
nm of spectrum 1 (δmu = 40 nm). For all other absorptions
of the three spectra, δmu < 3 nm, which is lower than the
current spectral resolution of airborne sensors such as AVIRIS
(∼ 10 nm). Also, absorption shape parameters are accurately
retrieved such as, e.g., the asymmetry of the broad and
overlapping absorption at 2165 nm of spectrum 2 (k = −0.2).
For isolated absorptions (e.g., at 2283 nm for spectrum 1 and
at 1760 nm for spectrum 2), errors on the amplitudes, widths
and asymmetry are lower than 1%.
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Continuum parameters Absorption parameters
c0 c1 Guv Gwater Abs 1 Abs 2 Abs 3 Abs 4

spectrum 1 0.5 500

µ = 200 µ = 2800 µ = 660 µ = 960 µ = 2283
σ = 250 σ = 200 σ = 40 σ = 125 σ = 7
s = 1.2 s = 1.0 s = 0.1 s = 0.25 s = 0.4

k = 0.0 k = 0.0 k = 0.2

spectrum 2 0.5 0.01

µ = 200 µ = 2800 µ = 1760 µ = 2165 µ = 2324
σ = 250 σ = 400 σ = 12 σ = 45 σ = 10
s = 1.2 s = 0.8 s = 0.3 s = 0.4 s = 0.25

k = 0.0 k = −0.25 k = 0.0

spectrum 3 0.2 0.01

µ = 200 µ = 2800 µ = 2162 µ = 2206 µ = 2312 µ = 2380
σ = 250 σ = 400 σ = 15 σ = 17 σ = 10 σ = 10
s = 1.2 s = 1.0 s = 0.35 s = 0.45 s = 0.05 s = 0.05

k = 0.0 k = 0.0 k = 0.0 k = 0.0

TABLE I: Synthetic EGO parameters.

Spectrum 1 Spectrum 2 Spectrum 3

(a) (b) (c)

St
ep

1

(d) (e) (f)

St
ep

2

(g) (h) Zoom in, [1600− 2500] nm (i) Zoom in, [1600− 2500] nm

St
ep

3

(j) (k) (l)

Fig. 4: Results of the improved AGM procedure on three synthetic spectra. (a,b,c) Synthetic spectra ρsyn (solid black curve),
absorption asyn (solid blue) and continuum csyn (dashdot blue). The absorption positions are shown with vertical dashed
lines. (d,e,f) Starting cstart (purple - dashdot) and pre-estimated continuum cpre (green - dashdot). (g,h,i) Absorption spectra
after the continuum pre-estimation step (green) and Gaussians selected by NNOMP (orange). Their positions are shown with
vertical dashed lines. (j,k,l) Estimated absorption spectra aest and continuum cest (red). For each step, the goodness of fit
(r1, r2, r3) is given in dB.
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(a) Spectrum 1 (b) Spectrum 2 (c) Spectrum 3

Fig. 5: Synthetic absorption spectra (blue) and Gaussians selected by NNOMP (orange). The order of selection is also indicated.
The true absorption positions and their estimates are shown as vertical dashed lines (respectively blue and orange).

(a) Spectrum 1 (b) Spectrum 2 (c) Spectrum 3

Fig. 6: Example of synthetic spectra for SNR = 30 dB. Estimated EGO Gaussian positions are shown as vertical dashed lines.

C. Algorithm validation on noisy cases

The three synthetic spectra are corrupted with an additive
Gaussian noise of zero-mean, whose variance is identical on
each spectral band. The noise variance is expressed as σ2 =
10−SNR/10 ln ρ, where ρ is the mean of the synthetic spectrum
and SNR is the Signal-to-Noise Ratio, expressed in dB. Noise
spectra are generated for SNRs ranging from 15 to 70 dB,
where the latter SNR corresponds to the noise-free simulation.
Fig. 6(a-c) show the three spectra with SNR = 30 dB. 100
noise spectra are generated per SNR. For each EGO parameter,
we compute the standard deviation, noted εθ, from the 100
estimates of θ.

Qualitative results are close to those of Fig. 4, therefore
they are omitted. As expected, when the SNR increases, the
reconstruction accuracy increases. The goodness of fit r3
ranges from ∼ 10 to ∼ 60 dB for SNRs equal to 15 and 70 dB,
respectively. For SNRs lower than 25 dB, only the broadest
and deepest absorptions are retrieved. Moreover, the number
of estimated EGO Gaussians is underestimated. Indeed, EGO
features of small amplitudes are hidden in the noise, thus they
cannot be recovered. For SNR greater than 30 dB, the broadest
and deepest absorptions are always retrieved with small errors
on their positions (e.g., εµ = 9 nm for the absorption at
2160 nm of spectrum 2). Also, the isolated absorptions are
fitted by unique EGO Gaussians and the continuum parameters
are retrieved with small errors on Guv and Gwater (e.g.,
εµwater = 10 nm and εµwater = 17 nm for spectrum 2). For
SNR greater than 50 dB, all the absorptions, even those with
small amplitudes, are fitted and their widths correspond to the
expected values (e.g., width error is equal to 0.26 nm for the
absorption at 2324 nm of spectrum 2). At last, the asymmetry
parameter is retrieved for noise-free data only. It can hardly
be identified with precision since a wide range of values yield
similar spectral shapes.

V. APPLICATION TO REAL DATA

A. AGM procedure for real data
In hyperspectral imaging, spectral ranges around 1400 and

1900 nm may be affected by the main saturated atmospheric
water vapor absorptions. Spectral masks (represented as grey
areas in the following figures) are thus applied to remove
these spectral bands. In order to cope with these missing data,
the dictionary creation is slightly adapted within the AGM
absorption pre-estimation step, by including dictionary atoms
centered in the spectral masks. This allows us to retrieve
absorptions inside the spectral masks from available data on
the edges of the spectral masks, which avoids the creation of
artifacts. Interestingly, the AGM accuracy is not impacted by
these spectral masks. In subsections V-B and V-C, spectral
masks are applied to laboratory and image spectra.

B. Results on laboratory data
Here, the goal is to analyze the advantages and limits of

the method for minerals often encountered in hyperspectral
imaging, that entail spectral features difficult to deconvolve.
The ability to identify minerals from their estimated EGO
parameters is also discussed.

1) Spectral library description and data preparation: We
use the USGS spectral library [10], which gathers laboratory
VNIR and SWIR reflectance spectra of various materials. Six
reference minerals are considered, for which the electronic and
vibrational processes are well-known (Tab. II). The continuum
and the absorption bands differ, in shape and position (for
the absorption), for each mineral spectrum as they belong
to different mineralogical classes. In order to obtain results
comparable to those of synthetic data, the spectra are con-
volved to AVIRIS spectral responses. The estimates yielded
by the AGM procedure will be numerically compared to the
theoretical values in Tab. II, seen as ground truth.
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Mineral - Group Sample Diagnostic Secondary
absorption (nm) absorption (nm)

Calcite - Carbonate splib07b_Calcite_GDS304_75-150um_ASDFRb_AREF 2342.5 2156
Dolomite - Carbonate splib07b_Dolomite_HS102.4B_ASDNGb_AREF 2324 2140

Goethite - Fe-hydroxyde splib07b_Goethite_GDS134_ASDFRb_AREF
660 500
960

Gypsum - Sulphate splib07b_Gypsum_HS333.4B_(Selenite)_ASDFRa_AREF
1750 1538

2215

Kaolinite - Phyllosilicate splib07b_Kaolinite_CM9_ASDNGb_AREF
2162 2312
2206 2380

Nontronite - Smectite splib07b_Nontronite_NG-1.a_ASDNGb_AREF
2283 2378
660
960

TABLE II: Some minerals of interest in the USGS spectral library [10].

Goethite (α-FeO (OH)) is a Fe-hydroxyde. Its reflectance
spectrum exhibits two diagnostic absorptions at 660 and
960 nm, which are attributed to Fe3+ electronic processes,
transition in the iron cations

(
Fe3+

)
from ground state 6A1ν

to 4T1ν [39]. The fall-off short of 550 nm is attributed to
a conduction band, typical of the trans-opaque iron oxides.
We are here evaluating the efficiency of the method to model
typically broad absorptions related to iron in the VNIR.

Kaolinite (Al2Si2O5 (OH)4) is a phyllosilicate. Its re-
flectance spectrum exhibits a doublet of diagnostic absorptions
at 2162 and 2206 nm. This doublet is related to the Al-OH
combination band and is indicative of the two layer dioctahe-
dral structure of kaolinite [40]–[42]. We are here evaluating
the ability of the method to estimate a doublet of narrow
absorptions, with small amplitudes, in the SWIR.

Nontronite
(
Na0.33Fe3+2 (Si,Al)4 O10 • nH2O

)
is a smectite.

Its reflectance spectrum exhibits three diagnostic absorptions,
at 660, 960 and 2283 nm. As for goethite, the 660 and 960
nm absorptions are attributed to electronic transition in the
Fe3+ion. The 2283 nm absorption is a Fe-OH combination
band [42], [43]. The objective here is to test the accuracy of
the method in both VNIR and SWIR ranges.

Gypsum (CaSO4 • 2H2O) is a sulphate. Its reflectance spec-
trum exhibits one diagnostic absorption, at 1750 nm, whose
origin is controversial. It is either associated to H2O combina-
tion overtones [44], to OH− or H2O bending, stretching and
rotational overtones and/or S − O bending overtones [45]. It
has been partly associated to H2O because various experiments
involving dehydration of gypsum demonstrated an attenuation
of this specific absorption with increasing temperature and the
fact that it became narrower and less structured starting at
100◦C [44]. The objective here is to evaluate the capacity of
the method to detect a diagnostic absorption when it is close
to the “atmospheric” spectral mask.

Calcite (CaCO3) and dolomite (CaMg (CO3)2) are carbon-
ates. Their reflectance spectra exhibit a diagnostic absorption,
respectively at 2342 and 2324 nm, and a secondary one,
respectively at 2156 and 2140 nm, which can be interpreted as
overtones and combinations of bending and stretching vibra-
tions of the CO2−

3 ion [46]–[48]. The slight shift for dolomite
is due to the presence of Mg in addition to Ca associated with
the CO2−

3 ion. The objective here is to evaluate the capacity
of the method to discriminate calcite from dolomite despite
their close diagnostic absorption features. The influence of the
asymmetry factor on the estimate of absorption characteristics

is also evaluated.
Note that a post-processing step on the AGM results could

be applied to remove unrealistic or overfitted EGO Gaussians
(represented in blue in the following figures).

2) VNIR absorptions: goethite ferric iron absorptions:
Fig. 7 synthesizes the results for goethite. We focus here on
the continuum shape, the diagnostic absorptions at 660 and
960 nm and the secondary absorption at 500 nm.

Fig. 7: Goethite spectrum (black), estimated continuum (black-
dashed), diagnostic and secondary Gaussians (red), other
Gaussians (blue). The true positions of the diagnostic and
secondary estimated Gaussians are shown as vertical lines.

First, the continuum is correctly estimated. It fits the overall
shape of the spectrum in the SWIR, where no absorption of
mineralogical interest is present. In the VNIR, the fit is more
complex as both continuum and absorptions have to be taken
into account. We thus note that Guv is close to the edge of the
spectrum with a small width (µuv = 402 nm, σuv = 65 nm)
and that c1 is large (c1 = 1110). In this case, the fit with EGO
Gaussians of the absorption at 500 nm mainly depends on Guv
while the ones at 660 and 960 nm depend on c1. However, the
estimated continuum, in the VNIR, lays above the spectrum
and its shape is consistent with the results on synthetic data,
see spectrum 1 in section IV-B.

As expected, the absorption at 960 nm is fitted by a broad
EGO Gaussian whose position is slightly shifted (µ = 971
nm). Since the EGO Gaussian is broad, this shift impacts the
absorption at 660 nm and tends to adjust both absorptions
at once. The absorption at 660 nm is thus fitted by an EGO
Gaussian of reduced amplitude. In addition, three Gaussians
(at 880, 997 and 1079 nm) of low amplitudes (respectively
0.05, 0.03 and 0.04) are selected by NNOMP to reduce the
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reconstruction error in this area. Finally, the absorption at 500
nm is difficult to adjust because its shape strongly depends on
Guv . Thus, even if a Gaussian is centered on the theoretical
position of the absorption (µ = 494 nm), Gaussians with small
amplitudes are also selected in this area.

3) SWIR absorptions: kaolinite doublet and secondary ab-
sorptions: Fig. 8 shows the results for kaolinite. We focus on
the absorption doublet at 2162 and 2206 nm and the secondary
absorptions at 2312 and 2380 nm. The estimated continuum
is removed for improved readability.

Fig. 8: SWIR kaolinite absorption spectrum (continuum re-
moved, black), diagnostic and secondary Gaussians (red),
other Gaussians (blue). The true positions of the diagnostic
and secondary estimated Gaussians are shown as vertical lines.

The main kaolinite doublet is fitted by three EGO Gaus-
sians. The broad Gaussian at 2189 nm (in blue in Fig. 8)
models the shape of the absorption while the other two (in red),
narrow and deep, are located close to the theoretical positions
of the doublet (δµ < 4 nm). This result is explained by the
fact that NNOMP first selects the broad Gaussian to capture
the main trends of the spectrum. Nevertheless, this solution,
with three EGO Gaussians, is well-suited to a mineralogical
interpretation, based on the positions of the doublet.

The secondary absorptions at 2312 and 2380 nm are fitted
by two EGO Gaussians. Their positions are close to the
theoretical ones (δµ < 3 nm). The absorptions being close,
their amplitudes and shapes are difficult to separate. Thus, the
EGO Gaussian centered at 2380 nm is asymmetric (k = 0.43)
which reduces the amplitude of the one at 2312 nm.

The spectral range at the edge of the spectrum (for the
highest wavelengths) is modeled by three EGO Gaussians. The
Gaussian centered at 2458 nm corresponds to an absorption
embedded in the spectrum, which is not characteristic of kaoli-
nite. The wide Gaussian, centered at 2503 nm, compensates
for a difference between the continuum and the spectrum. The
Gaussian centered at 2495 nm fits a small trend on the edge
of the spectrum. These three Gaussians are not useful for
identification purpose, since they either fit a non diagnostic
absorption or compensate artifacts on the edge of the spectrum.

4) VNIR and SWIR absorptions: nontronite continuum and
absorptions: Fig. 9 shows the results for nontronite. We focus
on the continuum shape, the diagnostic absorptions at 660, 960
and 2283 nm and the secondary absorption at 2378 nm.

The estimated continuum lays above the spectrum and fits
the overall shape. Due to the presence of broad absorptions

Fig. 9: Nontronite spectrum (black), estimated continuum
(black-dashed), diagnostic and secondary Gaussians (red),
other Gaussians (blue). The true positions of the diagnostic
and secondary estimated Gaussians are shown as vertical lines.

in the VNIR, several artifacts are created. Three small and
narrow EGO Gaussians are selected in the VNIR edge of the
spectrum. Their positions being close to 450 nm, they cannot
be interpreted as absorptions. The artifact between 600 and
1250 nm impacts the amplitude of the absorptions at 660 and
960 nm. It is compensated by a smaller EGO Gaussian at 971
nm. The broad artifact between 1250 and 2100 nm is fitted by
three EGO Gaussians centered within the spectral masks (at
1470, 1816 and 2027 nm).

Nevertheless, all the absorptions of interest are retrieved and
fitted by unique EGO Gaussians, highlighted in red in Fig. 9.
Specifically, one can distinguish two Gaussians in the VNIR,
the Gaussian of largest width being slightly shifted from the
theoretical position at 960 nm. Two other Gaussians are found
in the SWIR part of the spectrum. They correspond to the
diagnostic absorption at 2283 nm and the secondary one at
2378 nm. Positions and widths are consistent with theoretical
knowledge. However, due to a gap between the continuum
and the spectrum, the shape of the secondary absorption is
modified. This results in a strong asymmetry of the Gaussian
at 2378 nm (k = −0.73).

5) Spectral mask: gypsum absorptions: Fig. 10 synthesizes
the results for gypsum. The estimated absorptions located
outside and within the spectral mask are shown in Fig. 10a and
Fig. 10b, respectively. We focus on the diagnostic absorption
at 1750 nm and the secondary absorptions at 1538 and 2215
nm, shown with vertical lines in Fig. 10a. Note that the
absorptions at 1538 and 1750 nm are close to the spectral
masks. Therefore, they are more difficult to retrieve.

In Fig. 10a, the diagnostic absorption at 1750 nm is fitted
by an EGO Gaussian whose position and shape are slightly
impacted by missing data within the spectral mask (δµ = 2
nm). Regarding the secondary absorption at 1538 nm, two
Gaussians are retrieved. The first, centered at 1555 nm (in
blue), is wide and deep and fits the right edge of the absorp-
tion. The second, of lower amplitude and width, gives the exact
position of the absorption (in red). At last, the broad absorption
at 2215 nm is fitted by a broad EGO Gaussian giving the shape
of the absorption and a smaller one, in amplitude and width,
positioned at the center of the absorption (µ = 2218 nm).
Note that an absorption that is not characteristic of gypsum,
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(a)

(b)

Fig. 10: Gypsum absorption data spectrum including missing
data in the spectral masks (plain black; continuum has been
removed. For information, the dashed curve indicates the
full absorption spectrum). (a). Diagnostic and secondary
Gaussians (red), and other Gaussians (blue). The positions of
true Gaussians are shown as vertical lines. (b) Estimated
Gaussians located in the spectral mask (orange).

is retrieved at 1198 nm.
In Fig. 10b, the edges of each spectral mask centered around

1400 and 1900 nm, respectively, are fitted by unique EGO
Gaussians whose positions are close to the center of the masks.
Their shape and position are consistent with the theoretical
absorptions in the spectral mask, shown in dashed curve. Note
that a third (broad) Gaussian is retrieved at 1386 nm, which
models the left edge of this spectral mask.

This example shows that it is possible to retrieve absorptions
centered close to the spectral masks despite missing data. The
NNOMP algorithm indeed selects Gaussians centered in the
spectral mask in order to adjust the edges of the spectrum.
In the SWIR, we have to distinguish Gaussians, which fit the
trends of the large absorptions from the narrow one, yielding
the absorption center.

6) Close absorption discrimination: calcite and dolomite
SWIR absorptions: Fig. 11 gathers the results for calcite and
dolomite spectra, whose shapes are similar. We focus on their
close absorptions (diagnostic is separated by 18.5 nm and
secondary by 16 nm). The AVIRIS spectral resolution being
around 10 nm, it is theoretically possible to distinguish the
two minerals based on their absorption positions. To improve
readability, the estimated continuum is removed from the
spectrum of Fig. 11.

The absorptions of both spectra are deconvolved similarly.

(a)

(b)

Fig. 11: Calcite (a) and dolomite (b) absorption spectrum
(black), diagnostic and secondary absorptions (red) and other
absorption (blue). The positions of the true diagnostic and
secondary estimated Gaussians are shown as vertical lines.

Two EGO Gaussians fit the main diagnostic absorption and a
separate one is related to the secondary absorption. Similar to
kaolinite, the blue Gaussian, broad and asymmetric (σ = 37.5
nm and k = 0.13 for calcite, σ = 27.8 nm and k = 0.22 for
dolomite) models the main trend of the diagnostic absorption.
The narrower Gaussian in red (σ = 13.7 nm for calcite and
σ = 16.5 nm for dolomite) is located on the theoretical
center of the absorption (δmu < 2 nm). Its amplitude varies
depending on how the Gaussian shape models the trend. Thus,
for calcite, the amplitude of the Gaussian is lower than for
dolomite. The secondary absorption is found close to the
theoretical position (δmu < 2 nm) with a visually coherent
shape. However, for dolomite, its amplitude is attenuated by
the presence of a wide Gaussian (not represented on Fig. 11b),
centered before 2050 nm and resulting from a continuum
estimation artifact.

This example shows that the diagnostic and secondary ab-
sorptions of calcite and dolomite are retrieved by the method.
They can be used to distinguish calcite from dolomite.

C. Results on hyperspectral images

1) Campaign and data description: The method is now ap-
plied to spectra from hyperspectral images (Fig. 12) acquired
during a dedicated campaign over two quarries in France,
with HySpex cameras (https://www.hyspex.com). Three mi-
nerals of interest, with specific spectral signatures, can be ob-
served: gypsum, carbonates (Cherves-Richemont) and kaolin-
ite (Chevanceaux). They entail different physical and chemical
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(a)

(b) Red star.

(c) Green star.

(d) Blue star.

(e)

(f) Red and green stars.

Fig. 12: Hyperspectral images acquired over (a) Cherves-
Richemont and (e) Chevanceaux quarries. (b) Gypsum spec-
trum on the quarry layer. (c) Calcite spectrum from piles
used as aggregates. (d) Gypsum-calcite mixture. (f) Kaolinite
spectra from two piles.

characteristics and are used in the production of plasterboard
or as aggregates (Cherves-Richemont) and refractory ceramics
(Chevanceaux). Images were acquired in September 2019,
with a 0.5 m and a 1.0 m spatial resolution for the VNIR and
SWIR, respectively. The number of bands were respectively
160 and 162 for the VNIR and SWIR with a ∼ 4 nm and ∼ 7
nm spectral resolution. In this study, only SWIR images are
used. Images were atmospherically corrected using ATCOR4
[49]. To improve the SNR, reflectance images were spatially
downsampled to 5 m. Two spectral masks were applied around
1400 and 1900 nm to avoid effects of saturated atmospheric
water vapor absorptions. Samples were collected after image
acquisition in order to create a spectral database gathering
the possible spectral signatures in the quarries. An ASD
FieldSpec R©FR3 was used for laboratory measurements. The
goals are to evaluate the performance of the method on spectra
from hyperspectral images and to describe the potential of
the EGO model for physical interpretation of various mineral

(a) Gypsum spectrum.

(b) Calcite spectrum.

(c) Gypsum-calcite mixture

Fig. 13: Deconvolution of gypsum and calcite spectra, and
a mixture of both. The true positions of the diagnostic and
secondary absorptions are shown as vertical lines.

reflectance spectra.
Hereafter, we analyze a mixture of gypsum and carbonate

(here calcite) and spectra of kaolinite. To apply the method on
SWIR spectra, we removed c1 and Guv from the continuum
model (3), and generated a NNOMP dictionary, section III-C4,
without EGO Gaussians centered shorter than 1500 nm. The
noise covariance Σ is estimated using HYSIME [30].

2) Spectral mixture of gypsum and carbonates: In the
Cherves-Richemont image, gypsum and calcite can be easily
identified from their reflectance spectra (Fig. 12b and 12c).
However, for some areas, especially near the roads and the
plants, gypsum and calcite can be mixed. This results in a
spectrum including all the diagnostic and secondary absorp-
tions of gypsum and calcite (Fig. 12d). We thus apply the
method to three spectra; see Fig. 13.

The results on gypsum and calcite can be easily compared
to those on laboratory data (sections V-B5 and V-B6, respec-
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(a)

(b)

Fig. 14: Deconvolution results on kaolinite spectra from two
piles. The true positions of the diagnostic and secondary
estimated Gaussians are shown as vertical lines.

tively). In Fig. 13a, the gypsum absorption at 1750 nm is
retrieved at µ = 1749 nm with an amplitude of 0.16 (i.e., the
sum of all estimated EGO Gaussians at 1749 nm). The broad
absorption at 2215 nm is retrieved at µ = 2208 nm using three
EGO Gaussians. Also, the continuum parameter c0 is equal to
0.67. In Fig. 13b, as expected, the calcite diagnostic absorption
is fitted by two EGO Gaussians at ∼ 2269 nm, and one for the
theoretical position (µ = 2341 nm). The secondary absorption
at 2156 nm is retrieved at µ = 2160 nm. The continuum
parameter c0 is equal to 0.07.

The diagnostic absorptions of gypsum and calcite and the
secondary absorption of gypsum at 2215 nm are retrieved in
the mixture (Fig. 13c). First, the absorption at 1750 nm is
retrieved at µ = 1749 nm with an amplitude of 0.08 (i.e.,
the sum of all estimated EGO Gaussians at µ = 1749 nm),
which is half the one of the pure gypsum. Then, the absorption
at 2215 nm is also retrieved at µ = 2209 nm. The calcite
absorption at 2340 nm does not match the shape of pure
calcite. Thus, only one asymmetric EGO Gaussian is retrieved
at 2235 nm. Finally, the continuum parameter c0 is equal to
0.54, which is between the values for gypsum and calcite.

Based on the estimated EGO Gaussian positions and ampli-
tudes, one can identify the spectrum as a gypsum-calcite mix-
ture (positions) and possibly evaluate the relative concentration
of both (amplitudes and c0). This illustrates the high potential
of spectral deconvolution for mineralogical interpretation.

3) Deconvolution of kaolinite spectra: On the Chevanceaux
image, kaolinite is easily identifiable from its reflectance spec-
tra (Fig. 12f). However, depending on the pile, the kaolinite

doublet is more or less well formed, which may be related
to crystallinity [1]. Results for each spectrum of Fig. 12f are
shown in Fig. 14. They can be easily compared to those of
laboratory data in paragraph V-B3. Note that an absorption at
2260 nm, probably due to the presence of gibbsite (AlOOH),
is visible in the spectrum of Fig. 14b.

For both spectra, the absorption doublet is fitted by a broad
EGO Gaussian (in blue) capturing the main shape and two
narrow ones (in red). The broad Gaussian is positioned at 2201
and 2193 nm, respectively, with a width equal to 17.6 and 21.5
nm, respectively. The other two EGO Gaussians modeling the
absorption doublet, are shifted from less than 1 nm from their
true positions. Their amplitudes are equal to 0.42 and 0.63.
For the spectrum of Fig. 14a, the small absorptions at 2315
and 2355 nm are well retrieved. On the contrary, in Fig. 14b,
the strong asymmetry of the gibbsite absorption at 2259 nm
does not make it possible to detect the small absorptions.

Similar to the gypsum-calcite mixture from the Cherves-
Richemond image in paragraph V-C2, the diagnostic absorp-
tions of gibbsite and kaolinite are retrieved, which allows one
to identify these two minerals. Also, the kaolinite absorption
doublet is fitted similarly for both spectra, so studying the
evolution of its shape over the piles is possible.

VI. CONCLUSION

We proposed a spectral deconvolution procedure, automatic
and adapted to the various absorption shapes in the VNIR and
SWIR. This method extracts the main features (continuum
and absorptions) from an arbitrary spectrum without prior
knowledge on the mineralogical context. It relies on the EGO
physical model. It was first validated on synthetic spectra
representative of various situations that can be encountered in
spectral signatures of minerals: broad and shallow absorptions
such as those related to iron in the VNIR, narrow and
sharp, close absorptions like the kaolinite doublet, absorptions
located close to the atmospheric water vapor absorptions,
asymmetric absorptions, etc. The number of absorptions and
their respective parameters were well retrieved. For example,
errors are less than 20 nm and 5 nm for respectively VNIR
and SWIR absorption positions. Also, asymmetric absorptions
are fitted. The method was then applied to well characterized
laboratory spectra. All the main features were retrieved and a
physical interpretation is thus possible based on the estimated
parameters. Finally, the method was applied to spectra from
hyperspectral images acquired during a dedicated campaign.
The method was able to handle mixtures of gypsum and
calcite, and the kaolinite absorption doublet was well retrieved.

The method is flexible since other models or constraints
could be taken into account. For example, a better under-
standing of mineral spectroscopy may lead to improve the
EGO model. Similarly, the constraints in the continuum pre-
estimation step, related to the continuum physics can be
adjusted. Also, the NNOMP dictionary can be created for
specific absorption shapes with more than four parameters and
could take into account prior information on the number of
absorptions and their respective positions and shapes.

This study also demonstrates the potential of the method to
obtain parameters allowing the identification and characteriza-
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tion of a mineral from its reflectance spectrum. An automatic
identification procedure, based on a fuzzy logic system, has
been proposed by the authors [50]. It uses as input the EGO
parameters and takes into account uncertainties that can be
computed after the joint optimization step. The AGM needs to
be tested on more images from various hyperspectral sensors
and related to diverse geological environments. This would
allow one to assess the parameter estimation uncertainties as
a function of instrument performances, and then to produce
maps of the various parameters.
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[19] H. Clénet, P. Pinet, Y. Daydou, F. Heuripeau, C. Rosemberg, D. Bara-
toux, and S. Chevrel, “A new systematic approach using the Modified
Gaussian Model: Insight for the characterization of chemical composi-
tion of olivines, pyroxenes and olivine–pyroxene mixtures,” Icarus, vol.
213, no. 1, pp. 404 – 422, 2011.

[20] C. Verpoorter, V. Carrère, and J.-P. Combe, “Visible, near-infrared spec-
trometry for simultaneous assessment of geophysical sediment properties
(water and grain size) using the Spectral Derivative–Modified Gaussian
Model,” J. Geophys. Res. Earth Surf., vol. 119, no. 10, pp. 2098–2122,
2014.

[21] M. Brossard, R. Marion, and V. Carrère, “Deconvolution of SWIR
reflectance spectra for automatic mineral identification in hyperspectral
imaging,” Remote Sens. Lett., vol. 7, no. 6, pp. 581–590, 2016.

[22] J. M. Sunshine and C. M. Pieters, “Estimating modal abundances
from the spectra of natural and laboratory pyroxene mixtures using the
Modified Gaussian Model,” J. Geophys. Res. Planets, vol. 98, no. E5,
pp. 9075–9087, 1993.

[23] A. J. Brown, “Spectral curve fitting for automatic hyperspectral data
analysis,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1601–
1608, 2006.

[24] V. L. Mulder, M. Plötze, S. de Bruin, M. E. Schaepman, C. Mavris,
R. F. Kokaly, and M. Egli, “Quantifying mineral abundances of complex
mixtures by coupling spectral deconvolution of SWIR spectra (2.1–2.4
µm) and regression tree analysis,” Geoderma, vol. 207-208, pp. 279 –
290, 2013.

[25] R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative
analysis techniques for remote sensing applications,” J. Geophys. Res.
Solid Earth, vol. 89, no. B7, pp. 6329–6340, 1984.

[26] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.” J. Anal. Chem., vol. 36, no. 8,
pp. 1627–1639, 1964.

[27] M. L. Whiting, L. Li, and S. L. Ustin, “Predicting water content using
gaussian model on soil spectra,” Remote Sens. Environ., vol. 89, no. 4,
pp. 535 – 552, 2004.

[28] P. Du, W. A. Kibbe, and S. M. Lin, “Improved peak detection in mass
spectrum by incorporating continuous wavelet transform-based pattern
matching,” Bioinformatics, vol. 22, no. 17, pp. 2059–2065, Jul. 2006.

[29] B. Rivard, J. Feng, A. Gallie, and A. Sanchez-Azofeifa, “Continuous
wavelets for the improved use of spectral libraries and hyperspectral
data,” Remote Sens. Environ., vol. 112, no. 6, pp. 2850 – 2862, 2008.

[30] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace
identification,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp.
2435–2445, Aug. 2008.

[31] M. J. D. Powell, “Direct search algorithms for optimization calcula-
tions,” Acta Numerica, vol. 7, p. 287–336, 1998.

[32] P. Stoica and Y. Selén, “Model-order selection: A review of information
criterion rules,” IEEE Sig. Proc. Mag., vol. 21, no. 4, pp. 36–47, Jul.
2004.

[33] A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of
nonnegative sparse solutions to underdetermined systems of equations,”
IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 4813–4820, 2008.

[34] T. T. Nguyen, J. Idier, C. Soussen, and E. Djermoune, “Non-negative
orthogonal greedy algorithms,” IEEE Trans. Signal Process., vol. 67,
no. 21, pp. 5643–5658, Nov. 2019.

[35] C. Soussen, J. Idier, J. Duan, and D. Brie, “Homotopy based algorithms
for `0-regularized least-squares,” IEEE Trans. Signal Process., vol. 63,
no. 13, pp. 3301–3316, Jul. 2015.



TECHNICAL REPORT, MAY 3, 2021 15

[36] F. De Ridder, R. Pintelon, J. Schoukens, and D. P. Gillikin, “Modified
AIC and MDL model selection criteria for short data records,” IEEE
Trans. Instrum. Meas., vol. 54, no. 1, pp. 144–150, Feb. 2005.

[37] M. A. Branch, T. F. Coleman, and Y. Li, “A subspace, interior, and con-
jugate gradient method for large-scale bound-constrained minimization
problems,” SIAM J. Sci. Comput., vol. 21, no. 1, pp. 1–23, 1999.

[38] S. Pontual, N. Merry, and P. Gamson, “GMEX: Guides for Mineral EX-
ploration: Spectral interpretation field manual,” AusSpec International
Ltd.: Queenstown, New Zealand, vol. 1, p. 191, 2010.

[39] G. R. Hunt, J. W. Salisbury, and C. Lenhoff, “Visible and near-infrared
spectra of minerals ans rocks : III. Oxides and hydroxides,” Mod. Geol.,
vol. 2, pp. 195–205, 1971.

[40] G. R. Hunt and J. W. Salisbury, “Visible and near-infrared spectra of
minerals ans rocks : I. Silicate minerals,” Mod. Geol., vol. 1, pp. 283–
300, 1970.

[41] G. R. Hunt, J. W. Salisbury, and C. Lenhoff, “Visible and near-infrared
spectra of minerals ans rocks : VI. Additional silicates,” Mod. Geol.,
vol. 4, pp. 85–106, 1973.

[42] J. L. Bishop, M. D. Lane, M. D. Dyar, and A. J. Brown, “Reflectance and
emission spectroscopy study of four groups of phyllosilicates: Smectites,
kaolinite-serpentines, chlorites and micas,” Clay Minerals, vol. 43, no. 1,
pp. 35–54, Mar. 2008.

[43] J. Flahaut, M. Martinot, J. L. Bishop, G. R. Davies, and N. J. Potts,
“Remote sensing and in situ mineralogic survey of the Chilean salars:
An analog to Mars evaporate deposits?” Icarus, vol. 282, pp. 152 – 173,
2017.

[44] G. R. Hunt, J. W. Salisbury, and C. Lenhoff, “Visible and near-infrared
spectra of minerals ans rocks : IV. Sulphides and sulphates,” Mod. Geol.,
vol. 3, pp. 1–14, 1971.

[45] E. A. Cloutis, F. C. Hawthorne, S. A. Mertzman, K. Krenn, M. A.
Craig, D. Marcino, M. Methot, J. Strong, J. F. Mustard, D. L. Blaney,
J. F. Bell, and F. Vilas, “Detection and discrimination of sulfate minerals
using reflectance spectroscopy,” Icarus, vol. 184, no. 1, pp. 121 – 157,
2006.

[46] G. R. Hunt and J. W. Salisbury, “Visible and near-infrared spectra of
minerals ans rocks : II. Carbonates,” Mod. Geol., vol. 2, pp. 23–30,
1971.

[47] S. J. Gaffey, “Spectral reflectance of carbonates minerals in the vis-
ible and near-infrared (0.35− 2.55 microns): Calcite, aragonite and
dolomite,” Am. Minerals, vol. 712, pp. 151–162, 1986.

[48] E. A. Cloutis, S. E. Grasby, W. M. Last, R. Léveillé, G. R. Osinski,
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