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Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of
fundamental relevance for the development of radiological protocols based on NPs
administration. In the literature, there have been advances in monitoring NPs in tissues.
However, the lack of 3D information is still an issue. X-ray phase-contrast tomography
(XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging
anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative
study on NPs distribution in a mouse brain model of melanoma metastases injected with
gadolinium-based NPs for theranostics is presented. For the first time, XPCT images
show the NPs uptake at micrometer resolution over the full brain. Our results revealed a
heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap
in spatial resolution between magnetic resonance imaging and histology. Our findings
demonstrated that XPCT is a reliable technique for NPs detection and can be considered
as an emerging method for the study of NPs distribution in organs.

Keywords: 3D visualization, melanoma metastases, brain, nanoparticles, synchrotron radiation, X-ray phase-
contrast tomography
INTRODUCTION

Metal-based nanoparticles (NPs) demonstrated the interesting capability to increase the
radiosensitization of tumors by causing local dose-enhancement (1–6). Thanks to the high-
atomic number atoms composing their inner core, NPs produce a shower of Auger electrons
following irradiation. In turn, Auger electrons produce reactive oxygen species inducing damage
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to tumor cells contributing to tumor eradication (7–9). In order
to predict therapeutic effects accurately, it is crucial to know the
NPs distribution at multiple length scales from cell to the full
organ. Furthermore, the possibility of mapping the NPs can
permit to evaluate the homogeneity of distribution over the
targeted tumor volume (10). Currently, NPs detection in
biologic organs is based on the state-of-art imaging techniques
such as magnetic resonance imaging (MRI) (11), positron
emission tomography (PET) (12), spectral photon counting
computed tomography (SPCCT) (13), transmission electron
microscopy (TEM) (14) , laser- induced breakdown
spectroscopy (LIBS) (15), and optical microscopy (16). MRI,
PET, SPCCT are 3D techniques able to show the tumor targeting
and qualifying the NPs uptake in tumors, covering a spatial
resolution range from few mm down to ≤ 0.1 mm (17, 18).
SPCCT is specifically advantageous for discriminating and
quantifying the signal of the contrast agents relying on K-edge
imaging as shown in recent ex-vivo and in-vivo studies (19–22).
Often however the visualization of biological tissues is limited in
SPCCT even if the contrast agents concentration is sufficiently
high. LIBS and TEM are pseudo-3D techniques and may reach
10 µm down to a few tens of nm spatial resolution, respectively
(23, 24). Both techniques are able to detect specific chemical
elements contained in NPs. However, they require a complex
sample preparation based on physical sample sectioning and
staining for enhancing tissue visualization in the case of TEM.
For detecting NPs by light microscopy, it is necessary to craft
fluorophores on NPs surface: this may lead to the eventual
alteration of NPs penetration and aggregation dynamics (25,
26). The absence of non-destructive and non-invasive 3D
imaging methods at a median scale resolution ranging between
≤1 and 100 microns is an important limitation for imaging the
distribution of NPs inside tumors. This information would be
crucial in optimizing radiotherapy protocols based on NPs
administration. Synchrotron-based XPCT is a suitable imaging
tool for accessing this intermediate resolution range. Phase-
contrast is an added value to the tomographic approach. Since
imaging biological samples suffer from poor contrast properties
in the X-rays regime, imaging using phase-contrast helps to
discriminate those features inaccessible in absorption-contrast
(27–29). XPCT enables the fast visualization of a whole organ
while visualizing small details down to few micrometers (30–32).
This can be achieved without the addition of any exogenous
substance and with the advantage of preserving the sample
integrity (33–35). Moreover, past pre-clinical studies have
shown that XPCT is able to detect tumors in mice brains
(36–38). Mapping the NPs distribution in brain tumors is
today a new frontier of the XPCT. This article shows a proof-
of-concept study of NPs tracking in melanoma brain metastases
revealing unprecedented images about the NPs location in
tumors. Melanoma is one of the most aggressive skin cancers,
known for its high resistance to drugs, to radiotherapy
treatments and its strong tendency to metastasize (39). In 60%
of the cases, melanoma patients develop multiple metastases in
the central nervous system leading to mortality (40, 41).
Biocompatible nanotechnologies, based on the delivery of non-
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toxic metal-loaded NPs able to permeate the blood-brain barrier
(BBB), could provide a higher patient survival by enhanced
radiation therapy. This XPCT work aims at resolving the NPs
distribution [here ultra-small gadolinium (Gd)-based NPs (42)]
inside a mouse brain model of multiple melanoma metastatic
lesions. The NPs tumor targeting is here visualized in 3D over the
full brain model. This first experiment demonstrates that XPCT
is a suitable technique for estimating the homogeneity of the NPs
uptake in multiple metastases. The same brain was also
investigated by MRI and histology (3). XPCT enabled to
simultaneously visualize the NPs and the brain structures, thus
allowing to monitor and establish the correlation between the
NPs and brain tissues. Thanks to its higher spatial resolution, the
XPCT findings resolve more distinctly the NPs repartition in
tumors adding more details to the conventional MRI. In
addition, thanks to its contrast resolution, this XPCT work
sheds light on the complex internal structure of the metastases
grown in the mouse brain. The XPCT ability in detecting the
melanoma has been validated also by conventional histology.
Therefore, the herewith presented imaging technique reveals to
be attractive for complementing the techniques in use for
monitoring the NP distribution at the pre-clinical phase.
METHODS

Nanoparticle Specifications
Gadolinium-based nanoparticles (NPs) namely AGuIX
(1,4,7,10-tetra-azacyclododecane-1-glutaric anhydride- 4,7,10-
triacetic acid)-Gd3+ are comprised of a polysiloxane inorganic
matrix surrounded by gadolinium chelates (DOTAGA)
covalently grafted to the polysiloxane core (42, 43). AGuIX
exhibits a sub-5 nm size with a hydrodynamic diameter of
approximately 3 nm (42). In order to obtain such ultra-small
NPs, it has been established a new synthesis protocol based on
DOTAGA, a cyclic ligand entrapping the Gd3+. The AGuIX
complexation constant resulted to be 24.78, in good agreement
with that of the commercial agent DOTAREM® (Guerbet LLC,
Aulnay-sous-Bois, France), 25.58. AGuIX exhibits 10 chelates
per nanoparticle and an approximate mass of 10 kDa. The
nanoparticles are almost spherical, with a zeta potential of 9 ± 5
mV at physiological pH. The purification occurs via dialysis. It
has been demonstrated that AGuIX is an effective MRI-positive
contrast agent with a longitudinal relaxivity (r1) up to three
times higher than that of DOTAREM, e.g., 11.4 mmol−1 s−1 and
a ratio transverse relaxivity (r2)/r1 of 1.14 at 1.4 T (2). This
compound, AGuIX, is also produced for human use. The
synthesis and purification permit to remove free gadolinium
atoms. AGuIX is presently used in phase I to II clinical trials
(NCT02820454, NCT03818386, and NCT03308604) as visible
in www.clinicaltrials.gov.

In previous mice experiments, these nanoparticles showed a
half-life time in blood of 21.6 min and an excellent fast renal
elimination reaching a maximum of renal accumulation 4 h after
injection, thus limiting most of toxicity consequence in mice
body (26).
May 2021 | Volume 11 | Article 554668
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Sample Preparation
All animal studies and experiments were approved by the French
Ministry of Agriculture and carried out in accordance with the
official regulation of the French Ministry of Agriculture after
approval by the local Ethical Committee (from Lyon and
Grenoble’s Universities, no 380922). All efforts were made to
minimize the number of animals used and their suffering due to
the experimental procedure. All mice were housed in a specific
pathogen-free (SPF) environment. As described in (3), B16F10
cells (# CRL-6475, LGC Promochem, Molsheim France), which
are metastatic melanoma cells (50,000 cells) from mouse origin,
were implanted in the brain of a mouse 6-week-old C57BL/6J
(Janvier, France). The main tumor developed at the injection site
and the multiple metastases diffused in the brain. The mouse was
euthanized 1 h after the intravenous injection of AGuIX-NPs,
200 µl at 10 mM. The brain (approximately 1 × 1 × 1.5 cm) was
removed and fixed in PFA 4%, 1 h at 4°C, before storing in PBS at
4°C. The brain of a control mouse and a sub-cutaneous
melanoma sample were similarly sampled for comparison. The
samples were embedded in agar agar gel and included within
Eppendorf tubes for the XPCT experiment. The embedding in
agar agar keeps the sample hydrated and prevents potential
sample drifts (33).

In-Line X-Ray Phase-Contrast
Tomography (XPCT) Setup
Mouse brain-bearing multiple melanoma metastases, a
melanoma tumor and a healthy mouse brain were imaged
post-mortem at the biomedical beamline ID17 of the European
Synchrotron Radiation Facility (ESRF) in Grenoble, France.
Synchrotron radiation with a quasi-monochromatic X-ray
parallel beam was used to illuminate the brains and achieve
high-resolution images. The energy was set at 51.5 keV, above
Gd K-edge in order to take advantage of the great contrast
properties provided by Gd in respect with gray matter. The
samples contained in Eppendorf tubes were placed on a high-
resolution rotation stage. The XPCT experiment was carried out
according to the “in-line” geometry (28). The propagation
distance between the sample and the detector was set at 2.3 m.
The projection images were recorded by a CMOS camera
connected to an optical system having a final pixel size of
3 µm (44). Because the field of view of the camera was
7 mm × 6.4 mm, the entire brains were measured in half-
acquisition mode over 360° and virtually divided in two pieces
along the vertical axis. A tomographic scan made up of 4,000
projections was performed for each piece of brain with an
acquisition time of 0.07 s for a single-image.

Data Processing and Computational
Platform
The full data sets were reconstructed using the SYRMEP
TomoProject software (45). The phase was retrieved using
Paganin’s algorithm (46), and the slices were reconstructed by
applying the Filtered Back Projection algorithm. The
reconstructed images exhibit an effective pixel size equal to
3 µm and a spatial resolution equal to 6 µm. The images were
Frontiers in Oncology | www.frontiersin.org 3
further analyzed using FIJI image-processing package, through
which the images of the projections of maximum and minimum
intensity values were created and combined with each other.
Maximum and minimum intensities are known visualization
techniques that compress a 3D volume into a 2D image (47). An
image of maximum intensity projection is determined by the
brightest pixel intensities along a projection path; in our
experiment it corresponds to the densest objects. Since Gd is a
high-Z metal characterized by a high-attenuation coefficient,
with respect to brain tissue and NPs tend to form clusters of
different sizes and shapes after the injection, NPs appear like very
dense white objects in X-ray tomography images. An image of
minimum intensity projection displays the minimum pixel
values encountered over a path length, instead. It allows
knowing where the areas with low attenuation coefficient are,
such as empty vessels or melanin pigments. To avoid intensity
fluctuations over the projection rays, the methods of projection
of maximum and minimum intensity are generally applied by
superimposing a limited number of slices and not to the entire
data set (47). By summing these two different ways of
visualization, it is possible to get 2D images showing limited
volume reconstructions. The open-source software VolView
(https://www.kitware.com/volview/) was used to create surface-
rendered images and to segment 3D volumes in false color scale,
by establishing a transfer function between the gray levels of the
image and a color map. The CNR was estimated with reference to
the tumor/metastases regions loaded with NPs and to the healthy
brain tissue without NPs. The calculations were done using the
equation described in (48):

CNR =
INPs − IBG

(1=2)(s 2
NPs + s 2

BG)½ �1=2
(1)

INPs and IBG are the mean gray values of a 5 × 5 pixels region
of interest (ROI) selected within the tumors with NPs clusters
and within the background, while sNPs and sBG are the standard
deviations referred to the two different ROIs. The same
calculation was repeated considering the mean gray values and
the standard deviation of a 5 × 5 pixels ROI selected in the brain
tissue without NPs. As reported by (49), this formula was proven
to be efficient in evaluating the CNR for tissues.

Magnetic Resonance Imaging
MRI was performed on a 9.4 T scanner (Biospec 94/20 AV III
HD, Bruker, Germany—Grenoble MRI facility IRMaGE)
equipped with a 12-cm inner diameter actively shielded
gradient insert (640 mT/m in 120 µm). Actively, decoupled
volume and surface coils were used for excitation and
reception, respectively (Bruker, Germany). The 3D T1 MRI
sequence used the following settings: TR/TE = 31/6.5 ms, flip
angle = 20°, acquisition matrix = 184 × 184 × 184, field of view=
11 × 11 × 11 mm3, resolution = 60 × 60 × 60 µm3.

Histology
The brain was dehydrated and paraffin-embedded for long term
storage before sectioning. The 7-µm slices were deparaffined, re-
hydrated, and stained with hematoxylin/eosin (HE) before
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mounting with Pertex mounting medium (Leica, France). The
slices were imaged using a full field epilfluorescence microscope
equipped with color camera, and a × 2.5 magnification [Axio
Imager M2 (Zeiss, Germany)].
RESULTS

Figure 1A shows the sample used in this study. It is a mouse
brain affected by melanoma metastases and loaded with NPs.
The primary tumor (B16F10 cells) was implanted into the mouse
brain cortex; the black arrow in Figure 1A indicates the point of
injection into the tumor cells. This large cancerous lesion is the
main one, other metastases are also present in the posterior side
of the brain. Due to the high content of melanin, this specific
tumor and its metastases are recognizable by their black color.
The image showing the exterior metastases developed in the back
side of the brain is available in Supplementary Information,
Figure S1. The chosen animal model mimics the melanoma
Frontiers in Oncology | www.frontiersin.org 4
brain metastases clinically diagnosed in human cases, as
described in (3, 50).

NPs were administered intravenously 12 days after the tumor
implantation, when the metastases were highly spread. The
mouse was sacrificed 1 h after the NPs injection. This time was
considered to be sufficient for the NPs to cross the BBB and
penetrate into the main tumor and its multiple metastases. XPCT
was performed on excised brain, followed by MRI and histology.
Figure 1B displays an axial HE histological slice of the brain. The
large brown dot, indicated by the yellow arrow, is the primary
melanoma that developed in the left brain hemisphere. At higher
magnification, the histology reveals the presence of tumor cells,
clearly visible due to their specific chaotic arrangement and due
to the production of black melanin pigmentation. Figure 1B
confirms that the primary tumor grew at the point of injection of
the tumor cells seen in Figure 1A. However, this kind of
investigation does not provide any evidence about the
distribution of the NPs inside the melanoma. Although the
NPs tend to form aggregates larger than their original size
A B

DC

FIGURE 1 | Multi-modal images of the melanoma primary tumor. (A) Image of the mouse brain showing the primary tumor. The black dot on the left upper
hemisphere, indicated by the black arrow, represents the injection point of the tumor cells. (B) Histology image of the brain with a ×2.5 objective. The brain slice was
stained with hematoxylin/eosin. The yellow arrow indicates melanin aggregation typical of melanomas. (C) Image selected from the T1-MRI sequence. The yellow
arrow points the main melanoma lesion developed in the mouse brain cortex in correspondence of the point of the injection of tumor cells. (D) Close-up of the MRI
slice that crosses the tumor.
May 2021 | Volume 11 | Article 554668
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(3 nm in diameter, see Materials and Methods), the NPs clusters
are still smaller than the optical resolution of the light
microscope used for the histological examination. In a previous
study of (51), the NPs aggregates size could be estimated between
200 and 500 nm. The presence of NPs in the primary tumor was
monitored by an MRI investigation. An MRI view, selected from
the T1-weighted MRI-sequence is reported in Figure 1C. The
yellow arrow shows the same tumor validated by histology. The
MRI inspection reveals how deep this primary tumor grew in
the brain cortex compared to the injection site. NPs enhanced the
tumor shape visualization, since they are T1-MRI contrast agents.
Thus, the tumor has a white appearance in the color code of the
image. A close-up of this MRI view in Figure 1D shows the NPs
distribution in the tumor lesion, which is not easy to interpret at
this spatial resolution (60 µm).

This same tumor was also visualized by XPCT. Thanks to its
higher resolution, the XPCT inspection shed light on the NPs
repartition (Figures 2A, B), offering also insights of the multiple
metastases diffused all over the brain (Figures 2–5). Referring to
the XPCT gray-scale map, the images show the high-density
areas of the brain in white due to the presence of the NPs. The
low-density areas in dark gray and black are the transverse
vessels, bloodstains, and melanin.

Figure 2A is a 2D virtual cross-section of the brain with three
regions of interest indicated by colored rectangles. An MRI view
of this brain region is displayed in Figure S6a of Supplementary
Information. The volume renderings (see Materials and
Methods) of the regions under the red and yellow rectangles
are displayed in Figures 2B, C.

In the red close-up image (Figure 2B), it is possible to identify
the melanoma cells injected and spread through the cortex and a
tumor originated more deeply in the cortex. The tumor is
recognizable because of the sudden density change in the cerebral
tissue. Unlike the lower-resolution MRI image (Figures 1C, D), the
XPCT images reveal that NPs (in white) followed a curved
Frontiers in Oncology | www.frontiersin.org 5
trajectory and remained concentrated mostly on the side of this
large tumor, as it is indicated by the yellow arrow. Even in the inner
tumor core, NPs were visualized. Metastatic melanoma tumors are
known to be rich in blood vessels and melanin pigmentation. The
large black stains visible at the bounding edges of the tumor might
be bloodstains mixed with melanin. The bloodstains are caused by
the tendency of melanoma vessels to bleed (52). XPCT
demonstrated to be suitable for resolving melanin pigments, and
therefore, specific features of this tumor. A sub-cutaneous
melanoma was also imaged in this study. An XPCT slice of this
control sample is displayed in Supplementary Information, Figure
S2. The yellow rectangle in Figure 2A shows a metastasis invading
the lateral ventricle. Figure 2C represents the volume rendering of
this region of interest. The image shows that a certain number of
NPs is extravasated from the hemorrhagic flow and deposited in
the tumor tissue. NPs were mainly detected in the lower side of the
metastasis, as indicated by the yellow arrows (Figure 2C). The
upper side of the metastasis in Figure 2C contains more melanin
pigment dots, and only a low content of NPs is visible, as pointed
out by the green arrows. In order to characterize the alteration and
the density changes induced by multiple melanoma metastases, the
anatomy of a healthy brain was also explored by XPCT throughout
this study. The control sample was a brain without tumors and has
not been injected with NPs (Supplementary Information, Figure
S3). An illustrative XPCT image of the healthy brain tissue is
reported in Supplementary Information, Figure S4. A major focus
is placed on the anatomy of the mouse brain ventricle (53), the place
where the primary tumor is grown. The morphological differences
in this reference sample were useful for identifying the NPs retained
in the tumor tissues. The contrast-to-noise ratio (CNR) within the
tumor sites depicted in Figures 2B, C was estimated to be 6.8 ± 1.1
against the CNR derived from the healthy brain matter, 1.3 ± 0.1.
Thus, the significant gain in contrast can be associated to the
gadolinium NPs accumulation in tumors. The green box in
Figure 2A indicates a metastasis which grew in the inferior part
A B C

FIGURE 2 | 2D XPCT images showing metastases. (A) 2D XPCT slice with metastases highlighted within colored rectangles corresponding to (B, C) and 3. The
dark dot accompanied by a white circle in the center of the slice is an artifact due to the rotation of the sample. (B) Volume rendered image of the region of interest
indicated by the red rectangle in panel (A). This tilted view shows a large tumor grown after the spreading of the injected tumor cells and, the pathway the NPs
reached the tumor. The white small objects pointed out by the yellow arrow are identified as clusters of NPs, while the black dots are melanin pigments typical of
melanomas. The image illustrates a complex repartition of NPs, with a major content localized at the edges with the healthy tissue, as indicated by the yellow arrow.
(C) Volume rendering of the region of interest indicated by the yellow rectangle in panel (A). The image shows a tumor developed in the lateral ventricle. Tumor
contour is highlighted by the yellow dotted line. The yellow arrows indicate the tissue areas with a strong accumulation of NPs, while the green arrows point out
areas poorer of NP content.
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of the brain, outside the brain tissue. Here, the CNRwas found to be
even higher (15.8 ± 0.5) probably due to a denser NPs retention.
The 3D representation of the NPs uptake into this metastasis is
displayed in Figure 3, while its volume rendering with a gray-scale
map is reported in Supplementary Information, Figure S5. The
3D rendered image (Figure 3) allows visualizing the complex NPs
distribution throughout the tumor at micrometer resolution.

The strong signal in orange corresponds to the highest
intensity pixels. Therefore, it can be associated with the NPs
accumulation. NPs were mainly detected next to bleeding zones
and in the upper part of the tumor. Similar to the other imaged
metastases, this metastasis also contains an abundant bleeding.
The bloodstains and the melanin correspond to the lowest
density pixels rendered in black. The metastasis is surrounded
by an irregular and abundant arrangement of the vasculature, as
evidenced by the orange network. Apparently, a small amount of
NPs did not have enough time to reach the metastasis and
remained entrapped in the vessels.

In the 2D virtual slice of Figure 4A, two regions of interest are
highlighted by yellow and red rectangles. An MRI view of this
Frontiers in Oncology | www.frontiersin.org 6
brain region is displayed in Figure S6b of Supplementary
Information. The yellow rectangle indicates another insight of
the above-mentioned metastasis attacking the lateral ventricle.
Its close-up is illustrated in Figure 4B. From this magnified
image, it can be noticed that the tumor shape is enhanced thanks
to a strong presence of the NPs. They provided a clear contrast
between the irregular tumor mass and the surrounding normal
brain tissue. The tumor mass is driven by a large amount of
blood vessels and melanin (black dots). The irregular shape of
the metastasis tends to expand under the cortex by compressing
the surrounding healthy tissues. The image reveals a higher
density of extravasated NPs close to bloodstains, with smaller
clusters of NPs appearing as small dense dots in other parts of the
tumor tissue. The red box in Figure 4A shows two small
metastases originated in a posterior structure of the brain and
connected between them through a small vessel. These images
allow monitoring the NPs distribution inside each metastasis
volume. By applying specific rendering methods (47), data
visualization was further enhanced. The NPs distribution was
better detectable by the maximum intensity pixel values
FIGURE 3 | False color 3D image of a metastasis. 3D segmented visualization in false colors of the area under the green box in Figure 2A. The highest intensity
pixels, displayed in orange, correspond to the densest objects of the image, that is, NPs.
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projection, as depicted in Figure 4C. This rendering was
achieved through the projection of a neighborhood of 120
slices (see Materials and Methods) and, similarly, an image of
minimum intensity projection (Figure 4D) was produced for the
same neighboring of slices. The sum of maximum and minimum
Frontiers in Oncology | www.frontiersin.org 7
values is displayed in Figure 4E. The projection of maximum
intensity in Figure 4C reveals how the NPs are distributed inside
the tumor tissue (white area) and how the tangled net of
arterioles is connected to the lower metastasis. In addition, the
projection of minimum intensity values (Figure 4D) shows the
A B

D EC

FIGURE 4 | 2D XPCT images of tumor lesions. (A) 2D XPCT slice showing two tumor lesions in a posterior structure of the brain (red box) and a metastasis
developed in the lateral ventricle (yellow box). (B) Close-up visualization of the tumor invading the lateral ventricle. (C) Projection of maximum intensity values referring
to the region of interest under the red box in (A). (D) Projection of minimum intensity values referring to the region of interest under the red box in (A). (E) Volume
rendering of the same area illustrated in (A, C, D). The image displays the accumulation of NPs in the two tumor lesions and in the neighboring vessels (pointed out
by the yellow arrow).
A B C

FIGURE 5 | Volume reconstruction of brain bearing metastases. (A) 732 µm thick reconstruction of a part of the brain bearing three metastases targeted by NPs.
(B) Visualization of a metastasis invading the thalamus (yellow arrow) and one developed close to the pituitary gland (orange arrow). (C) View on some three
metastases in early formation.
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brain tissue inhomogeneity due to the tumor. The brain areas
attacked by the metastases appear dark with respect to the
surrounding brain tissue and are characterized by a relevant
concentration of black spots. In both cases, the black areas might
be due to a high density of blood vessels and melanin pigments,
which are more concentrated close to the external brain surface.
Furthermore, the image clearly shows that the two metastases are
connected by a blood vessel (longitudinal view of the vessel,
Figure 4D). This detail was not visible in the single XPCT slice of
Figure 4A. By reconstructing the volume around this region of
interest (Figure 4E), it is possible to visualize the co-presence
of melanin and NPs in the upper tumor lesion at high resolution.
Also, a strong accumulation of NPs becomes apparent in the
deeper metastasis perfused by micro-vessels, possibly feeding
arterioles. In addition, from Figure 4E, it can be noticed that the
small white clusters in the vessels (indicated by the yellow arrow)
correspond to a small number of NPs entrapped in the
circulatory system.

Figure 5A is a volume rendering (732 µm thickness) showing
other three metastases grown in the peripheral regions of the brain
(red and yellow rectangles). An MRI view of this brain region is
displayed in Figure S6c of Supplementary Information. The red
close-up in Figure 5B reveals a malignancy developed in the
thalamus (pointed out by the yellow arrow) and another one
close to the pituitary gland (orange arrow). Both of them are
surrounded by a dense vasculature allowing the transport of a
significant number of NPs into the metastases. In particular, the
release of NPs close to the pituitary gland is facilitated by a stronger
alteration of the BBB (54). Both metastases of Figure 5B are a
prototype of very well NPs-loaded tumors exhibiting a quasi-
homogeneous NPs distribution. The high-density signal detected
in the connected vessels demonstrates that a remarkable content of
NPs is still stored in the neighboring vasculature and could not fully
reach the target before mouse sacrifice. The yellow arrows in the
region of interest shown in Figure 5C focus on small metastases
filled with NPs. The metastases have a reduced size, and they are
surrounded by a vessel network.
DISCUSSION

In this work, XPCT was used for characterizing the NPs
distribution inside the melanoma brain metastases. Storage
ring based XPCT offers the advantage of evaluating the tissue
anatomy with fast measurement scans and at very high
resolutions in contrast to tomography laboratory setups. XPCT
demonstrated to be a suitable tool for assessing the brain tissue
anatomy and the NPs localization without an extensive sample
preparation (fluorescent tags, optical agents, stains). Its non-
destructive and multi-scale approach allowed imaging the whole
brain structure while differentiating anatomical details down to
few micrometers. Thanks to its powerful contrast capabilities, it
enabled the melanoma metastases recognition by visualizing
tissue density changes. In addition, XPCT resolved melanin
aggregations that are specific components of this type of
tumor. This anatomical feature is normally not detected by
Frontiers in Oncology | www.frontiersin.org 8
other imaging tools, such as MRI. In the study reported here,
XPCT revealed to be a powerful tool for tracking the 3D NPs
penetration and repartition inside multiple metastases. Thanks
to the achieved spatial resolution, 6 µm (effective pixel size 3 µm),
it added valuable information about NPs distribution 1 h after
injection, a typical time at which irradiation is usually
accomplished (55–57). This article shows a new application of
the XPCT that opens horizons to the pre-clinical research in the
theranostic field. Unlike well-established 2D imaging techniques,
XPCT offers the practical advantage of observing the NPs
distribution in tissues from multiple points of view. Thanks to
the high-resolution, XPCT enabled to simultaneously visualize
the NPs and the different brain tissues. This kind of investigation
will turn to be useful in the process of NP evaluation. The
method will apply for monitoring the nanoparticle clearance, as
well as the NPs delivery in tumor sites. Despite MRI being a
harmless technique and being considered as a benchmark for the
evaluation of the NPs accumulation in tumor, XPCT can
complement the MRI findings adding valuable information
about the NPs distribution in tissues with higher spatial
resolutions. We believe the knowledge of the NPs amount
retained in tumors plays a fundamental role in predicting the
NPs’ radiosensitizing effects in the further step of tumor
irradiation. Since XPCT is a well-consolidated method for
characterizing the vascular system (58, 59), it is also capable of
revealing if NPs content is still entrapped in the vessels. Thus, it
would help in establishing the most effective time for the tumor
irradiation, depending on the most homogeneous NPs
distribution in tumors. In the case of Gd NPs, more
specifically, our findings show information for predicting the
therapeutic impact of the NPs during the tumor irradiation
phase. Even higher resolution inspections of the NPs
distribution might be achieved in the future with X-ray phase
contrast nanotomography setups (60) that would allow
visualizing more clearly and quantifying the NPs accumulated
in tumors. This proof-of-concept experiment demonstrates that
XPCT can provide reliable 3D information about NPs
localization. This technique can finally complement the
classical imaging techniques that are routinely used for
evaluating NPs targeting at the pre-clinical state. XPCT can,
therefore, find its application as an imaging tool in theranostic
research and will deliver valuable information to biologists and
clinicians for designing beneficial radiotherapy protocols based
on NPs.
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