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Scalable Mesh Stability
of Nonlinear Interconnected Systems

Marco Mirabilio, Student Member, IEEE, Alessio Iovine, Member, IEEE, Elena De Santis, Senior Member, IEEE,
Maria Domenica Di Benedetto, Fellow, IEEE, Giordano Pola, Senior Member, IEEE

Abstract—This paper deals with large-scale interconnected
systems with general network topology, affected by external
disturbances, and with the possibility to ensure the overall
stability when some sufficient conditions are met by each agent
with respect to its neighbors. We introduce the notion of scalable
Mesh Stability (sMS), that requires the existence of trajectory
bounds that do not depend on the number of subsystems. The
immediate consequence is that perturbations originating in a
point of the interconnected system do not amplify through it. A
numerical example on interconnection of microgrids shows the
interest and the effectiveness of the theoretical result.

Index Terms—Mesh stability, large-scale systems, stability of
nonlinear interconnected systems, scalability, ISS analysis

I. INTRODUCTION

Large-scale interconnected systems have received consider-
able attention through the years [1], [2], [3], [4], [5] because
of their relevance in several fields such as automotive [6], [7],
power grids [8], [9] or opinion dynamics [10] among others.
Target is to investigate stability analysis of large-scale systems
in a decentralised/distributed framework. Recent results focus
on scalable stability tests to be operated on single agents of the
interconnected systems, without a central entity having global
model knowledge. In [11], the authors introduce a scalable
Input-to-State Stability test to be performed on a large-scale
system composed by a number of agents described by the same
dynamics, affected by disturbances, and with a symmetric
graph modeling the agents’ interconnection. In [12], a stability
test is exploited for agents interconnected via locally Lipschitz
conditions with different dynamics and no disturbances. In
case of agents of first and second order, network stability is
analyzed by means of port-Hamiltonian systems and properties
of the Laplacian matrix describing the interconnections in [13].
Attention is also given to the possibility of limiting the sharing
of information to guarantee the privacy of the agents belonging
to a network [14]. The purpose of this paper is to introduce
a distributed scalable stability condition for agents having
different dynamics in a large-scale interconnected system, with
no constraints on the topology of the interconnection, and
with disturbances affecting each agent. A bound criterion is
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derived on the interconnection among the dynamics, with no
prior knowledge of the underlying interconnection graph and
exploitation of its structure properties.

The proposed approach is inspired by the notion of string
stability, used to develop feedback controllers for a convoy of
vehicles (platoon) [15]. Interconnected autonomous vehicles
have the capability to avoid disturbance amplification back-
wards in the string via the concept of string stability, thus re-
ducing stop-and-go waves propagation and traffic oscillations
[16], [17]. An overview of the possibility to generalize the
disturbance propagation avoidance via the concept of string
stability to other classes of interconnected systems can be
found in [18].

When modeling interconnected vehicles through nonlinear
systems, Input-to-State Stability (ISS) [19], [20] is used to
ensure string stability in the vehicular domain [15]. In this pa-
per, we investigate the stability of interconnected autonomous
systems affected by external disturbances by exploiting ISS
concepts. Following the definition of scalable Input-to-State
Stability (sISS) in [11], we introduce the scalable Mesh
Stability (sMS) for general topological interconnection. We
prove a local sufficient condition that, when it is satisfied
by every subsystem in the interconnection, ensures global
stability of the overall networked system, therefore obtaining
a local test to be performed to assess global stability. We
view the interaction of each agent i with its neighbors as a
perturbation affecting the i-th dynamics, and this results in an
enlargement of the stability region as in classical ISS theory.
Then, in an inductive way, we derive trajectory bounds for
the global system which are independent of the number of
subsystems. We suppose that the underlying graph modeling
the interactions among the systems is weakly connected. This
assumption is without loss of generality since, whenever the
graph is not weakly connected, it is possible to repeat our
analysis for each weakly connected sub-component of the
interconnection graph.

The formal results about string stability of vehicles in
platoon formation described in [21] and [22] are extended here
to large-scale systems with general interconnection topology
and agents’ dynamics affected by external disturbances. Sim-
ilarly to [11], we obtain a stability condition that is scalable.
However, the topological structure we consider is general, and
the dynamics of each agent may be described by a different
vector field. The proposed analysis does not exploit composite
Lyapunov functions theory as in [12], where nonlinear systems
with no disturbances are considered. As in [11] and [12] our
approach relies on the small-gain theory for a network of



Fig. 1: Example of system described by (1): an heteroge-
neous large-scale system, where the interconnections can be
represented by a weakly connected graph, subject to external
disturbances.

interconnected agents. The controlled system obtained in [21]
and [22], where the interconnection topology derives from
the exploitation of macroscopic information in few aggregated
variables, can be represented by the model presented in this
paper, and its stability analysis can be derived as a special
case of the one illustrated in the following sections.

Finally, we provide a numerical example representing a
composition of interconnected electrical microgrids.

The paper is organized as follows: in Section II the class of
considered interconnected systems is introduced as well as the
definition of scalable Mesh Stability. In Section III, the main
result about stability is presented, while Section IV describes
a numerical example. In Section V, some conclusive remarks
are provided.

Notation - R+ is the set of non-negative real numbers.
For a vector x ∈ Rn, |x| =

√
xTx is its Euclidean norm,

|x|∞ = maxi=1...n |xi| is its infinity norm and |x(·)|[t0,t]∞ =
supt0≤τ≤t |x(τ)| is the L∞ signal norm. Symbol d·e denotes
the ceiling function, and || · || denotes the cardinality of the
set in argument. We refer to [23] and [24] for the definition of
Lyapunov functions, Input-to-State Stability (ISS), and class
K, K∞ and KL functions.

II. PRELIMINARIES

Consider the large-scale system composed of N intercon-
nected subsystems, with dynamics

ẋi = fi

(
xi, {xj}j∈Ni , di

)
, i ∈ IN , (1)

where IN = {1, ..., N}, xi ∈ Rni , ni ∈ N, is the state vector,
di ∈ Rmi , mi ∈ N, is the disturbance, Ni ⊆ IN denotes the
neighbors set, and fi : Rni×Rni,1 ···×Rni,||Ni||×Rmi → Rni
is the vector field associated to the i-th subsystem (also called
agent). Here, ni,j is the state dimension of the j-th neighbor
of i. It is assumed that fi(0, 0, ..., 0, 0) = 0, ∀ i ∈ IN ,
and that the interconnected system (1) is forward complete,
meaning that its solution exists for all initial states, and
all disturbances di. Interconnection defined by (1) may be
described by a directed graph G = (IN , E) (see Fig. 1)).
The neighborhood of subsystem i ∈ IN is defined as the set
Ni = {j ∈ IN | ∃ (j, i) ∈ E}. For the problem not to be
trivial, graph G is assumed to be weakly connected.

We recall that the subsystem ẋi = fi(xi, {xj}j∈Ni , di) is
ISS if there exist βi ∈ KL, γi ∈ K∞ and σi ∈ K∞ such that

|xi(t)| ≤ βi (|xi(t0)|, t− t0) + γi

(
max
j∈Ni

|xj(·)|[t0,t]∞

)
+ σi

(
|di(·)|[t0,t]∞

)
, t ≥ t0 ≥ 0. (2)

The following definition of scalable Mesh Stability (sMS)
given for general topological interconnection, follows from the
definition of scalable Input-to-State Stability (sISS) in [11]:

Definition 1. The system (1) is said to be scalable Mesh Stable
(sMS) if ISS property (2) of each subsystem i implies

max
i∈IN

|xi(t)| ≤ β
(

max
i∈IN

|xi(t0)|, t
)

+ σ

(
max
i∈IN

|di(·)|[t0,t]∞

)
(3)

for some functions β ∈ KL and σ ∈ K∞, for any initial
condition xi(t0) ∈ Rn and any disturbance function di(·),
i ∈ IN .

The definition above of sMS formalizes the desired prop-
erty that the stability of a large-scale interconnected system,
namely the trajectory bounds, does not dependent on the
number of its subsystems. Ensuring the existence of such
bounds guarantees that there is no amplification of perturba-
tions through the network, due to disturbances acting on the
agents or to the system being in a transient phase.

III. MAIN RESULTS

In this section, we state sufficient conditions to be met
locally in order to ensure stability of the overall interconnected
system.

Theorem 1. Assume that (2) holds for any i ∈ IN . If there
exists γ̃ ∈ (0, 1) such that

γi(s) ≤ γ̃s (4)

for all s ≥ 0 and i ∈ IN , then the interconnected system (1)
is sMS.

Proof. The proof is divided into two main steps, similarly to
[25] and [26]: first, a common bound for all trajectories xi(t)
valid for all t ≥ t0 is derived, and then an estimation of (3)
for the interconnected system is proven to exist.

Let us introduce β̂(r, s) = maxi∈IN βi(r, s) and σ̂ =
maxi σi(r), r, s ≥ 0. It is readily seen that β̂ ∈ KL,
σ̂ ∈ K∞. Also, let |x(t̄)|∞ = maxi∈IN |xi(t̄)| and d

[t1,t2]
∞ =

maxi∈IN |di(·)|
[t1,t2]
∞ . Since (4) holds, and σ̂ ∈ K∞ implies

σ̂
(
|di(·)|[t0,t]∞

)
≤ σ̂

(
d

[t0,t]
∞

)
, then

|xi(·)|[t0,t]∞ ≤ β̂ (|x(t0)|∞, 0) + γ̃ max
j∈Ni

|xj(·)|[t0,t]∞

+ σ̂
(
d[t0,t]
∞

)
. (5)



By applying the max operator on both sides of inequality (5),
the following holds:

max
i∈IN

|xi(·)|[t0,t]∞ ≤β̂ (|x(t0)|∞, 0)

+ γ̃ max
i∈IN

{
max
j∈Ni

|xj(·)|[t0,t]∞

}
+ σ̂

(
d[t0,t]
∞

)
≤ β̂ (|x(t0)|∞, 0) + γ̃ max

i∈IN
|xi(·)|[t0,t]∞ + σ̂

(
d[t0,t]
∞

)
.

(6)

Grouping the term maxi∈IN |xi(·)|
[t0,t]
∞ on the left side, we

obtain

(1− γ̃) max
i∈IN

|xi(·)|[t0,t]∞ ≤ β̂(|x(t0)|∞, 0) + σ̂
(
d[t0,t]
∞

)
. (7)

Then,

max
i∈IN

|xi(·)|[t0,t]∞ ≤ 1

1− γ̃

(
β̂(|x(t0)|∞, 0) + σ̂

(
d[t0,t]
∞

))
,

(8)

where the last inequality holds because of the assumption
γ̃ ∈ (0, 1). Inequality (8) holds ∀ t ≥ t0, and it does not
depend on the i-th agent dynamics and on the system dimen-
sion. Thereby, it provides a common bound for all trajectories
of the interconnected system. However, no information about
system evolution over time is provided. For this reason, we
look for an estimation of (3) for all the agents. As before,
the result is obtained by an inductive method. Let us define
β̂0(r) = 1

1−γ̃ β̂(r, 0) and σ̄(s) = 1
1−γ̃ σ̂(s), r, s ≥ 0. Moreover,

let be τ ∈ [t0, t]. Then, from (8) for each i ∈ IN the following
inequality holds:

|xi(τ)| ≤ β̂0(|x(t0)|∞) + σ̄
(
d[t0,t]
∞

)
. (9)

For simplicity, µ(r, s) = β̂0(r) + σ̄ (s) is introduced. By (2)
with t0 = τ , and definition of γ̃, for each i ∈ IN we get:

|xi(t)| ≤ β̂(|xi(τ)|, t− τ) + γ̃ max
j∈Ni

|xj(·)|[τ,t]∞

+ σ̂
(
|di(·)|[τ,t]∞

)
. (10)

Since σ̂ ∈ K∞, then σ̂
(
|di(·)|[τ,t]∞

)
≤ σ̂

(
d

[t0,t]
∞

)
.

Given ω̄ ∈ (0, 1), for any t > t0 > 0 define M =
d(t− t0)e, and τk = t0 + ω̄M−k+1(t − t0). By construction,
sequence {τk}Mk=0 is increasing and τk ∈ (t0, t). As a
consequence, from (10) with τ = τM we get:

|xi(t)| ≤ β̂ (|xi (τM )| , t− τM ) + γ̃ max
j∈Ni

|xj(·)|[τM ,t]∞

+ σ̂
(
d[t0,t]
∞

)
, (11)

where t − τM = (1 − ω̄)(t − t0). At this point, a bound for
maxj∈Ni |xj(·)|

[τM ,t]
∞ needs to be derived. For this purpose,

let us consider the trajectories at time instant τM with initial
condition in τ = τM−1. Then, from (10), for each j ∈ IN we
get:

|xj (τM )| ≤ β̂ (|xj (τM−1)| , (1− ω̄)ω̄(t− t0))

+ γ̃ max
v∈Nj

|xv(·)|[τM−1,τM ]
∞ + σ̂

(
d[t0,t]
∞

)
, (12)

where (1 − ω̄)ω̄(t − t0) = τM − τM−1. By recalling that
maxv∈Nj |xv(·)|

[τM−1,τM ]
∞ ≤ maxv∈IN |xv(·)|

[τM−1,t]
∞ , we ob-

tain:

|xj(·)|[τM ,t]∞ ≤ β̂ (|xj (τM−1)| , (1− ω̄)ω̄(t− t0))

+ γ̃ max
v∈IN

|xv(·)|[τM−1,t]
∞ + σ̂

(
d[t0,t]
∞

)
. (13)

From (9), (11) and (13), the following holds

|xi(t)| ≤
1∑
k=0

γ̃kβ̂
(
µ
(
|x(t0)|∞, d[t0,t]

∞

)
, (1− ω̄)ω̄k(t− t0)

)
+

1∑
k=0

γ̃kσ̂
(
d[t0,t]
∞

)
+ γ̃2 max

j∈IN
|xj(·)|[τM−1,t]

∞ . (14)

By repeating the previous steps for the entire time partition,
we obtain

|xi(t)| ≤
M∑
k=0

γ̃kβ̂
(
µ
(
|x(t0)|∞, d[t0,t]

∞

)
, (1− ω̄)ω̄k(t− t0)

)
+

M∑
k=0

γ̃kσ̂
(
d[t0,t]
∞

)
+ γ̃M+1 max

j∈IN
|xj(·)|[τ0,t]∞ . (15)

As in [25], a KL function φ is defined as

φ(r, s) = sup
ω∈(0,1]

ωqβ̂(r, ωs), (16)

for some q > 0. Then, multiplying and dividing β̂ in (15) for(
(1− ω̄)ω̄k

)q
,

|xi(t)| ≤
M∑
k=0

(ω̄−qγ̃)k

(1− ω̄)q
φ
(
µ
(
|x(t0)|∞, d[t0,t]

∞

)
, t− t0

)
+

M∑
k=0

γ̃kσ̂
(
d[t0,t]
∞

)
+ γ̃M+1µ

(
|x(t0)|∞, d[t0,t]

∞

)
. (17)

If parameter ω̄ is chosen such that γ̃ < ω̄q < 1,

|xi(t)| ≤
(1− ω̄)−q

ω̄q − γ̃
φ
(
µ
(
|x(t0)|∞, d[t0,t]

∞

)
, t− t0

)
+ σ̄

(
d[t0,t]
∞

)
+ γ̃M+1µ

(
|x(t0)|∞, d[t0,t]

∞

)
. (18)

From the definition of M and γ̃, γ̃M+1r = γ̃dse+1r < γ̃sr,
where γ̃sr is KL, r, s ≥ 0. As a consequence, function
β̄(r, s) = (1−ω̄)−q

ω̄q−γ̃ φ (r, s)+γ̃sr is KL, and the following holds

|xi(t)| ≤ β̄
(
µ
(
|x(t0)|∞, d[t0,t]

∞

)
, t− t0

)
+ σ̄

(
d[t0,t]
∞

)
.

(19)

Since µ(r, s) = β̂0(r) + σ̄ (s), the presence of σ̄ in the
first argument of function β̄ in (19) needs to be addressed.
Each trajectory xi(t) satisfies both (8) and (19); therefore, we
introduce the following function:

k(r, σ̄(s), t− t0) = min
{
β̄(β̂0(r) + σ̄(s), t− t0), β̂0(r)

}
.

(20)
As shown in equations (98), (99) and (100) in [26], for any
α ∈ K∞
k(r, σ̄(s), t− t0) ≤ β̄(β̂0(r) +α−1(r), t− t0) + β̂0 ◦α(σ̄(s)).

(21)



Then, by defining the class KL function β(r, s) = β̄(β̂0(r) +
α−1(r), s), and the class K∞ function σ(r) = σ̄(r) + β̂0 ◦
α(σ̄(r)), for each i ∈ IN and for each t ≥ t0 we obtain

|xi(t)| ≤ β
(

max
j∈IN

|xj(t0)|, t− t0
)

+ σ

(
max
j∈IN

|dj(·)|[t0,t]∞

)
.

(22)
Then, the sMS of (1) is proven.

Theorem 1 ensures stability for the overall large-scale
system described by a general interconnection graph if the
sufficient condition in (4) is satisfied by each subsystem. As
a consequence, stability of the overall system can be assessed
through the analysis of local dynamics satisfying ISS-like
trajectory bounds (2). Hence, condition (4) can be used as
a local test to determine the sMS of the whole system, as
illustrated in Section IV. Moreover, boundedness with respect
to external disturbances is ensured.

Remark 1. Since Theorem 1 holds for a general class of
interconnected systems, the obtained result can be applied also
to the analysis of vehicular platoons, composed by cascaded
interconnected systems [21], [22].

IV. NUMERICAL EXAMPLE

In this section a numerical example is presented to validate
the theoretical results of Theorem 1. As power systems are
naturally modeled as large-scale and highly nonlinear struc-
tured dynamical systems [27], [28], the case study we propose
deals with stability analysis of a complex interconnection of
microgrids, i.e. clusters of local power sources and loads [29].

We consider a network representing an aggregate of micro-
grids composed by two different kinds of nodes, with an asym-
metric interconnection topology. We consider a two-levels
large-scale network (see Fig. 2). The first level is composed
by groups of interacting agents (microgrids), representing a
local area (the blue nodes in Fig. 2) [30]. The second level
is composed by the agents denoted by ρi (the red nodes in
Fig. 2), i ∈ N, each one interacting with its own local area
and with the other ρj agents, j 6= i. Those second level nodes
interconnect the other local areas, and represent supervisory
controllers targeting power balance with respect to the power
disturbances both from a local and a global point of view. For
both agents’ levels, an asymmetric topology is considered. We
denote with Nρi ⊆

{
ij |j = 1, 2, ..., ni

}
∪
{
ρp |p = 1, 2, ..., r

}
the neighborhood set of the i-th node ρi, with i = 1, ..., r.
Symbol ni ∈ N represents the number of first-level node
associated to the i-th local area, while r ∈ N is the number of
second-level nodes in the system. We define the neighborhood
of each first-level node as Nij ⊆

{
ik |k = 1, 2, ..., ni

}
∪
{
ρi
}

.

Remark 2. Although in the proposed example we suppose that
all the interconnection links are bidirectional, the theoretical
framework allows more general interconnections topologies.

We define the state of the first-level nodes as xij ∈ R,
and the state of the second-level ones as xρi ∈ R, where
i = 1, ..., r and j = 1, ..., ni. The states xij ∈ R repre-
sent power mismatch in the microgrid, and are affected by

Fig. 2: The interconnected systems considered as case study:
the blue nodes represent microgrids whose dynamics is de-
scribed in terms of power exchanges in a local area, while
red nodes describes supervisory controllers injecting/absorbing
power with the target to ensure power balance with respect to
both the local area and its neighborhood.

the power unbalance dij . Consequently, the time derivative
of xij describes the power mismatch variation. The states
xρi ∈ R describe supervisory controllers injecting/absorbing
power with the target to ensure power balance with respect
to both the local area and its neighborhood, and are affected
by errors dρi . The associated dynamics are reported in the
following:

ẋij = −3xij + dij +
∑
k∈K

a
ij
k xk + aijρixρi (23a)

ẋρi = −3xρi + dρi +

(∏
l∈L

bρil |xl|

) 1
||L||

+

(∏
h∈H

cρih |xh|

) 1
||H||

(23b)

where K = Nij/{ρi}, L = Nρi ∩
{
ij | j = 1, 2, ..., ni

}
,

H = Nρi ∩
{
ρp | p = 1, 2, ..., r

}
. We consider the coefficients

a
ij
k , a

ij
ρi ∈ R, bρil , c

ρi
h ∈ R+, and dij , dρi ∈ [d, d̄] ⊂ R, ∀ ij , ρi.

We now prove that the large-scale system under considera-
tion satisfies the local condition (4) that is required for sMS.
We choose the positive definite function Vij = x2

ij
/2, the time

derivative of which is as follows:

V̇ij = −3x2
ij + xijdij + xij ·

∑
k∈K

a
ij
k xk + aijρixijxρi

≤ −3x2
ij + |xij | ·

∣∣∣∣∣∣dij +
∑
k∈Nij

a
ij
k xk

∣∣∣∣∣∣
≤ −5

2
x2
ij +

1

2

∣∣∣∣∣∣|dij |+
∑
k∈Nij

|aijk | max
k∈Nij

|xk|

∣∣∣∣∣∣
2

, (24)

where we used the Young’s inequality |a||b| ≤ (a2 + b2)/2.
Through straightforward calculations, we obtain the following
state inequality for all t ≥ t0:

|xij (t)| ≤ βij (|xij (t0)|, t) + σij

(
|dij (·)|[t0,t]∞

)
+ γ̃ij max

k∈Nij
|xk(·)|[t0,t]∞ , (25)



with

βij (s, r) = e−
5
2 rs, σij (s) =

√
1

5
s,

and

γ̃ij =

√
1

5

∑
k∈Nij

|aijk |.

We proceed to prove similar inequalities for the system (23b).
Let us consider again a quadratic function Vρi = x2

ρi/2 and
its derivative

V̇ρi =−3x2
ρi + xρi (dρi + Ψb + Ψc)

≤ −3x2
ρi + |xρi |

∣∣∣∣|dρi |+ Ψ max
k∈Nρi

|xk|
∣∣∣∣

≤ −5

2
x2
ρi +

1

2

∣∣∣∣|dρi |+ Ψ max
k∈Nρi

|xk|
∣∣∣∣2 , (26)

with Ψb =
(∏

l∈L b
ρi
l |xl|

) 1
||L|| , Ψc =

(∏
h∈H c

ρi
h |xh|

) 1
||H||

and Ψ =
(∏

l∈L b
ρi
l

) 1
||L|| +

(∏
h∈H c

ρi
h

) 1
||H|| . As before, we

obtain the following state trajectory inequality:

|xρi(t)| ≤ βρi(|xρi(0)|, t) + σρi

(
|dρi(·)|[0,t]∞

)
+ γ̃ρi max

k∈Nρi
|xk(·)|[0,t]∞ , (27)

with

βρi(s, r) = e−
5
2 rs, σρi(s) =

√
1

5
s,

and

γ̃ρi =

√
1

5
Ψ.

Inequality (27) is similar to (25), except for the interconnection
term γ̃ij 6= γ̃ρi . Thus, following Theorem 1, if coefficients
a
ij
k , a

ij
ρi , b

ρi
l , c

ρi
h are such that γ̃ = max

{
γ̃ij , γ̃ρi

}
∈ (0, 1),

the stability of the overall system is ensured.
Simulations with respect to the system depicted in Fig. 2 are

reported in Fig. 3. The simulation time is 20 s and it is split
into two main phases: for t ∈ [0, 8] s the system is not affected
by any disturbance and each agent has a non-zero initial
condition, randomly generated between [−4, 4]. In the second
phase (t ∈ [8, 20]), the set of nodes {11, 22, 43, 45, ρ1, ρ3, ρ4}
is affected by sinusoidal disturbances dp(t) = Ap sin(ωpt +
φp), whose parameters are chosen in a random way: Ap ∈
[−3, 3], ω ∈ [1, 4] and φp ∈ [0, π]. Since the coefficients
a
ij
k , a

ij
ρi , b

ρi
l , c

ρi
h are such that the maximum interconnection

parameter is γ̃ ≈ 0.98 (see Table I), the results of Theorem 1
apply.

TABLE I: Interconnection values γ̃

min γ̃ max γ̃
Group #1 0.1342 0.9839
Group #2 0.1968 0.6708
Group #3 0.0358 0.5241
Group #4 0.4651 0.8721

ρi 0.6872 0.9214

Fig. 3a shows the trajectories of the overall system, while
Fig. 3b refers to the sub-group identified by the node ρ1 and
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Fig. 3: Numerical simulations corresponding to the example in
Fig. 2. In (a) are shown the overall system trajectories, in (b)
are reported the trajectories of the subsystem corresponding to
i = 1 and (c) are the trajectories of the ρi nodes.

Fig. 3c reports the trajectories of the ρi nodes. In the first
phase, the simulation shows an asymptotic stable behavior for
the system. In particular, the perturbations due to non-zero
initial conditions vanish. From the interconnected-system point
of view, this means that such perturbations do not amplify
through the network leading to instability. Similarly, in the
second phase where the nodes are affected by disturbances
dp(t), the perturbations due to them are shown not to intensify
along the network. As it is possible to see in Fig. 3b, despite
the disturbances act only on nodes 11 and ρ1, the other
trajectories exhibit as well a sinusoidal behaviour. However,



such perturbations are attenuated and not amplified. A similar
behavior is shown in Fig. 3c, where the variables xρi are
depicted.

V. CONCLUSIONS

In this paper we introduce the scalable Mesh Stability
notion for interconnected systems with general topology. We
analyze sufficient conditions for the stability of generic large-
scale interconnected systems, with a non-predefined structure
and subject to external disturbances. The derived sufficient
conditions lead to a novel test exploiting the Input-to-State Sta-
bility concepts, that, if verified locally by each agent, ensures
the overall system’s stability. Moreover, the stability result
is scalable with respect to the number of agents composing
the system; indeed, the state trajectories are bounded in norm
by functions that do not depend on the number of agents.
The proposed theoretical framework is used to analyze the
stability of a network of microgrids, and simulation results
are illustrated.

Future work will focus on the analysis of non-autonomous
large-scale systems, showing different and complex dynamics,
where the sufficient conditions proposed in this paper have to
be ensured by means of a controller.
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