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We are concerned with the determination of the reachable states for the distributed control of the heat equation on an interval. We consider either periodic boundary conditions or homogeneous Dirichlet boundary conditions. We prove that for a L 2 distributed control, the reachable states are in the Sobolev space H 1 and that they have complex analytic extensions on squares whose horizontal diagonals are regions where no control is applied.

Introduction

The null controllability of the heat equation has been investigated for a long time [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF], and sharp results in dimension N were obtained in the nineties by using Carleman estimates [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Fursikov | Controllability of Evolutions Equations[END_REF]. By contrast, sharp results for the exact controllability of the heat equation were obtained only recently. In [START_REF] Martin | On the reachable states for the boundary control of the heat equation[END_REF], the authors noticed that for the boundary control of the heat equation on a real interval, the reachable space was sandwiched between the set of analytic functions on a ball and the set of analytic functions on a square. These results were improved in [START_REF] Dardé | On the reachable set for the one-dimensional heat equation[END_REF][START_REF] Hartmann | From the reachable space of the heat equation to Hilbert spaces of holomorphic functions[END_REF], where the reachable space was sandwiched between two spaces of analytic functions on squares. The sharp result, derived in [START_REF] Orsoni | Reachable states and holomorphic function spaces for the 1-D heat equation[END_REF][START_REF] Hartmann | Separation of singularities for the Bergman space and application to control theory[END_REF], tells that the reachable space for the heat equation on the interval (-1, 1) with two boundary controls at x = ±1 taken in the space L 2 (0, T ), is exactly the Bergman space of the functions that are both analytic and square integrable on the square Ω = {x+iy; |x|+|y| < 1}. See also [START_REF] Laurent | Exact controllability of semilinear heat equations in spaces of analytic functions[END_REF] for the reachable spaces of semilinear parabolic equations, and [START_REF] Martin | Exact controllability of a linear Korteweg-de Vries equation by the flatness approach[END_REF] and [START_REF] Chen | Exact controllabilty of the linear Zakharov-Kuznetsov equation[END_REF] for the reachable spaces of the linear Korteweg-de Vries equation and the linear Zakharov-Kuznetsov equation, respectively. The present paper is concerned with the determination of the reachable space for the distributed control of the heat equation on an interval. Roughly, it is proved that when using L 2 distributed controls, the reachable states are H 1 in the control region and analytic elsewhere. At the same time, we shall provide a short proof of the main result in [START_REF] Dardé | On the reachable set for the one-dimensional heat equation[END_REF] by using the method introduced in [START_REF] Lutz | On the Borel summability of divergent solutions of the heat equation[END_REF] to construct backward solutions of the heat equation.

Let us review the main results in this paper. Consider first periodic boundary conditions. Let T = R/2πZ and let χ (l 1 ,l 2 ) (x) = 1 if x ∈ (l 1 , l 2 ), 0 otherwise. We consider the control problem:

w t -w xx = χ (l 1 ,l 2 ) u w(x, 0) = 0 (x, t) ∈ T × (0, T ), x ∈ T.
(1.1)

For 0 < L 1 < L 2 < 2π, we introduce the open set S(L 1 , L 2 ) = {x + iy ∈ C; |y| < x -L 2 and |y| < L 1 + 2π -x}
which is a square with the interval (L 2 , L 1 + 2π) as a diagonal. Define

H(L 1 , L 2 ) = {f ∈ H 1 (T); f | (L 2 ,L 1 +2π) can be extended as an analytic function in S(L 1 , L 2 )}, A(L 1 , L 2 ) = {f ∈ H(L 1 , L 2 ); S(L 1 ,L 2 ) |f (x + iy)| 2 dxdy < ∞}.
Note that any function f ∈ H(L 1 , L 2 ) can be extended as an analytic function on ∪ k∈Z S(L 1 , L 2 )+ 2kπ, by 2π-periodicity of f . The following result is the first main result in this paper.

Theorem 1.1. Let T > 0 and 0 < l 1 < l 2 < 2π. Then (i) for any u ∈ L 2 (0, T ; L 2 (T)), the solution w of system (1.1) satisfies w(•, T ) ∈ A(l 1 , l 2 );

(ii) for any 0 < ε < (l 2 -l 1 )/2 and any w T ∈ H(l 1 + ε, l 2 -ε), there exists a control input u ∈ L 2 (0, T ; L 2 (T)) such that the solution w of system (1.1) satisfies w(•, T ) = w T in T.

Remark 1.1. 1. The above result is "almost sharp", for ε can be taken as small as desired in the inclusion

H(l 1 + ε, l 2 -ε) ⊂ A(l 1 , l 2 ).
2. Having in mind the characterisation of the reachable space for the boundary control of the heat equation in [START_REF] Hartmann | Separation of singularities for the Bergman space and application to control theory[END_REF], it is natural to conjecture that the reachable space for system (1.1) is the Bergman space A(l 1 , l 2 ).

Next, we consider distributed control systems on the interval (0, 1) with homogeneous boundary conditions. 1 Let 0 < l 1 < l 2 < 1. For any given u ∈ L 2 (0, T, L 2 (0, 1)), let w denote the solution of the control system

   w t -w xx = χ (l 1 ,l 2 ) u w(0, t) = w(1, t) = 0 w(x, 0) = 0 (x, t) ∈ (0, 1) × (0, T ), t ∈ (0, T ), x ∈ (0, 1). (1.2)
1 Homogeneous Neumann boundary conditions could be treated in a similar way. The following result is the second main result in this paper. Theorem 1.2. Let T > 0 and 0 < l 1 < l 2 < 1. Then (i) for any u ∈ L 2 (0, T ; L 2 (0, 1)), the solution w of system (1.2) satisfies w(•, T ) ∈ H 1 0 (0, 1), w(•, T ) ∈ A(l 1 ) and w(1 -•, T ) ∈ A(1 -l 2 );

(ii) for any 0 < ε < (l 2 -l 1 )/2, for any w T ∈ H 1 0 (0, 1) with w T ∈ H(l 1 + ε) and w T (1 -•) ∈ H(1 -l 2 + ε), there exists a control function u ∈ L 2 (0, T ; L 2 (0, 1)) such that the solution w of system (1.2) satisfies w(•, T ) = w T in (0, 1). Remark 1.2. The result is again "almost sharp". We conjecture that for 0 < l 1 < l 2 < 1, the reachable space for system (1.2) is the set of functions w T ∈ H 1 0 (0, 1) such that w T ∈ A(l 1 ) and w

T (1 -•) ∈ A(1 -l 2 ).
The paper is outlined as follows. The proof of Theorem 1.1 (resp. Theorem 1.2) is given in Section 2 (resp. in Section 3). We provide in appendix a short proof of the main result in [START_REF] Dardé | On the reachable set for the one-dimensional heat equation[END_REF] which is used to prove Theorem 1.1.

2 Proof of Theorem 1.1 (i) Pick any u ∈ L 2 (0, T, L 2 (T)) and let w denote the solution of (1.2). Let us first check that w ∈ C([0, T ], H 1 (T)). Expand χ (l 1 ,l 2 ) u as a Fourier series:

χ (l 1 ,l 2 ) (x)u(x, t) = n∈Z u n (t)e inx with T 0 ( n∈Z |u n (t)| 2 )dt < ∞. Then one has by Duhamel formula for all t ∈ [0, T ] w(x, t) = t 0 n∈Z e -n 2 (t-τ ) u n (τ )e inx dτ in L 2 (T).
Since for n = 0 and t ∈ [0, T ] we have, by Cauchy-Schwarz inequality,

t 0 |e -n 2 (t-τ ) u n (τ )|dτ ≤ ( t 0 e -2n 2 (t-τ ) dτ ) 1 2 ( t 0 |u n (τ )| 2 dτ ) 1 2 ≤ 1 √ 2n 2 ( T 0 |u n (τ )| 2 dτ ) 1 2 ,
we infer that

n∈Z * t 0 |e -n 2 (t-τ ) u n (τ )|dτ ≤ n∈Z * 1 2n 2 1 2 n∈Z * T 0 |u n (τ )| 2 dτ 1 2 < ∞ (2.1) so that w(x, t) = n∈Z ( t 0 e -n 2 (t-τ ) u n (τ ) dτ )e inx for (x, t) ∈ T × [0, T ], and that n∈Z * n t 0 e -n 2 (t-τ ) u n (τ )dτ 2 ≤ 1 2 n∈Z * T 0 |u n (τ )| 2 dτ < ∞. (2.2) Thus w ∈ C([0, T ], H 1 (T)) (2.3) and w(., T ) ∈ H 1 (T). Introduce the function v(x, t) = w(x, t) for (x, t) ∈ [l 2 , l 1 + 2π] × [0, T ].
Then v satisfies the following system (ii) We introduce a partition of unity. Let ψ 1 , ψ 2 ∈ C ∞ (T) be such that

   v t -v xx = 0 v(l 2 , t) = w(l 2 , t), v(l 1 + 2π, t) = w(l 1 + 2π, t) v(x, 0) = 0 (x, t) ∈ (l 2 , l 1 + 2π) × (0, T ), t ∈ (0, T ), x ∈ (l 2 , l 1 + 2π),
ψ 1 + ψ 2 = 1, 0 ≤ ψ i ≤ 1, i = 1, 2 ψ 1 (x) = 0, x ∈ T \ (l 1 , l 2 ), ψ 2 (x) = 0, x ∈ (l 1 + ε 2 , l 2 - ε 2 ).
Figure 3: partition of unity Consider a control problem with a distributed control supported in T:

w 1t -w 1xx = u 1 w 1 (x, 0) = 0 (x, t) ∈ T × (0, T ), x ∈ T, (2.4) 
where u 1 is the control.

Lemma 2.1. For any T > 0 and any w T ∈ H 1 (T), there exists a function

u 1 ∈ L 2 (0, T ; L 2 (T))
such that the solution of (2.4) satisfies

w 1 (x, T ) = w T (x) ∀x ∈ T.
Proof. Expand the control input as a Fourier series

u 1 (x, t) = n∈Z u n (t)e inx .
Then by Duhamel formula

w 1 (x, t) = t 0 n∈Z e -n 2 (t-τ ) u n (τ )e inx dτ.
Since w T ∈ H 1 (T), we can expand w T as w

T (x) = n∈Z a n e inx with n∈Z n 2 |a n | 2 < ∞. Pick u n (t) =        a 0 T for n = 0, 2n 2 e -n 2 (T -t) 1 -e -2n 2 T a n for n ∈ Z * .
Then we obtain for

n ∈ Z * T 0 |u n (t)| 2 dt = 2n 2 1 -e -2n 2 T 2 |a n | 2 T 0 e -2n 2 (T -t) dt = 2n 2 1 -e -2n 2 T |a n | 2 ∼ 2n 2 |a n | 2 as n → +∞. It follows that u 1 2 L 2 (0,T ;L 2 (T)) = 2π n∈Z T 0 |u 2 n (t)|dt < ∞.
On the other hand, we have

T 0 e -n 2 (T -τ ) u n (τ )dτ = a n ∀n ∈ Z,
and hence w 1 (•, T ) = w T . The proof of Lemma 2.1 is complete.

It follows from (2.4) that the function ψ 1 w 1 satisfies the system:

   (ψ 1 w 1 ) t -(ψ 1 w 1 ) xx = u 1 (ψ 1 w 1 )(x, 0) = 0 (ψ 1 w 1 )(x, T ) = (ψ 1 w T )(x) (x, t) ∈ T × (0, T ), x ∈ T, x ∈ T, (2.5) 
with

u 1 =ψ 1 (w 1t -w 1xx ) -2ψ 1x w 1x -ψ 1xx w 1 =ψ 1 u 1 -2ψ 1x w 1x -ψ 1xx w 1 .
By (2.3) (still valid for l 1 = 0 and l 2 = 2π), we have that w 1 ∈ C([0, T ], H 1 (T)). By construction of ψ 1 , we have that ∂ n x ψ 1 (x) = 0 for all x ∈ T \ (l 1 , l 2 ) and all n ≥ 0, and hence

u 1 = χ (l 1 ,l 2 ) u 1 in L 2 (0, T, L 2 (T)).
Let Hol(Ω) denote the space of (complex) analytic functions in

Ω. A function h ∈ C ∞ ([0, T ]
) is said to be Gevrey of order 2, and we write h ∈ G 2 ([0, T ]), if there exist some positive constants C, R such that

|∂ p t h(t)| ≤ C (p!) 2 R p ∀t ∈ [0, T ], ∀p ≥ 0.
The following result is needed.

Proposition 2.1. Let L > 1, T > 0, and ψ ∈ Hol(S(L)). Then there exist h

-1 , h 1 ∈ G 2 ([0, T ])
such that the solution w = w(x, t) of the control system

w t -w xx = 0, (x, t) ∈ (-1, 1) × (0, T ), (2.6) w(-1, t) = h -1 (t), w(1, t) = h 1 (t), t ∈ (0, T ), (2.7) 
w(x, 0) = 0, x ∈ (-1, 1), (2.8)

satisfies w ∈ C ∞ ([-1, 1] × [0, T ]) and w(x, T ) = ψ(x) for x ∈ [-1, 1].
If, in addition, ψ is odd, then we can require that w(., t) be odd for all t ∈ [0, T ], so that h -1 (t) = -h 1 (t) and w(0, t) = 0 for all t ∈ [0, T ].

Note that a similar result with

h -1 , h 1 ∈ C ∞ ([0, T ]) was derived in [2, Theorem 5.2].
Here, we provide in Appendix a very short proof of Proposition 2.1 which is interesting in itself.

By Proposition 2.1, if

w T ∈ H(l 1 + ε, l 2 -ε), we can find h 1 , h 2 ∈ G 2 ([0, T ]
) such that the solution w 2 of the following system

   w 2t -w 2xx = 0 w 2 (l 2 -ε 2 , t) = h 1 (t), w 2 (l 1 + ε 2 + 2π, t) = h 2 (t) w 2 (x, 0) = 0 (x, t) ∈ (l 2 -ε 2 , l 1 + ε 2 + 2π) × (0, T ), t ∈ (0, T ), x ∈ (l 2 -ε 2 , l 1 + ε 2 + 2π) (2.9) satisfies w 2 ∈ C ∞ ([l 2 -2 , l 1 + ε 2 + 2π] × [0, T ]
) and

w 2 (x, T ) = w T (x), ∀x ∈ (l 2 - ε 2 , l 1 + ε 2 + 2π).
Extend w 2 as a function in C ∞ (T × [0, T ]) (i.e. as a function smooth in (x, t) and 2π-periodic in x) and still denote this function by w 2 . Then we have

   (ψ 2 w 2 ) t -(ψ 2 w 2 ) xx = u 2 (ψ 2 w 2 )(x, 0) = 0 (ψ 2 w 2 )(x, T ) = (ψ 2 w T )(x) (x, t) ∈ T × (0, T ), x ∈ T, x ∈ T, (2.10) 
where

u 2 =ψ 2 (w 2t -w 2xx ) -2ψ 2x w 2x -ψ 2xx w 2 .
It follows from the definition of ψ 2 and the first equation in (2.9) that u 2 (x, t) = 0 for x ∈ [l 2 , l 1 + 2π] and t ∈ [0, T ]. Thus we have

u 2 = χ (l 1 ,l 2 ) u 2 in L 2 (0, T, L 2 (T)). Since w 2 ∈ C ∞ (T × [0, T ]), we have u 2 ∈ C ∞ (T × [0, T ]
). Combining (2.5) and (2.10), if we take

u = χ (l 1 ,l 2 ) u 1 + χ (l 1 ,l 2 ) u 2 , then w = ψ 1 w 1 + ψ 2 w 2 satisfies (1.1) and w(x, T ) = (ψ 1 w T )(x) + (ψ 2 w T )(x) = w T (x), ∀x ∈ T.
The proof of Theorem 1.1 is complete.

Dirichlet boundary conditions

In this section, we prove Theorem 1.2. The necessary conditions in (i) are obtained as in the proof of Theorem 1.1. Indeed, introducing v 1 = w |(0,l 1 )×(0,T ) and v 2 = w |(l 2 ,1)×(0,T ) and applying [5, Proposition 5.1], we obtain the desired result.

To prove (ii), we use again a partition of unity. We pick some functions ψ 1 , ψ 2 , ψ 3 ∈ C ∞ ([0, 1]) such that

ψ 1 + ψ 2 + ψ 3 = 1, 0 ≤ ψ i ≤ 1, i = 1, 2, 3, ψ 1 (x) = 0 x ∈ [0, l 1 ] ∪ [l 2 , 1], ψ 2 (x) = 0 x ∈ [l 1 + ε 2 , 1], ψ 3 (x) = 0 x ∈ [0, l 2 - ε 2 ].
As in the proof of Lemma 2.1, we can show that for any w T ∈ H 1 0 (0, 1), there exists a function u 1 ∈ L 2 (0, T ; L 2 (0, 1)) such that the solution w 1 of the system

   w 1t -w 1xx = u 1 w 1 (0, t) = w 1 (1, t) = 0 w 1 (x, 0) = 0 (x, t) ∈ (0, 1) × (0, T ), t ∈ (0, T ), x ∈ (0, 1), satisfies w 1 (x, T ) = w T (x), ∀x ∈ (0, 1).
Proceeding as for system (2.5), we see that there exists a control function u 1 ∈ L 2 (0, T ; L 2 (0, 1)) such that ψ 1 w 1 is the solution of the following system:

       (ψ 1 w 1 ) t -(ψ 1 w 1 ) xx = χ (l 1 ,l 2 ) u 1 (ψ 1 w 1 )(0, t) = (ψ 1 w 1 )(1, t) = 0 (ψ 1 w 1 )(x, 0) = 0 (ψ 1 w 1 )(x, T ) = (ψ 1 w T )(x)
(x, t) ∈ (0, 1) × (0, T ), t ∈ (0, T ), x ∈ (0, 1), x ∈ (0, 1).

Since w T ∈ H(l 1 + ε), there exists by Proposition 2.1 a function

h 1 ∈ G 2 ([0, T ]) such that the solution w 2 of    w 2t -w 2xx = 0 w 2 (0, t) = 0, w 2 (l 1 + ε 2 , t) = h 1 (t) w 2 (x, 0) = 0 (x, t) ∈ (0, l 1 + ε 2 ) × (0, T ), t ∈ (0, T ), x ∈ (0, l 1 + ε 2 ) satisfies w 2 ∈ C ∞ ([0, l 1 + ε 2 ] × [0, T ]
) and

w 2 (x, T ) = w T (x), ∀x ∈ (0, l 1 + ε 2 ).
We still denote by w 2 a smooth extension of w 2 to [0, 1] × [0, T ]. Then there exists a function

u 2 ∈ L 2 (0, T ; L 2 (0, 1)) such that ψ 2 w 2 solves        (ψ 2 w 2 ) t -(ψ 2 w 2 ) xx = χ (l 1 ,l 1 + ε 2 ) u 2 (ψ 2 w 2 )(0, t) = (ψ 2 w 2 )(1, t) = 0 (ψ 2 w 2 )(x, 0) = 0 (ψ 2 w 2 )(x, T ) = (ψ 2 w T )(x) (x, t) ∈ (0, 1) × (0, T ), t ∈ (0, T ), x ∈ (0, 1), x ∈ (0, 1). Similarly, since w T (1 -•) ∈ H(1 -l 2 + ε), there exists a function h 2 ∈ G 2 ([0, T ]) such that the solution w 3 of the system    w 3t -w 3xx = 0 w 3 (0, t) = 0, w 3 (1 -l 2 + ε 2 , t) = h 2 (t) w 3 (x, 0) = 0 (x, t) ∈ (0, 1 -l 2 + ε 2 ) × (0, T ), t ∈ (0, T ), x ∈ (0, 1 -l 2 + ε 2 ) satisfies w 3 ∈ C ∞ ([0, 1 -l 2 + ε 2 ] × [0, T ]
) and

w 3 (x, T ) = w T (1 -x), x ∈ (0, 1 -l 2 + ε 2 ). Let w 3 (x, t) = w 3 (1 -x, t), x ∈ (l 2 - ε 2 , 1), t ∈ (0, T ).
Then we have

       w 3t -w 3xx = 0 w 3 (l 2 -ε 2 , t) = h 2 (t), w 3 (1, t) = 0 w 3 (x, 0) = 0 w 3 (x, T ) = w T (x) (x, t) ∈ (l 2 -ε 2 , 1) × (0, T ), t ∈ (0, T ), x ∈ (l 2 -ε 2 , 1), x ∈ (l 2 -ε 2 , 1
). We still denote by w 3 a smooth extension of w 3 to [0, 1] × [0, T ]. It follows that there exists a control function u 3 ∈ L 2 (0, T ; L 2 (0, 1)) such that ψ 3 w 3 solves

       (ψ 3 w 3 ) t -(ψ 3 w 3 ) xx = χ (l 2 -ε 2 ,l 2 ) u 3 (ψ 3 w 3 )(0, t) = (ψ 3 w 3 )(1, t) = 0 (ψ 3 w 3 )(x, 0) = 0 (ψ 3 w 3 )(x, T ) = (ψ 3 w T )(x) (x, t) ∈ (0, 1) × (0, T ), t ∈ (0, T ), x ∈ (0, 1), x ∈ (0, 1).
Finally, if we take

u = χ (l 1 ,l 2 ) u 1 + χ (l 1 ,l 1 + ε 2 ) u 2 + χ (l 2 -ε 2 ,l 2 )
u 3 , we infer that w = ψ 1 w 1 + ψ 2 w 2 + ψ 3 w 3 is the solution of (1.2). On the other hand, we have that

w(x, T ) = (ψ 1 w T )(x) + (ψ 2 w T )(x) + (ψ 3 w T )(x) = w T (x), ∀x ∈ (0, 1).
The proof of Theorem 1.2 is complete.

Appendix. Proof of Proposition 2.1

The proof is inspired by [START_REF] Lutz | On the Borel summability of divergent solutions of the heat equation[END_REF] where backward solutions of the heat equation were obtained by integrating the heat kernel along lines different from the real line. Introduce the following notations borrowed from [START_REF] Lutz | On the Borel summability of divergent solutions of the heat equation[END_REF]. For θ ∈ R and R > 0, let

O(θ, R) := {z ∈ C; |z -Re iθ | < R}, Ω(θ, R) := {z ∈ C; dist(z, e iθ R) < R}.
(See Figure 4.) Note that

S(1) = Ω( π 4 , 1 √ 2 ) ∩ Ω( 3π 4 , 1 √ 2 ). 
The first lemma is concerned with separation of singularities. Lemma 3.1. Let 1 < l < L and ψ ∈ Hol(S(L)). Then there exist

θ 1 ∈ (π, 3π 2 ), θ 2 ∈ ( π 2 , π), r ∈ ( 1 √ 2 , +∞), ψ 1 ∈ Hol Ω( θ 1 2 , r) and ψ 2 ∈ Hol Ω( θ 2 2 , r) such that S(l) ⊂ Ω( θ 1 2 , r) ∩ Ω( θ 2 2 , r), ∂ j z ψ i ∈ L ∞ (Ω( θ i 2 , r)), i = 1, 2, j ∈ N, ψ = ψ 1 + ψ 2 in S(l).
Proof of Lemma 3.1. Pick any l ∈ (l, L). Let γ 1 (t) = (1 -t + it) l for t ∈ [0, 1], and let

γ 2 (t), γ 3 (t), γ 4 (t) = (iγ 1 (t), -γ 1 (t), -iγ 1 (t)) for t ∈ [0, 1].
Let γ : [0, 4] → C be defined by

γ(t) = γ i (t -i + 1) for i ∈ {1, ..., 4}, t ∈ [i -1, i].
Note that γ([0, 4]) = ∂S( l). We infer from Cauchy formula that for any z ∈ S( l)

ψ(z) = 1 2πi γ ψ(ζ) ζ -z dζ = 1 2πi γ 1 ∪γ 3 ψ(ζ) ζ -z dζ + 1 2πi γ 2 ∪γ 4 ψ(ζ) ζ -z dζ =: ψ 1 (z) + ψ 2 (z)
where But if τ ∈ O(θ, R), | τ e iθ -R| < R, so that Re e iθ τ = Re τ e iθ > 0. On the other hand

ψ 1 ∈ Hol(C \ (γ 1 ∪ γ 3 )) and ψ 2 ∈ Hol(C \ (γ 2 ∪ γ 4 )). Since S(l) ⊂ S( l) = Ω π 4 , l √ 2 ∩ Ω 3π 4 , l √ 2 , lim τ →0 - v(z, τ ) = ψ(z), z ∈ Ω( θ 2 , r). (3.2) If, in addition, ∂ j z ψ ∈ L ∞ (Ω( θ 2 , r)) for all j ∈ N and if S(1) ⊂ Ω( θ 2 , r), then v ∈ C ∞ ([-1, 1] × [-T, 0]) for all T > 0 with -T ∈ O(θ, R).
|ψ(z -ζ)| ≤ ψ L ∞ (Ω( θ 2 ,r)) , for z ∈ Ω( θ 2 , r) and ζ ∈ Re i θ 2 .
Straightforward calculations show that

v zz = 1 √ 4πτ ∞e i θ 2 -∞e i θ 2 e -ζ 2 4τ ψ (z -ζ)dζ = 1 √ 4πτ ∞e i θ 2 -∞e i θ 2 d 2 dζ 2 [e -ζ 2 4τ ]ψ(z -ζ)dζ = 1 √ 4πτ ∞e i θ 2 -∞e i θ 2 - 1 2τ + ζ 2 4τ 2 e -ζ 2 4τ ψ(z -ζ)dζ, while v τ = 1 √ 4πτ (- 1 2τ 
)

∞e i θ 2 -∞e i θ 2 e -ζ 2 4τ ψ(z -ζ)dζ + 1 √ 4πτ ( 1 4τ 2 ) ∞e i θ 2 -∞e i θ 2 ζ 2 e -ζ 2 4τ ψ(z -ζ)dζ
and hence (3.1) holds in Ω( θ 2 , r) × O(θ, R). It remains to show that (3.2) is fulfilled. First, we notice that for π 2 < θ < 3π 2 and R > 0, there exists T > 0 such that O(θ, R) ∩ R = (-T, 0) (see Figure 4). Therefore, taking the limit of v(z, τ ) as τ → 0 -is meaningful.

Claim 1. For θ ∈ ( π 2 , 3π 
2 ) and τ ∈ (-∞, 0), we have 1

√ 4πτ ∞e i θ 2 -∞e i θ 2 e -ζ 2 4τ dζ = 1. Indeed, if θ ∈ ( π 2 , π) (resp. θ ∈ (π, 3π 2 )), we have for κ ∈ ( θ 2 , π 2 ) (resp. κ ∈ ( π 2 , θ 2 )), s ∈ R, τ ∈ (-∞, 0), and ζ := se iκ , |e -ζ 2 4τ | = |e -s 2 4τ cos(2κ) | ≤ e -s 2 4|τ | | cos(θ)| . Thus lim |s|→+∞ π 2 θ 2 e -(se iκ ) 2 4τ sie iκ dκ = 0 if θ ∈ ( π 2 , π) (resp. lim |s|→+∞ θ 2 π 2 e -(se iκ ) 2 4τ sie iκ dκ = 0 if θ ∈ (π, 3π 2 
).)

It follows from the residue theorem that 1 √ 4πτ

∞e i θ 2 -∞e i θ 2 e -ζ 2 4τ dζ = 1 √ 4πτ ∞e i π 2 -∞e i π 2 e -ζ 2 4τ dζ = 1 i 4π|τ | ∞ -∞ e -s 2 4|τ | ids = 1,
which completes the proof of Claim 1. Finally, letting ζ = |τ |ξ, we see that for any z ∈ Ω( θ 2 , r)

v(z, τ ) -ψ(z) = 1 4π τ |τ | ∞e i θ 2 -∞e i θ 2 e -ξ 2 4 τ |τ | ψ(z -|τ |ξ -ψ(z) dξ
tends to 0 as τ → 0 -, by dominated convergence. Finally, assume that ∂ j z ψ ∈ L ∞ (Ω( θ 2 , r)) for all j ∈ N and that S(1) ⊂ Ω( θ 2 , r). Claim 2. For all j ∈ N, we have

∂ j z [v(z, τ ) -ψ(z)] → 0 as τ → 0 -uniformly for z ∈ [-1, 1]
. Indeed, for all j ∈ N, we can write

∂ j z [v(z, τ ) -ψ(z)] = 1 4π τ |τ | ∞e i θ 2 -∞e i θ 2 e -ξ 2 4 τ |τ | ψ (j) (z -|τ |ξ -ψ (j) (z) dξ.
For given ε > 0, we pick a number A > 0 such that

|s|>A e - (se i θ 2 ) 2 4 τ |τ | ds < ε. Then 1 4π τ |τ | ξ ∈ (-∞, ∞)e i θ 2 , |ξ| > A e -ξ 2 4 τ |τ | ψ (j) (z -|τ |ξ -ψ (j) (z) dξ ≤ 2 ψ j L ∞ (Ω( θ 2 ,r)) ε √ 4π •
On the other hand, it follows from the uniform continuity of ψ (j) on some open neighborhood of

[-1, 1] that 1 4π τ |τ | ξ ∈ (-∞, ∞)e i θ 2 , |ξ| ≤ A e -ξ 2 4 τ |τ | ψ (j) (z -|τ |ξ -ψ (j) (z) dξ → 0 as τ → 0 -, uniformly for z ∈ [-1, 1]. Claim 2 is proved. Using the fact that ∂ k t ∂ j z v = ∂ 2k+j z v for k, j ∈ N, τ < 0, and z ∈ [-1, 1], we infer that v ∈ C ∞ ([-1, 1] × [-T, 0]) for any T > 0 such that -T ∈ O(θ, R). The proof of Lemma 3.2 is complete.
Let us go back to the proof of Proposition 2.1. Pick ψ 1 and ψ 2 as given by Lemma 3.1, and let To complete the proof, we proceed as in [START_REF] Strohmaier | Analytic properties of heat equation solutions and reachable sets[END_REF], combining the above construction with a null controllability result. Pick any s ∈ (1, 2) and any function ρ ∈ G s ([-T , 0]) such that ρ(t) = 1 for -T ≤ t ≤ -T 2 and ρ(t) = 0 for -T 4 ≤ t ≤ 0. Let g 0 (t) := ρ(t)v(0, t) and g 1 (t) := ρ(t)∂ τ v(0, t) for t ∈ [-T , 0]. Using the fact that v(0, .), ∂ τ v(0, .) ∈ Hol(O(θ 1 , R) ∩ O(θ 2 , R)) and [12, Lemma 3.7], we infer that g 0 , g 1 ∈ G s ([-T , 0]). Therefore, for any R > 1 there exists some constant C > 0 such that 

v j (z, τ ) = 1 √ 4πτ ∞e i θ j 2 -∞e i θ j 2 e -ζ 2 4τ ψ j (z -ζ)dζ for j = 1, 2, z ∈ Ω( θ j 2 , r) and τ ∈ O(θ j , R). Then v 1,τ -v 1,zz = 0, in Ω( θ 1 2 , r) × O(θ 1 , R), v 2,τ -v 2,zz = 0, in Ω( θ 2 2 , r) × O(θ 2 , R).
|∂ j t g 0 (t)| + |∂ j t g 1 (t)| ≤ C (2j) 
), x ∈ (-1, 1), so that v(., 0) = 0 and v(., -T ) = v(., -T ). Let h ±1 (t) := v(±1, t) -v(±1, t), for t ∈ (-T , 0), w(x, t) := v(x, t) -v(x, t), for t ∈ (-T , 0), x ∈ (-1, 1).

Then w satisfies

      
w t -w xx = 0, t ∈ (-T , 0), x ∈ (-1, 1), w(x, -T ) = 0,

x ∈ (-1, 1), w(±1, t) = h ±1 (t), t ∈ (-T , 0), w(x, 0) = ψ(x),

x ∈ (-1, 1).

Figure 1 :

 1 Figure 1: Reachable states for periodic boundary conditions.

Figure 2 :

 2 Figure 2: Reachable states for homogeneous Dirichlet boundary conditions.

  where the boundary controls w(l 2 , .) and w(l 1 + 2π, .) are in C([0, T ]), by(2.3). Then v(•, T ) can be extended as an analytic function in S(l 1 , l 2 ) by[START_REF] Martin | On the reachable states for the boundary control of the heat equation[END_REF] Theorem 2.1]. Furthermore, w(•, T ) ∈ L 2 (S(l 1 , l 2 )) by[START_REF] Hartmann | From the reachable space of the heat equation to Hilbert spaces of holomorphic functions[END_REF] Proposition 1.2]. Therefore w(•, T ) ∈ A(l 1 , l 2 ).

Figure 4 :

 4 Figure 4: The set O(θ, R) for π 2 < θ < 3π 2 .

Proof of Lemma 3 . 2 .-ζ 2 4τ= e -s 2 4 e iθ τ = e -s 2 4

 32242 For s ∈ R and ζ = e i θ 2 s, we have e Re e iθ τ .

  Let v(z, τ ) = v 1 (z, τ ) + v 2 (z, τ ). Then v is well-defined and analytic inD := [Ω( θ 1 2 , r) ∩ Ω( θ 2 2 , r)] × [O(θ 1 , R) ∩ O(θ 2 , R)],and it fulfillsv τ -v zz = 0 in D, lim τ →0 - v(z, τ ) = ψ 1 (z) + ψ 2 (z) = ψ(z) in Ω( T > 0 is such that [-T , 0) ⊂ O(θ 1 , R) ∩ O(θ 2 , R) and T ≤ T , then v(., -T ) is analytic in the open set Ω( θ 1 2 , r) ∩ Ω( θ 2 2, r) which contains S(1).

  ! R j ∀t ∈ [-T , 0], ∀j ∈ N.According to[START_REF] Martin | On the reachable states for the boundary control of the heat equation[END_REF] Proposition 3.1], the problemvtvxx = 0, t ∈ (-T , 0), x ∈ (-1, 1), v(0, t) = g 0 (t), ∂ x v(0, t) = g 1 (t), t ∈ (-T , 0) possesses a solution v ∈ C ∞ ([-1, 1] × [-T , 0]). It follows then from the definition of ρ and Holmgren's theorem that v(x, t) = 0, t ∈ (-T 4 , 0), x ∈ (-1, 1), v(x, t) = v(x, t), t ∈ (-T , -

We pick a branch of the argument function defined inC \ R-i (resp. in C \ R+i) if π 2 < θ ≤ π (resp. if π < θ ≤

3π 2 ).
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(see Figure 5). The proof of Lemma 3.1 is complete.

Figure 5: Separation of singularities.

The second lemma yields a backward solution of the heat equation for the initial data ψ 1 (resp. ψ 2 ).

is well-defined and analytic in z and τ for z ∈ Ω( θ 2 , r) and τ ∈ O(θ, R) for any R > 0. 2 Furthermore, v satisfies v τ -v zz = 0, z ∈ Ω( θ 2 , r), τ ∈ O(θ, R), (3.1)