
HAL Id: hal-03259878
https://hal.science/hal-03259878

Preprint submitted on 14 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachable states for the distributed control of the heat
equation

Mo Chen, Lionel Rosier

To cite this version:
Mo Chen, Lionel Rosier. Reachable states for the distributed control of the heat equation. 2021.
�hal-03259878�

https://hal.science/hal-03259878
https://hal.archives-ouvertes.fr


Reachable states for the distributed control of the heat equation

Mo Chen

School of Mathematics and Statistics,

Center for Mathematics and Interdisciplinary Sciences,

Northeast Normal University, Changchun, 130024, P. R. China

chenmochenmo.good@163.com

Lionel Rosier
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Abstract

We are concerned with the determination of the reachable states for the distributed con-
trol of the heat equation on an interval. We consider either periodic boundary conditions or
homogeneous Dirichlet boundary conditions. We prove that for a L2 distributed control, the
reachable states are in the Sobolev space H1 and that they have complex analytic extensions
on squares whose horizontal diagonals are regions where no control is applied.
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1 Introduction

The null controllability of the heat equation has been investigated for a long time [3], and sharp
results in dimension N were obtained in the nineties by using Carleman estimates [8, 4]. By
contrast, sharp results for the exact controllability of the heat equation were obtained only
recently. In [12], the authors noticed that for the boundary control of the heat equation on
a real interval, the reachable space was sandwiched between the set of analytic functions on
a ball and the set of analytic functions on a square. These results were improved in [2, 5],
where the reachable space was sandwiched between two spaces of analytic functions on squares.
The sharp result, derived in [14, 6], tells that the reachable space for the heat equation on the
interval (−1, 1) with two boundary controls at x = ±1 taken in the space L2(0, T ), is exactly
the Bergman space of the functions that are both analytic and square integrable on the square
Ω = {x+iy; |x|+|y| < 1}. See also [7] for the reachable spaces of semilinear parabolic equations,
and [13] and [1] for the reachable spaces of the linear Korteweg-de Vries equation and the linear
Zakharov-Kuznetsov equation, respectively.
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The present paper is concerned with the determination of the reachable space for the dis-
tributed control of the heat equation on an interval. Roughly, it is proved that when using L2

distributed controls, the reachable states are H1 in the control region and analytic elsewhere.
At the same time, we shall provide a short proof of the main result in [2] by using the method
introduced in [9] to construct backward solutions of the heat equation.

Let us review the main results in this paper. Consider first periodic boundary conditions.
Let T = R/2πZ and let χ(l1,l2)(x) = 1 if x ∈ (l1, l2), 0 otherwise. We consider the control
problem: {

wt − wxx = χ(l1,l2)u

w(x, 0) = 0
(x, t) ∈ T× (0, T ),
x ∈ T. (1.1)

For 0 < L1 < L2 < 2π, we introduce the open set

S(L1, L2) = {x+ iy ∈ C; |y| < x− L2 and |y| < L1 + 2π − x}

which is a square with the interval (L2, L1 + 2π) as a diagonal. Define

H(L1, L2) = {f ∈ H1(T); f |(L2,L1+2π) can be extended as an analytic function in S(L1, L2)},

A(L1, L2) = {f ∈ H(L1, L2);

∫
S(L1,L2)

|f(x+ iy)|2dxdy <∞}.

Note that any function f ∈ H(L1, L2) can be extended as an analytic function on ∪k∈ZS(L1, L2)+
2kπ, by 2π-periodicity of f . The following result is the first main result in this paper.

Theorem 1.1. Let T > 0 and 0 < l1 < l2 < 2π. Then

(i) for any u ∈ L2(0, T ;L2(T)), the solution w of system (1.1) satisfies w(·, T ) ∈ A(l1, l2);

(ii) for any 0 < ε < (l2 − l1)/2 and any wT ∈ H(l1 + ε, l2 − ε), there exists a control input
u ∈ L2(0, T ;L2(T)) such that the solution w of system (1.1) satisfies w(·, T ) = wT in T.

Remark 1.1. 1. The above result is “almost sharp”, for ε can be taken as small as desired
in the inclusion

H(l1 + ε, l2 − ε) ⊂ A(l1, l2).

2. Having in mind the characterisation of the reachable space for the boundary control of the
heat equation in [6], it is natural to conjecture that the reachable space for system (1.1) is
the Bergman space A(l1, l2).

Next, we consider distributed control systems on the interval (0, 1) with homogeneous
boundary conditions.1

Let 0 < l1 < l2 < 1. For any given u ∈ L2(0, T, L2(0, 1)), let w denote the solution of the
control system 

wt − wxx = χ(l1,l2)u

w(0, t) = w(1, t) = 0
w(x, 0) = 0

(x, t) ∈ (0, 1)× (0, T ),
t ∈ (0, T ),
x ∈ (0, 1).

(1.2)

1Homogeneous Neumann boundary conditions could be treated in a similar way.
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Figure 1: Reachable states for periodic boundary conditions.

For any L > 0, we introduce the set

S(L) = {x+ iy ∈ C; |x|+ |y| < L},

and the spaces

H(L) = {f ∈ H1(0, L); f can be extended as an odd analytic function on S(L)},

A(L) = {f ∈ H(L);

∫
S(L)
|f(x+ iy)|2dxdy <∞}.

The following result is the second main result in this paper.

Theorem 1.2. Let T > 0 and 0 < l1 < l2 < 1. Then

(i) for any u ∈ L2(0, T ;L2(0, 1)), the solution w of system (1.2) satisfies w(·, T ) ∈ H1
0 (0, 1),

w(·, T ) ∈ A(l1) and w(1− ·, T ) ∈ A(1− l2);

(ii) for any 0 < ε < (l2 − l1)/2, for any wT ∈ H1
0 (0, 1) with wT ∈ H(l1 + ε) and wT (1 − ·) ∈

H(1 − l2 + ε), there exists a control function u ∈ L2(0, T ;L2(0, 1)) such that the solution
w of system (1.2) satisfies w(·, T ) = wT in (0, 1).

Figure 2: Reachable states for homogeneous Dirichlet boundary conditions.
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Remark 1.2. The result is again “almost sharp”. We conjecture that for 0 < l1 < l2 < 1, the
reachable space for system (1.2) is the set of functions wT ∈ H1

0 (0, 1) such that wT ∈ A(l1) and
wT (1− ·) ∈ A(1− l2).

The paper is outlined as follows. The proof of Theorem 1.1 (resp. Theorem 1.2) is given in
Section 2 (resp. in Section 3). We provide in appendix a short proof of the main result in [2]
which is used to prove Theorem 1.1.

2 Proof of Theorem 1.1

(i) Pick any u ∈ L2(0, T, L2(T)) and let w denote the solution of (1.2). Let us first check that

w ∈ C([0, T ], H1(T)). Expand χ(l1,l2)u as a Fourier series: χ(l1,l2)(x)u(x, t) =
∑
n∈Z

un(t)einx with∫ T

0
(
∑
n∈Z
|un(t)|2)dt <∞. Then one has by Duhamel formula for all t ∈ [0, T ]

w(x, t) =

∫ t

0

∑
n∈Z

e−n
2(t−τ)un(τ)einxdτ in L2(T).

Since for n 6= 0 and t ∈ [0, T ] we have, by Cauchy-Schwarz inequality,∫ t

0
|e−n2(t−τ)un(τ)|dτ ≤ (

∫ t

0
e−2n2(t−τ)dτ)

1
2 (

∫ t

0
|un(τ)|2dτ)

1
2 ≤ 1√

2n2
(

∫ T

0
|un(τ)|2dτ)

1
2 ,

we infer that

∑
n∈Z∗

∫ t

0
|e−n2(t−τ)un(τ)|dτ ≤

(∑
n∈Z∗

1

2n2

) 1
2
(∑
n∈Z∗

∫ T

0
|un(τ)|2dτ

) 1
2

<∞ (2.1)

so that w(x, t) =
∑
n∈Z

(

∫ t

0
e−n

2(t−τ)un(τ) dτ)einx for (x, t) ∈ T× [0, T ], and that

∑
n∈Z∗

∣∣∣∣n ∫ t

0
e−n

2(t−τ)un(τ)dτ

∣∣∣∣2 ≤ 1

2

∑
n∈Z∗

∫ T

0
|un(τ)|2dτ <∞. (2.2)

Thus
w ∈ C([0, T ], H1(T)) (2.3)

and w(., T ) ∈ H1(T). Introduce the function

v(x, t) = w(x, t) for (x, t) ∈ [l2, l1 + 2π]× [0, T ].

Then v satisfies the following system
vt − vxx = 0
v(l2, t) = w(l2, t), v(l1 + 2π, t) = w(l1 + 2π, t)
v(x, 0) = 0

(x, t) ∈ (l2, l1 + 2π)× (0, T ),
t ∈ (0, T ),
x ∈ (l2, l1 + 2π),
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where the boundary controls w(l2, .) and w(l1 +2π, .) are in C([0, T ]), by (2.3). Then v(·, T ) can
be extended as an analytic function in S(l1, l2) by [12, Theorem 2.1]. Furthermore, w(·, T ) ∈
L2(S(l1, l2)) by [5, Proposition 1.2]. Therefore w(·, T ) ∈ A(l1, l2).

(ii) We introduce a partition of unity. Let ψ1, ψ2 ∈ C∞(T) be such that

ψ1 + ψ2 = 1, 0 ≤ ψi ≤ 1, i = 1, 2

ψ1(x) = 0, x ∈ T \ (l1, l2),

ψ2(x) = 0, x ∈ (l1 +
ε

2
, l2 −

ε

2
).

Figure 3: partition of unity

Consider a control problem with a distributed control supported in T:{
w1t − w1xx = ũ1

w1(x, 0) = 0
(x, t) ∈ T× (0, T ),
x ∈ T, (2.4)

where ũ1 is the control.

Lemma 2.1. For any T > 0 and any wT ∈ H1(T), there exists a function ũ1 ∈ L2(0, T ;L2(T))
such that the solution of (2.4) satisfies

w1(x, T ) = wT (x) ∀x ∈ T.

Proof. Expand the control input as a Fourier series

ũ1(x, t) =
∑
n∈Z

un(t)einx.

Then by Duhamel formula

w1(x, t) =

∫ t

0

∑
n∈Z

e−n
2(t−τ)un(τ)einxdτ.

Since wT ∈ H1(T), we can expand wT as wT (x) =
∑
n∈Z

ane
inx with

∑
n∈Z

n2|an|2 <∞.
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Pick

un(t) =


a0

T
for n = 0,

2n2e−n
2(T−t)

1− e−2n2T
an for n ∈ Z∗.

Then we obtain for n ∈ Z∗∫ T

0
|un(t)|2dt =

( 2n2

1− e−2n2T

)2
|an|2

∫ T

0
e−2n2(T−t)dt

=
2n2

1− e−2n2T
|an|2 ∼ 2n2|an|2 as n→ +∞.

It follows that

‖ũ1‖2L2(0,T ;L2(T)) = 2π
∑
n∈Z

∫ T

0
|u2
n(t)|dt <∞.

On the other hand, we have∫ T

0
e−n

2(T−τ)un(τ)dτ = an ∀n ∈ Z,

and hence w1(·, T ) = wT . The proof of Lemma 2.1 is complete.

It follows from (2.4) that the function ψ1w1 satisfies the system:
(ψ1w1)t − (ψ1w1)xx = u1

(ψ1w1)(x, 0) = 0
(ψ1w1)(x, T ) = (ψ1wT )(x)

(x, t) ∈ T× (0, T ),
x ∈ T,
x ∈ T,

(2.5)

with

u1 =ψ1(w1t − w1xx)− 2ψ1xw1x − ψ1xxw1

=ψ1ũ1 − 2ψ1xw1x − ψ1xxw1.

By (2.3) (still valid for l1 = 0 and l2 = 2π), we have that w1 ∈ C([0, T ], H1(T)). By construction
of ψ1, we have that ∂nxψ1(x) = 0 for all x ∈ T \ (l1, l2) and all n ≥ 0, and hence

u1 = χ(l1,l2)u1 in L2(0, T, L2(T)).

Let Hol(Ω) denote the space of (complex) analytic functions in Ω. A function h ∈ C∞([0, T ])
is said to be Gevrey of order 2, and we write h ∈ G2([0, T ]), if there exist some positive constants
C,R such that

|∂pt h(t)| ≤ C (p!)2

Rp
∀t ∈ [0, T ], ∀p ≥ 0.

The following result is needed.
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Proposition 2.1. Let L > 1, T > 0, and ψ ∈ Hol(S(L)). Then there exist h−1, h1 ∈ G2([0, T ])
such that the solution w = w(x, t) of the control system

wt − wxx = 0, (x, t) ∈ (−1, 1)× (0, T ), (2.6)

w(−1, t) = h−1(t), w(1, t) = h1(t), t ∈ (0, T ), (2.7)

w(x, 0) = 0, x ∈ (−1, 1), (2.8)

satisfies w ∈ C∞([−1, 1]× [0, T ]) and w(x, T ) = ψ(x) for x ∈ [−1, 1]. If, in addition, ψ is odd,
then we can require that w(., t) be odd for all t ∈ [0, T ], so that h−1(t) = −h1(t) and w(0, t) = 0
for all t ∈ [0, T ].

Note that a similar result with h−1, h1 ∈ C∞([0, T ]) was derived in [2, Theorem 5.2]. Here,
we provide in Appendix a very short proof of Proposition 2.1 which is interesting in itself.

By Proposition 2.1, if wT ∈ H(l1 + ε, l2 − ε), we can find h1, h2 ∈ G2([0, T ]) such that the
solution w2 of the following system

w2t − w2xx = 0
w2(l2 − ε

2 , t) = h1(t), w2(l1 + ε
2 + 2π, t) = h2(t)

w2(x, 0) = 0

(x, t) ∈ (l2 − ε
2 , l1 + ε

2 + 2π)× (0, T ),
t ∈ (0, T ),
x ∈ (l2 − ε

2 , l1 + ε
2 + 2π)

(2.9)

satisfies w2 ∈ C∞([l2 − ε
2 , l1 + ε

2 + 2π]× [0, T ]) and

w2(x, T ) = wT (x), ∀x ∈ (l2 −
ε

2
, l1 +

ε

2
+ 2π).

Extend w2 as a function in C∞(T × [0, T ]) (i.e. as a function smooth in (x, t) and 2π-periodic
in x) and still denote this function by w2. Then we have

(ψ2w2)t − (ψ2w2)xx = u2

(ψ2w2)(x, 0) = 0
(ψ2w2)(x, T ) = (ψ2wT )(x)

(x, t) ∈ T× (0, T ),
x ∈ T,
x ∈ T,

(2.10)

where

u2 =ψ2(w2t − w2xx)− 2ψ2xw2x − ψ2xxw2.

It follows from the definition of ψ2 and the first equation in (2.9) that u2(x, t) = 0 for
x ∈ [l2, l1 + 2π] and t ∈ [0, T ]. Thus we have

u2 = χ(l1,l2)u2 in L2(0, T, L2(T)).

Since w2 ∈ C∞(T× [0, T ]), we have u2 ∈ C∞(T× [0, T ]). Combining (2.5) and (2.10), if we take

u = χ(l1,l2)u1 + χ(l1,l2)u2,

then w = ψ1w1 + ψ2w2 satisfies (1.1) and

w(x, T ) = (ψ1wT )(x) + (ψ2wT )(x) = wT (x), ∀x ∈ T.

The proof of Theorem 1.1 is complete.

7



3 Dirichlet boundary conditions

In this section, we prove Theorem 1.2. The necessary conditions in (i) are obtained as in the
proof of Theorem 1.1. Indeed, introducing v1 = w|(0,l1)×(0,T ) and v2 = w|(l2,1)×(0,T ) and applying
[5, Proposition 5.1], we obtain the desired result.

To prove (ii), we use again a partition of unity. We pick some functions ψ1, ψ2, ψ3 ∈
C∞([0, 1]) such that

ψ1 + ψ2 + ψ3 = 1, 0 ≤ ψi ≤ 1, i = 1, 2, 3,

ψ1(x) = 0 x ∈ [0, l1] ∪ [l2, 1],

ψ2(x) = 0 x ∈ [l1 +
ε

2
, 1],

ψ3(x) = 0 x ∈ [0, l2 −
ε

2
].

As in the proof of Lemma 2.1, we can show that for any wT ∈ H1
0 (0, 1), there exists a

function ũ1 ∈ L2(0, T ;L2(0, 1)) such that the solution w1 of the system
w1t − w1xx = ũ1

w1(0, t) = w1(1, t) = 0
w1(x, 0) = 0

(x, t) ∈ (0, 1)× (0, T ),
t ∈ (0, T ),
x ∈ (0, 1),

satisfies
w1(x, T ) = wT (x), ∀x ∈ (0, 1).

Proceeding as for system (2.5), we see that there exists a control function u1 ∈ L2(0, T ;L2(0, 1))
such that ψ1w1 is the solution of the following system:

(ψ1w1)t − (ψ1w1)xx = χ(l1,l2)u1

(ψ1w1)(0, t) = (ψ1w1)(1, t) = 0
(ψ1w1)(x, 0) = 0
(ψ1w1)(x, T ) = (ψ1wT )(x)

(x, t) ∈ (0, 1)× (0, T ),
t ∈ (0, T ),
x ∈ (0, 1),
x ∈ (0, 1).

Since wT ∈ H(l1 + ε), there exists by Proposition 2.1 a function h1 ∈ G2([0, T ]) such that
the solution w2 of

w2t − w2xx = 0
w2(0, t) = 0, w2(l1 + ε

2 , t) = h1(t)
w2(x, 0) = 0

(x, t) ∈ (0, l1 + ε
2)× (0, T ),

t ∈ (0, T ),
x ∈ (0, l1 + ε

2)

satisfies w2 ∈ C∞([0, l1 + ε
2 ]× [0, T ]) and

w2(x, T ) = wT (x), ∀x ∈ (0, l1 +
ε

2
).

We still denote by w2 a smooth extension of w2 to [0, 1] × [0, T ]. Then there exists a function
u2 ∈ L2(0, T ;L2(0, 1)) such that ψ2w2 solves

(ψ2w2)t − (ψ2w2)xx = χ(l1,l1+ ε
2

)u2

(ψ2w2)(0, t) = (ψ2w2)(1, t) = 0
(ψ2w2)(x, 0) = 0
(ψ2w2)(x, T ) = (ψ2wT )(x)

(x, t) ∈ (0, 1)× (0, T ),
t ∈ (0, T ),
x ∈ (0, 1),
x ∈ (0, 1).
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Similarly, since wT (1− ·) ∈ H(1− l2 + ε), there exists a function h2 ∈ G2([0, T ]) such that
the solution w̃3 of the system

w̃3t − w̃3xx = 0
w̃3(0, t) = 0, w̃3(1− l2 + ε

2 , t) = h2(t)
w̃3(x, 0) = 0

(x, t) ∈ (0, 1− l2 + ε
2)× (0, T ),

t ∈ (0, T ),
x ∈ (0, 1− l2 + ε

2)

satisfies w̃3 ∈ C∞([0, 1− l2 + ε
2 ]× [0, T ]) and

w̃3(x, T ) = wT (1− x), x ∈ (0, 1− l2 +
ε

2
).

Let
w3(x, t) = w̃3(1− x, t), x ∈ (l2 −

ε

2
, 1), t ∈ (0, T ).

Then we have
w3t − w3xx = 0
w3(l2 − ε

2 , t) = h2(t), w3(1, t) = 0
w3(x, 0) = 0
w3(x, T ) = wT (x)

(x, t) ∈ (l2 − ε
2 , 1)× (0, T ),

t ∈ (0, T ),
x ∈ (l2 − ε

2 , 1),
x ∈ (l2 − ε

2 , 1).

We still denote by w3 a smooth extension of w3 to [0, 1] × [0, T ]. It follows that there exists a
control function u3 ∈ L2(0, T ;L2(0, 1)) such that ψ3w3 solves

(ψ3w3)t − (ψ3w3)xx = χ(l2− ε2 ,l2)u3

(ψ3w3)(0, t) = (ψ3w3)(1, t) = 0
(ψ3w3)(x, 0) = 0
(ψ3w3)(x, T ) = (ψ3wT )(x)

(x, t) ∈ (0, 1)× (0, T ),
t ∈ (0, T ),
x ∈ (0, 1),
x ∈ (0, 1).

Finally, if we take

u = χ(l1,l2)u1 + χ(l1,l1+ ε
2

)u2 + χ(l2− ε2 ,l2)u3,

we infer that w = ψ1w1 +ψ2w2 +ψ3w3 is the solution of (1.2). On the other hand, we have that

w(x, T ) = (ψ1wT )(x) + (ψ2wT )(x) + (ψ3wT )(x) = wT (x), ∀x ∈ (0, 1).

The proof of Theorem 1.2 is complete.

Appendix. Proof of Proposition 2.1

The proof is inspired by [9] where backward solutions of the heat equation were obtained by
integrating the heat kernel along lines different from the real line. Introduce the following
notations borrowed from [9]. For θ ∈ R and R > 0, let

O(θ,R) := {z ∈ C; |z −Reiθ| < R},
Ω(θ,R) := {z ∈ C; dist(z, eiθR) < R}.

(See Figure 4.) Note that

S(1) = Ω(
π

4
,

1√
2

) ∩ Ω(
3π

4
,

1√
2

).

The first lemma is concerned with separation of singularities.
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x

y

b

bReiθ

Figure 4: The set O(θ,R) for π
2 < θ < 3π

2 .

Lemma 3.1. Let 1 < l < L and ψ ∈ Hol(S(L)). Then there exist θ1 ∈ (π, 3π
2 ), θ2 ∈ (π2 , π),

r ∈ ( 1√
2
,+∞), ψ1 ∈ Hol

(
Ω( θ12 , r)

)
and ψ2 ∈ Hol

(
Ω( θ22 , r)

)
such that

S(l) ⊂ Ω(
θ1

2
, r) ∩ Ω(

θ2

2
, r),

∂jzψi ∈ L∞(Ω(
θi
2
, r)), i = 1, 2, j ∈ N,

ψ = ψ1 + ψ2 in S(l).

Proof of Lemma 3.1. Pick any l̂ ∈ (l, L). Let γ1(t) = (1− t+ it)l̂ for t ∈ [0, 1], and let(
γ2(t), γ3(t), γ4(t)

)
= (iγ1(t),−γ1(t),−iγ1(t)) for t ∈ [0, 1].

Let γ : [0, 4]→ C be defined by

γ(t) = γi(t− i+ 1) for i ∈ {1, ..., 4}, t ∈ [i− 1, i].

Note that γ([0, 4]) = ∂S(l̂). We infer from Cauchy formula that for any z ∈ S(l̂)

ψ(z) =
1

2πi

∫
γ

ψ(ζ)

ζ − z
dζ

=
1

2πi

∫
γ1∪γ3

ψ(ζ)

ζ − z
dζ +

1

2πi

∫
γ2∪γ4

ψ(ζ)

ζ − z
dζ

=: ψ1(z) + ψ2(z)

where ψ1 ∈ Hol(C \ (γ1 ∪ γ3)) and ψ2 ∈ Hol(C \ (γ2 ∪ γ4)). Since

S(l) ⊂ S(l̂) = Ω
(π

4
,
l̂√
2

)
∩ Ω

(3π

4
,
l̂√
2

)
,

10



there exist r ∈ ( 1√
2
, l̂√

2
) and θ1 ∈ (π, 3π

2 ), θ2 ∈ (π2 , π) such that

S(l) ⊂ Ω(
θ1

2
, r) ∩ Ω(

θ2

2
, r) ⊂ S(l̂),

ψi ∈ Hol
(
Ω(
θi
2
, r)
)

i = 1, 2,

∂jzψi ∈ L∞(Ω(
θi
2
, r)), i = 1, 2, j ∈ N

(see Figure 5). The proof of Lemma 3.1 is complete.

x

y

b

b

b

b

b b

b

b

b

b

l̂l

Ω( θ12 , r) Ω( θ22 , r)

Figure 5: Separation of singularities.

The second lemma yields a backward solution of the heat equation for the initial data ψ1

(resp. ψ2).

Lemma 3.2. Let θ ∈ (π2 ,
3π
2 ), r > 1/

√
2, and ψ ∈ Hol

(
Ω( θ2 , r)

)
∩ L∞

(
Ω(
θ

2
, r)
)
. Then the

function

v(z, τ) :=
1√
4πτ

∫ ∞ei θ2
−∞ei

θ
2

e−
ζ2

4τ ψ(z − ζ) dζ

is well-defined and analytic in z and τ for z ∈ Ω( θ2 , r) and τ ∈ O(θ,R) for any R > 0.2

Furthermore, v satisfies

vτ − vzz = 0, z ∈ Ω(
θ

2
, r), τ ∈ O(θ,R), (3.1)

2We pick a branch of the argument function defined in C \ R−i (resp. in C \ R+i) if π
2
< θ ≤ π (resp. if

π < θ ≤ 3π
2

).

11



lim
τ→0−

v(z, τ) = ψ(z), z ∈ Ω(
θ

2
, r). (3.2)

If, in addition, ∂jzψ ∈ L∞(Ω( θ2 , r)) for all j ∈ N and if S(1) ⊂ Ω( θ2 , r), then v ∈ C∞([−1, 1] ×
[−T, 0]) for all T > 0 with −T ∈ O(θ,R).

Proof of Lemma 3.2. For s ∈ R and ζ = ei
θ
2 s, we have∣∣∣∣e− ζ24τ ∣∣∣∣ =

∣∣∣∣e− s24 eiθ

τ

∣∣∣∣ = e−
s2

4
Re e

iθ

τ .

But if τ ∈ O(θ,R), | τ
eiθ
−R| < R, so that Re eiθ

τ = Re τ
eiθ

> 0. On the other hand

|ψ(z − ζ)| ≤ ‖ψ‖L∞(Ω( θ
2
,r)), for z ∈ Ω(

θ

2
, r) and ζ ∈ Rei

θ
2 .

Straightforward calculations show that

vzz =
1√
4πτ

∫ ∞ei θ2
−∞ei

θ
2

e−
ζ2

4τ ψ′′(z − ζ)dζ

=
1√
4πτ

∫ ∞ei θ2
−∞ei

θ
2

d2

dζ2
[e−

ζ2

4τ ]ψ(z − ζ)dζ

=
1√
4πτ

∫ ∞ei θ2
−∞ei

θ
2

(
− 1

2τ
+

ζ2

4τ2

)
e−

ζ2

4τ ψ(z − ζ)dζ,

while

vτ =
1√
4πτ

(− 1

2τ
)

∫ ∞ei θ2
−∞ei

θ
2

e−
ζ2

4τ ψ(z − ζ)dζ +
1√
4πτ

(
1

4τ2
)

∫ ∞ei θ2
−∞ei

θ
2

ζ2e−
ζ2

4τ ψ(z − ζ)dζ

and hence (3.1) holds in Ω( θ2 , r) × O(θ,R). It remains to show that (3.2) is fulfilled. First, we
notice that for π

2 < θ < 3π
2 and R > 0, there exists T > 0 such that O(θ,R) ∩ R = (−T, 0) (see

Figure 4). Therefore, taking the limit of v(z, τ) as τ → 0− is meaningful.

Claim 1. For θ ∈ (π2 ,
3π
2 ) and τ ∈ (−∞, 0), we have 1√

4πτ

∫ ∞ei θ2
−∞ei

θ
2

e−
ζ2

4τ dζ = 1.

Indeed, if θ ∈ (π2 , π) (resp. θ ∈ (π, 3π
2 )), we have for κ ∈ ( θ2 ,

π
2 ) (resp. κ ∈ (π2 ,

θ
2)), s ∈ R,

τ ∈ (−∞, 0), and ζ := seiκ,

|e−
ζ2

4τ | = |e−
s2

4τ
cos(2κ)| ≤ e−

s2

4|τ | | cos(θ)|
.

Thus

lim
|s|→+∞

∫ π
2

θ
2

e−
(seiκ)2

4τ sieiκdκ = 0 if θ ∈ (
π

2
, π)

(resp.

lim
|s|→+∞

∫ θ
2

π
2

e−
(seiκ)2

4τ sieiκdκ = 0 if θ ∈ (π,
3π

2
).)
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It follows from the residue theorem that

1√
4πτ

∫ ∞ei θ2
−∞ei

θ
2

e−
ζ2

4τ dζ =
1√
4πτ

∫ ∞ei π2
−∞ei

π
2

e−
ζ2

4τ dζ =
1

i
√

4π|τ |

∫ ∞
−∞

e
− s2

4|τ | ids = 1,

which completes the proof of Claim 1.
Finally, letting ζ =

√
|τ |ξ, we see that for any z ∈ Ω( θ2 , r)

v(z, τ)− ψ(z) =
1√

4π τ
|τ |

∫ ∞ei θ2
−∞ei

θ
2

e
− ξ2

4 τ
|τ |
(
ψ(z −

√
|τ |ξ

)
− ψ(z)

)
dξ

tends to 0 as τ → 0−, by dominated convergence.
Finally, assume that ∂jzψ ∈ L∞(Ω( θ2 , r)) for all j ∈ N and that S(1) ⊂ Ω( θ2 , r).

Claim 2. For all j ∈ N, we have ∂jz [v(z, τ)− ψ(z)]→ 0 as τ → 0− uniformly for z ∈ [−1, 1].
Indeed, for all j ∈ N, we can write

∂jz [v(z, τ)− ψ(z)] =
1√

4π τ
|τ |

∫ ∞ei θ2
−∞ei

θ
2

e
− ξ2

4 τ
|τ |
(
ψ(j)(z −

√
|τ |ξ

)
− ψ(j)(z)

)
dξ.

For given ε > 0, we pick a number A > 0 such that

∫
|s|>A

∣∣e− (se
i θ2 )2

4 τ
|τ |

∣∣ds < ε.

Then ∣∣∣∣∣∣ 1√
4π τ
|τ |

∫
ξ ∈ (−∞,∞)e

i θ
2 ,

|ξ| > A

e
− ξ2

4 τ
|τ |
(
ψ(j)(z −

√
|τ |ξ

)
− ψ(j)(z)

)
dξ

∣∣∣∣∣∣ ≤
2‖ψj‖L∞(Ω( θ

2
,r))ε√

4π
·

On the other hand, it follows from the uniform continuity of ψ(j) on some open neighborhood
of [−1, 1] that

1√
4π τ
|τ |

∫
ξ ∈ (−∞,∞)e

i θ
2 ,

|ξ| ≤ A

e
− ξ2

4 τ
|τ |
(
ψ(j)(z −

√
|τ |ξ

)
− ψ(j)(z)

)
dξ → 0 as τ → 0−,

uniformly for z ∈ [−1, 1]. Claim 2 is proved.

Using the fact that ∂kt ∂
j
zv = ∂2k+j

z v for k, j ∈ N, τ < 0, and z ∈ [−1, 1], we infer that
v ∈ C∞([−1, 1] × [−T, 0]) for any T > 0 such that −T ∈ O(θ,R). The proof of Lemma 3.2 is
complete.

Let us go back to the proof of Proposition 2.1. Pick ψ1 and ψ2 as given by Lemma 3.1, and
let

vj(z, τ) =
1√
4πτ

∫ ∞ei θj2
−∞ei

θj
2

e−
ζ2

4τ ψj(z − ζ)dζ for j = 1, 2, z ∈ Ω(
θj
2
, r) and τ ∈ O(θj , R).

13



Then

v1,τ − v1,zz = 0, in Ω(
θ1

2
, r)×O(θ1, R),

v2,τ − v2,zz = 0, in Ω(
θ2

2
, r)×O(θ2, R).

Let v(z, τ) = v1(z, τ) + v2(z, τ). Then v is well-defined and analytic in D := [Ω( θ12 , r) ∩

Ω(
θ2

2
, r)]× [O(θ1, R) ∩ O(θ2, R)], and it fulfills

vτ − vzz = 0 in D,

lim
τ→0−

v(z, τ) = ψ1(z) + ψ2(z) = ψ(z) in Ω(
θ1

2
, r) ∩ Ω(

θ2

2
, r).

Furthermore, if T̂ > 0 is such that [−T̂ , 0) ⊂ O(θ1, R) ∩ O(θ2, R) and T̂ ≤ T , then v(.,−T̂ ) is

analytic in the open set Ω(
θ1

2
, r) ∩ Ω(

θ2

2
, r) which contains S(1).

To complete the proof, we proceed as in [15], combining the above construction with a null
controllability result. Pick any s ∈ (1, 2) and any function ρ ∈ Gs([−T̂ , 0]) such that ρ(t) = 1

for −T̂ ≤ t ≤ − T̂
2 and ρ(t) = 0 for − T̂

4 ≤ t ≤ 0. Let g0(t) := ρ(t)v(0, t) and g1(t) := ρ(t)∂τv(0, t)

for t ∈ [−T̂ , 0]. Using the fact that v(0, .), ∂τv(0, .) ∈ Hol(O(θ1, R) ∩ O(θ2, R)) and [12, Lemma
3.7], we infer that g0, g1 ∈ Gs([−T̂ , 0]). Therefore, for any R > 1 there exists some constant
C > 0 such that

|∂jt g0(t)|+ |∂jt g1(t)| ≤ C (2j)!

Rj
∀t ∈ [−T̂ , 0], ∀j ∈ N.

According to [12, Proposition 3.1], the problem

v̂t − v̂xx = 0, t ∈ (−T̂ , 0), x ∈ (−1, 1),

v̂(0, t) = g0(t), ∂xv̂(0, t) = g1(t), t ∈ (−T̂ , 0)

possesses a solution v̂ ∈ C∞([−1, 1] × [−T̂ , 0]). It follows then from the definition of ρ and
Holmgren’s theorem that

v̂(x, t) = 0, t ∈ (− T̂
4
, 0), x ∈ (−1, 1),

v̂(x, t) = v(x, t), t ∈ (−T̂ ,− T̂
2

), x ∈ (−1, 1),

so that v̂(., 0) = 0 and v̂(.,−T̂ ) = v(.,−T̂ ). Let

h±1(t) := v(±1, t)− v̂(±1, t), for t ∈ (−T̂ , 0),

w(x, t) := v(x, t)− v̂(x, t), for t ∈ (−T̂ , 0), x ∈ (−1, 1).

Then w satisfies 
wt − wxx = 0, t ∈ (−T̂ , 0), x ∈ (−1, 1),

w(x,−T̂ ) = 0, x ∈ (−1, 1),

w(±1, t) = h±1(t), t ∈ (−T̂ , 0),
w(x, 0) = ψ(x), x ∈ (−1, 1).
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Extending w and h±1 by 0 for t ≤ −T̂ , we obtain the main result in Proposition 2.1 on the
interval [−T, 0]. A simple translation in time gives the result on the interval [0, T ].

Assume in addition that ψ be odd. Then it is easy to see that both ψ1 and ψ2 are odd,
and that v1 and v2 are odd with respect to z. It follows that v and v̂ are odd with respect to z.
(Note that g0 ≡ 0.) Therefore, w is odd with respect to z.
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