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Abstract. We use bi-dimensional non-smooth contact dynamics simulations to analyze the isotropic compaction
of mixtures composed of rigid and deformable incompressible particles. Deformable particles are modeled us-
ing the finite-element method and following a hyper-elastic neo-Hookean constitutive law. The evolution of
the packing fraction, bulk modulus and particle connectivity, beyond the jamming point, are characterized as
a function of the applied stresses for different proportion of rigid/soft particles and two values of friction co-
efficient. Based on the granular stress tensor, a micro-mechanical expression for the evolution of the packing
fraction and the bulk modulus are proposed. This expression is based on the evolution of the particle connectiv-
ity together with the bulk behaviour of a single representative deformable particle. A constitutive compaction
equation is then introduced, set by well-defined physical quantities, given a direct prediction of the maximum
packing fraction φmax as a function of the proportion of rigid/soft particles.

1 Introduction

The mixture of particles with different elastic properties is
extensively observed in nature and also in a great num-
ber of applications. In nature, the interactions of these
kind of assemblies have a great importance in, to name
a few, foams [1, 2], organic cells [3] and clayey materials
[4]. It has also a great importance in engineering applica-
tions, like seismic protection and acoustic isolations [5, 6],
damping control [7], metal compaction and pharmaceuti-
cal procedures [8]. Nonetheless, the analysis of the be-
havior of these mixtures is very complex given the sharp
difference in the elastic properties of their constitutive el-
ements and the different interactions within the system.

For systems composed entirely of deformable particles
there is a large number of equations that describe well their
compaction behavior [9–12], but mostly reduced to differ-
ent variations of the equation proposed by Heckel [13],
which assumes a proportionality between the porosity and
the packing fraction increment over the stress increment.
Systems composed of mixtures of rigid and deformable
particles has been less studied, but it is worth highlight-
ing the work of Platzer et al. [14] among others [15, 16].
They deduced an equation from the assumption that the
empty space is filled as a first-order differential equation
of the applied pressure. The authors mentioned that their
model provides fair predictions for low pressures and a
mixture ratio below 50%. Is is only recently that a micro-
mechanical compaction model for assemblies of circular
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deformable particles, based on the contact network evo-
lution and the scaling of the elastic properties of a single
particle, has been proposed [17].

Here, we analyze the compaction behavior of mixtures
of rigid and deformable particles by using a coupled dis-
crete element and finite element method in the frame of
the non-smooth contact dynamics (NSCD) approach. We
study the effect of the proportion of rigid-deformable parti-
cles in the mixture and the friction on the compaction evo-
lution and the elastic properties beyond the jamming point.
We introduce an analytical model for the compaction in
terms of the evolution of the particle connectivity, the ap-
plied pressure, the packing fraction, and the mixture ratio.
This model is an extension to binary mixtures of our previ-
ous work on assemblies of only deformable particles [17].

The outline of the paper is as follows. In Section 2,
we describe the numerical method and procedure followed
during the compaction. The compaction curve as well as
the bulk modulus are also presented. In Section 3, a micro-
mechanical model of compaction is introduced and vali-
dated. Finally, conclusions are presented in Section 4.

2 Procedure and Results

In the frame of non-smooth contact dynamics (NSCD)
[18], in which the Finite Element and the Contact dynam-
ics methods are coupled, we simulate packings of mix-
tures of rigid and deformable circular particles under ex-
ternal isotropic compression. It considers a contact law
with non-penetrability and dry friction between particles.
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Figure 1. Views for a mixture ratio κ = 0.5 and different reduced
pressure P/E with µ = 0.2. The inset shows the finite element
mesh used. The rigid particles are colored in grey.

The deformable particles are modeled following the neo-
Hookean incompressible material law. The simulations
are implemented on the open-source simulation platform
LMGC90 [19–21].

First, Np = 1500 rigid disks, with a small size poly-
dispersity, are randomly placed into a square box of ini-
tial length L0 and gently compressed to reach the jammed
state. Second, a volume κVp is homogeneously replaced
by deformable disks meshed with 92 triangular similar-
size elements, with κ the mixture ratio varying in the set
[0.2, 0.5, 0.8, 1.0] (from κ = 0.2, a packing composed of
20% of deformable particles, to 1, a packing of only de-
formable particles). We use a constant Poisson’s ratio
equals to 0.495 and a Young modulus E (with E → ∞

for rigid particles) and two values of friction, µ = 0.0 and
µ = 0.2. The friction with the walls and the gravity are set
to 0 to avoid external force gradients in the sample.

Finally, starting from the jammed state, the pack-
ings are isotropically compressed by gradually, and quasi-
statically, applying a stress P on the boundaries in a set
of loading steps. For a given pressure P, a stable state is
reached once the variations of the packing fraction φ, de-
fined as the total volume of the particles Vp divided by the
volume of the containing box V (φ = Vp/V), remains be-
low 0.01%. In the Tab. 2, we summarize the initial state
of the samples simulated (packing fraction φ0 and coordi-
nation number Z0). To be sure that the system is always in
the quasi-static regime, we also control the velocity of the
walls based on the inertial number, I [22]. We impose that
I << 10−4 for each step on the simulation. Figure 1 shows
a packing with κ = 0.5 and increasing values of reduced
pressure P/E at µ = 0.2.

Figure 2 shows the evolution of φ as a function of
P/E along with the compaction model proposed by Platzer
et al., given by P = −P0(κ) ln[(φmax − φ)/((φmax − φ0)],
with φ0 the packing fraction at the jammed state, φmax the
maximum value reached by φ and P0(κ) a characteristic
pressure depending, a priori, on the proportion [14]. As
seen in previous studies, φ first increases with P/E from
a well-known value φ0 and then tends asymptotically to
a maximum value φmax. Both φ0 and φmax slightly de-
crease as the friction increases, which is explained by the
rearrangements of the grains within the assembly, being
more frequent in the frictionless case [23, 24]. In addition,
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Figure 2. Packing fraction φ as a function of P/E for mixtures
of κ ∈ [0.2, ..., 1] and µ ∈ {0, 0.2}. The predictions given by the
micro-mechanical equation (Eq. (5)) and the ones given by the
Platzer et al. model are also shown.

0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
φ

0

2

4

6

8

10

12

14

K
/E

µ = 0.0

µ = 0.2

κ = 1.0

κ = 0.8

κ = 0.5

κ = 0.2

Platzer et al. (2018)

Eq. (3)

Figure 3. Bulk modulus K over E as a function of the packing
fraction φ for different values of κ and for µ = 0 and 0.2. We also
present the predictions given by Eq. (3) and the bulk modulus
computed from the Platzer et al. model.

Table 1. Values of φ and Z at the jammed state for the different
samples of mixtures simulated.

φ0 κ = 0.2 κ = 0.5 κ = 0.8 κ = 1
µs = 0.0 0.815 0.811 0.807 0.807
µs = 0.2 0.814 0.811 0.807 0.805
Z0 κ = 0.2 κ = 0.5 κ = 0.8 κ = 1
µs = 0.0 3.4 3.6 3.5 3.4
µs = 0.2 3.3 3.7 3.5 3.5

from the φ − P curve we computed the bulk modulus as
K(φ) = dP

dφ ·
dφ
dεv

, with εv = − ln(φ0/φ), the macroscopic
cumulative volumetric strain. The bulk modulus as a func-
tion of φ, along with the prediction given by the model of
Platzer et al., is plotted in Fig. 3. The modulus K increases
with φ and diverges as it approaches to φmax. This comes
from the fact that there is no more void space and the as-
sembly of grains starts to behave as a continuous and rigid
material.

3 Theoretical approach

Let us consider the micro-mechanical expression of the
granular stress tensor as σi j = 1

V
∑

c∈V f c
i `

c
j = Nc

V 〈 f
c
i `

c
j〉c,

2
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Figure 4. The reduced coordination number Z − Z0 as a function
of the reduced solid fraction φ − φ0 for all the values of κ and µ
simulated. The dashed line is the power-law relation Z − Z0 =

ξ(φ − φ0)α.

where the sum runs over all the contacts enclosed by the
volume V , with f c

i the ith component of the contact force at
the contact c and `c

j the jth component of the vector joining
the centers of particles interacting. Nc is the total number
of contacts in the volume V , and the notation 〈...〉c stands
for the average over the contacts. From the stress tensor,
the mean stress is given by P = (σ1 + σ2)/2, with σ1 and
σ2 the principal stress values.

Assuming a small particle size dispersion around the
diameter 〈d〉 and Z = 2Nc/Np, the coordination number, a
microstructural equation for the compressive stress can be
deduced [25]:

P =
Zφ
π
σ`, (1)

with σ` = 〈 f c · `c〉c/〈d〉2, a measure of the inter-particle
stresses.

Let us now reduce the equation (1) to an explicit re-
lation between P and φ. At the jammed state (i.e. for a
packing fraction φ0), the packing is also characterized by
a typical value Z0 of the coordination number (Tab. 2). Be-
low such value the motion of the particles is made possi-
ble without implying particle deformations. Many studies
show that Z0 depends on parameters related to the shape
of the particles, the friction and the packing preparation
[26–28].

Above the jammed state, it has been systematically re-
ported that Z increases following a power-law as Z − Z0 =

ξ(φ − φ0)α, with α ∼ 0.5 and ξ a structural parameter fully
defined as P/E → ∞, with both φ and Z reaching a max-
imum value φmax and Zmax, respectively. This relation is
observed both numerically and experimentally for many
type of deformable granular systems, such as foams, emul-
sions and rubber-like particles [3, 24, 29, 30]. We found
the same relation in our simulations, with ξ ∼ 5.1, inde-
pendently of the mixture ratio and friction coefficient (Fig.
4). Thus, our results extend the validity of such relation to
binary mixtures.

At the same time, the inter-particle stress, σ`, could be
related to the packing fraction through the bulk properties
of an elementary system composed of a single elastic par-
ticle under the same stress and boundary conditions as the
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Figure 5. The packing fraction as a function of the scaled pres-
sure applied on the particle for different mesh resolutions, Ne.

multi-particle assembly. In Fig. 5 we present the evolu-
tion of the packing fraction computed on the single particle
system, φp, as a function of the applied pressure Pp. We
observe that the single particle compression curve φp − Pp

is similar to the multi-particle compaction curve φ−P (Fig.
2). The compaction behavior of such elementary system
is well described with the following logarithmic function
(gray dashed line in Fig. 5):

Pp/E = −b ln
(
φp,max − φp

φp,max − φp,0

)
, (2)

with φp,max the maximum packing fraction obtained,
φp,0 = π/4 and b a constant of proportionality called the
yield stress and found to be b ' 0.14. Equation (2) results
from the analogy of a single particle system to the collapse
of a cavity within an elastic medium under isotropic com-
pression [9]. Then, the bulk modulus of the single particle
assembly is given by: Kp(φp) = (dPp/dφp) · (dφp/dεv,p),
with εv,p = − ln(φp,0/φp).

Remarkably, as shown in Fig. 3, the Bulk modulus K
of the multi-particle assembly scales with the Bulk modu-
lus Kp of the single particle assembly when they are com-
pared for equivalent packing fraction:

K ≡
Zφ
2π

Kp + O, (3)

with O negligible high order terms depending on φ. Equa-
tion 3 allows us to described the micro-mechanical origin
of the Bulk modulus of an assembly of rigid-deformable
particles in terms of particle connectivity, packing frac-
tion, and the Bulk property of an elementary system. From
Eq. (1) we get:

P '
Zφ
2π

Pp. (4)

Equation (3) and (4) reveal that the elastic and compaction
properties of a binary mixture scale from the behavior of
a single particle under similar stress conditions. This find-
ing is in agreement with the general idea of describing the
macroscopic properties of a granular packing from a single
representative element [31, 32].

Finally, including the Z − φ relation into Eq. (4), to-
gether with Eq. (2) at equivalent packing fraction, we get

3
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the following compaction equation:

P(φ, κ)
E

' −
bφ
2π
{Z0 + ξ(φ − φ0)α} ln

(
φmax(κ) − φ
φmax(κ) − φ0

)
. (5)

Eq. 5 is based on a number of structural parameters that
are determined from the initial state (Z0 and φ0), the be-
havior of a single representative particle (b), or the map-
ping between the packing fraction and coordination curve
(ξ and α). φmax remains the only parameter that is deduced
by correctly fitting Eq. 5 to the macroscopic data as shown
in Fig. 2, both as a function of κ and for the two values of
µ.

4 Conclusions

Starting from the jammed state to very high densities, we
analyze the compression behavior of bidimensional gran-
ular assemblies composed of mixtures of rigid and incom-
pressible deformable particles through non-smooth con-
tact dynamics simulations and following a hyper-elastic
neo-Hookean constitutive law. The proportion of de-
formable particles was varied from assemblies composed
of 20% of deformable grains up to assemblies fully com-
posed of deformable grains, for different values of friction.

In this work we introduce a new compaction model,
with well-defined micro-mechanical bases, that describes
the compaction of the rigid-soft particle composite. The
model shows that the essential behavior of the compaction
of this mixture (which also covers completely deformable
systems) is captured from the characterization of a single
particle, together with the evolution of particle connectiv-
ity. The natural path of this work is the analysis of more
real systems, such as 3D systems, composite assemblies of
particles with more realistic geometries, all under different
compaction conditions.

References

[1] J. Mauer, S. Mendez, L. Lanotte, F. Nicoud,
M. Abkarian, G. Gompper, D.A. Fedosov, Phys. Rev.
Lett. 121, 118103 (2018)

[2] D. Bi, X. Yang, M.C. Marchetti, M.L. Manning,
Phys. Rev. X 6, 021011 (2016)

[3] G. Katgert, M. van Hecke, Europhys. Lett. 92, 34002
(2010)

[4] M.O.B. Rúa, P. Bustamante-Baena, Boletín de la So-
ciedad Española de Cerámica y Vidrio (2019)

[5] K. Senetakis, A. Anastasiadis, K. Pitilakis, Soil Dyn.
Earthq. Eng. 33, 38 (2012)

[6] A. Tsiavos, N.A. Alexander, A. Diambra, E. Ibraim,
P.J. Vardanega, A. Gonzalez-Buelga, A. Sextos, Soil
Dyn. Earthq. Eng. 125, 105731 (2019)

[7] B. Indraratna, Y. Qi, T. Ngo, C. Rujikiatkamjorn,
F. Neville, Bessa-Ferreira, A. Shahkolahi, Geosc. 9,
30 (2019)

[8] W. Zhang, K. Liu, J. Zhou, R. Chen, N. Zhang,
G. Lian, J. Phys. Soc. Japan 89, 044602 (2020)

[9] M.M. Carroll, K.T. Kim, Powder Metall. 27, 153
(1984)

[10] L. Parilak, E. Dudrova, R. Bidulsky, M. Kabatova,
Powder Technol. 322, 447 (2017)

[11] J. Secondi, Powder Metall. 45, 213 (2002)
[12] Y.X. Zhang, X.Z. An, Y.L. Zhang, Appl. Phys. A

118, 1015 (2014)
[13] R.W. Heckel, Trans. Metal. Soc. Aime. 221, 671

(1961)
[14] A. Platzer, S. Rouhanifar, P. Richard, B. Cazacliu,

E. Ibraim, Granul. Matter 20, 81 (2018)
[15] I. Popescu, R. Vidu, Mater. Mech. 16 (2018)
[16] D. Wang, X. An, P. Han, H. Fu, X. Yang, Q. Zou,

Math. Probl. Eng 2020, 5468076 (2020)
[17] D. Cantor, M. Cárdenas-Barrantes, I. Preechawut-

tipong, M. Renouf, E. Azéma, Phys. Rev. Lett. 124,
208003 (2020)

[18] M. Jean, Comput. Methods Appl. Mech. Eng. 177,
235 (1999)

[19] git-en.lmgc.univ-montp2.fr/lmgc90
/lmgc90user/wikis/home

[20] F. Dubois, V. Acary, M. Jean, C. R. Mecanique 346,
247 (2018)

[21] M. Renouf, F. Dubois, P. Alart, J. Comput. Appl.
Math. 168, 375 (2004)

[22] B. Andreotti, Y. Forterre, O. Pouliquen, Granular
media: between fluid and solid (Cambridge Univer-
sity press, 2013)

[23] T.L. Vu, S. Nezamabadi, S. Mora, Soft Matter 16,
679 (2020)

[24] T.S. Majmudar, M. Sperl, S. Luding, R.P. Behringer,
Phys. Rev. Lett. 98, 058001 (2007)

[25] I. Agnolin, J.N. Roux, Phys. Rev. E 76, 061304
(2007)

[26] M. van Hecke, Condens. Matter Phys. 22, 033101
(2009)

[27] L.E. Silbert, D. Ertaş, G.S. Grest, T.C. Halsey,
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