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From Newton to Hamilton, bypassing Lagrange and Legendre.

Bahram Houchmandzadeh
Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France

The Hamilton equations of movement have a deep geometrical meaning and are of prime impor-
tance in many area of physics. Usually, the Hamiltonian approach is taught after the introduction of
the Lagrangian formalism through a Legendre Transform. As a complementary approach, I believe
that it can be helpful for student to learn the geometrical meaning of the Hamiltonian formula-
tion by deriving it directly from the more familiar Newton dynamics, without using the variational
principles and the Legendre transform.

I. INTRODUCTION.

The Hamiltonian formulation of mechanics, a “ge-
ometrization” of Lagrangian mechanics, provides the nat-
ural framework in many areas of physics such as chaos,
statistical and quantum mechanics.

Historically, analytical mechanics emerged at the end
of eighteenth century from the investigations of Eu-
ler, d’Alembert and Lagrange[1, 2], 100 years after the
publication of Principia by Newton and the Johann
Bernoulli’s challenge[3]. The field took its more advance
form following the works of Hamilton and Jacobi in the
1830-40’s. A detailed historical development of mechan-
ics can be found in the Dugas’ book[4].

The teaching of Hamiltonian dynamics, as found in
nearly all advanced textbooks[5–9], follows closely the
historical developments of the field: After introducing
the variational formulation of mechanics and the Euler-
Lagrange equations obtained through the application of
d’Alembert’s principle, the Hamiltonian mechanics is ob-
tained from a Legendre transform of the Lagrangian. The
canonical transformations of Hamilton equations are then
introduced using the fact that the Lagrangian is defined
up to a total differential of a function, which leads to
the definition of various generating functions and to the
Hamilton-Jacobi equation[10].

This is a very elegant and powerful approach to the
field of analytical mechanics : the applications of the
variational formulation extends far beyond the classical
mechanics and serves as a unifying principle in many ar-
eas of physics.

On the other hand, this approach to the Hamiltonian
mechanics poses some difficulties to many students. The
aim of Lagrange in his founding book was to take the ge-
ometry out of mechanics and bring this latter field solely
in the area of Analysis: the most quoted sentence of his
book is “no figures will be found in this work”[2].

Generalized momenta for example appear as an ab-
stract concept in the standard derivation, associated with
the Legendre transform[11]. This fundamental mathe-
matical transformation is usually not taught with all the
attention it deserves and many associate it with mini-
mization problems as they occur in thermodynamics or
large deviation theory ; its link to differential equations
seems rather abstract to many students.

In contrast, for many students geometry is the most

intuitive way of approaching a given field. Indeed, the
aim of Hamilton, who began his scientific work in geo-
metric optics, was precisely to put back geometry into
mechanics. I propose to introduce Hamiltonian mechan-
ics to students following this geometrical road as a com-
plementary approach to the standard one. The approach
I am proposing by no means is intended to replace the
standard one, which in my opinion, is the most funda-
mental way of understanding physics. However, visiting
the same subject from different angles can be enriching
and shed new lights on our understanding of a given field.

The approach I propose in this article, restricted to
conservative classical mechanics, is to stress the funda-
mental property of Hamiltonian mechanics, i.e. volume
conservation in phase space, as the main motivation to
write the Newton’s equations of motion in this frame.
The generalized momenta are obtained by highlighting
the role of the metric tensor in defining the underlying
geometry of space. The canonical transformation are also
introduced as a mean to preserve the volume conserva-
tion property of Hamilton’s equation. References to vari-
ational principle and Legendre transforms are avoided.

The approach I propose avoids also references to the
field of symplectic geometry that is covered in advanced
books such as Arnold’s[12]. Symplectic geometry uses
the language of differential forms[13, 14] that was formal-
ized by Elie Cartan at the beginning of 20th century[15].
Even though I believe forms are the most natural ways
of teaching multi-variable calculus [16], their use has not
impregnated the physics community in the same way as
for example tensor calculus. Therefore, in this paper, I
only use the basic concepts of linear algebra (determinant
and trace) without referring explicitly to forms.

This paper is organized as follows. The next section
is devoted to a simple introduction of Hamiltonian me-
chanics directly from Newton’s equations and the rela-
tion between momenta and the metric tensor. In section
III, I recall the basic concepts of linear algebra, namely
“determinant” and “trace” and show how the Liouville’s
theorem is a direct consequence of these concepts and the
structure of Hamilton’s equation. In section IV, the rela-
tion between momenta and the metric tensor is demon-
strated in a more rigorous way. Section V is devoted to
canonical transformations, using Liouville’s theorem as
the guiding line. A final section is devoted to concluding
remarks. Two appendices are devoted to more technical
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aspect of the computation.

II. MOTIVATIONS.

Consider a second order differential equation that de-
scribes, for example, the movement of a particle whose
coordinate is x :

ẍ+ f(ẋ, x) = 0. (1)

For simplicity throughout this article, we suppose that
the independent variable t does not appear explicitly in
the equation. We can always transform this equation into
a system of two first order equations

ẋ = y (2)

ẏ = −f(y, x) (3)

where (x(t), y(t)) are coordinates of the point in a two
dimensional space. We have a much better understanding
(visualization) of first order equations than second order
one. However, the geometry of equations (2,3) is not yet
limpid.

Suppose now that we are able to find a mapping be-
tween the space (x, y) and (x, p), i.e. we are able to
find a function p = φ(x, y) such that equations (2,3) are
transformed into

ẋ =
∂H

∂p
(4)

ṗ = −∂H

∂x
(5)

where the function H = H(x, p) results from our map-
ping. For a multidimensional system involving n vari-
ables xi, equations (4,5) have to be obtained for each
variable separately, i.e. ẋi = ∂pi

H , ṗi = −∂xiH .
In principle, we can directly write equations (2,3) in

this form, i.e. ẋ = ∂yF (x, y), ẏ = −∂xF (x, y) ; however,
finding directly the function F (, ) requires solving a first
order partial differential equation that in turn necessitate
solving equations (2,3), and thus the direct approach is
not very useful. On the other hand, as we will see below,
finding the mapping p = φ(x, y) can be achieved alge-
braically for problems of classical dynamics if we use the
geometric properties of our space.

Equation (4,5) have a deep geometrical meaning (fig-
ure 1). First, we see that trajectories in the (x, p) space
correspond to level curves of the function H because

dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂p

dp

dt
= 0. (6)

by construction. Moreover, we can envisage the direction
of the movement ~u = (ẋ, ṗ) as “orthogonal ” to the “gra-

dient” ∇H of the function H(x, p). Speaking of gradi-
ent and orthogonality is not correct because in the (x, p)
space we have not defined (and don’t need to define) a
scalar product. However, this picture carries the analogy

Figure 1. A mapping that transforms the equations of move-
ments (2,3) into a more symmetrical one (4,5) with a geomet-
rical meaning.

with fluid mechanics where the trajectories are similar to
current lines : when the level curves of H are “closer” to
each other, points on these curves move “faster”. We will
see below that this “phase flow” is indeed incompress-
ible, i.e. the volume enclosing n points moving in (x, p)
space remains constant. This property, called Liouville’s
theorem, is at the heart of Hamiltonian formulation of
mechanics. We will come back to this fundamental point
shortly, but let us first consider few examples.

Example 1. As a first example, consider the simple
equation

mẍ = −V ′(x)

that transforms into

ẋ = y (7)

ẏ = −V ′(x)/m (8)

These equations are already in the Hamiltonian form
where we can check that the function

H(x, y) = y2/2 + V (x)/m

has the correct form. Note that we could have made
a simple scaling, a change of variable such as p = αy
where α is a constant. With this variable, the Hamilton
function becomes

H(x, p) =
1

2α
p2 +

α

m
V (x)

Usually, the choice α = m is made to give H the dimen-
sion of an energy.
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Example 2. As a slightly more complicated example,
consider a two dimensional movement in a central field
V (r). Using polar coordinates and setting ~r = r~ur, we
have

~̇r = ṙ~ur + rθ̇~uθ

~̈r =
(

r̈ − rθ̇2
)

~ur +
(

2ṙθ̇ + rθ̈
)

~uθ

and therefore, the Newton equations of motion are

r̈ − rθ̇2 = −V ′(r)/m (9)

2ṙθ̇ + rθ̈ = 0 (10)

It is straightforward to check that the above equations
can be put into the Hamiltonian form if we set pr = mṙ
and pθ = mr2θ̇ and define

H(r, pr, θ, pθ) =
1

2m
p2r +

1

2m

pθ
2

r2
+ V (r) (11)

Note that pr and pθ don’t have the same dimension.
Finding the mapping (ṙ, θ̇) → (pr, pθ) is not a guess

work. In a given system of coordinates (q1, q2, ..., qn),
the property of the space is given by the metric tensor
gij that defines the infinitesimal distance between two
close points (q1, . . . qn) and (q1 + dq1, . . . qn + dqn)

ds2 =
n
∑

i,j=1

gijdq
idqj (12)

and by extension, what we call the kinetic energy T =
(m/2)(ds/dt)2. For problems where the potential V is
only a function of coordinates qi, specifying the metric
tensor automatically provides the mapping we have to
use:

pi =
∑

j

gij q̇
j (13)

In other terms, the arc element is written as

(

ds

dt

)2

=
∑

i

piq̇
i (14)

For example, for the polar coordinates, ds2 = dr2 +
r2dθ2, g11 = 1, g22 = r2 and g12 = g21 = 0. The mapping
is therefore (up to the scaling factor m) pr = g11ṙ = ṙ

and pθ = g22θ̇ = r2θ̇.
We will see in section IV why relation (13) provides

the correct mapping for Hamiltonian formulation. Be-
fore this derivation however, let us further study the Li-
ouville’s theorem and its role in Hamiltonian formulation
of mechanics.

III. VOLUMES IN PHASE SPACE AND

LIOUVILLE’S THEOREM.

In an n−dimensional vectorial space E , we can de-
fine a volume (i.e. a signed real number) delimited by

n−vectors. The volume is a a n−linear anti-symmetric
application V : En → R. We don’t need to possess any
scalar product in this space to define a volume. For ex-
ample, we can speak of Kg.m (a volume in mass-distance
space).

Determinant. If we choose a specific set of linearly in-
dependent vectors {e1, . . . , en} to have a given volume,
using the linearity and antisymetry properties of the vol-
ume application, we can find the volume delimited by any
other set of n−vectors. In particular, for a given linear
application M , the volume delimited by {Me1, . . . ,Men}
is called the determinant of M , and noted |M |:

|M | = V (Me1, . . . ,Men) /V (e1, . . . , en) (15)

If we express M by its matrix coefficients M i
j in a given

basis, we find the usual expression of |M |. However, |M |
being defined geometrically, its value is independent of
the chosen basis.

Trace. Consider the linear application I+ ǫM , where
I is the identity application and ǫ a scalar. Using the
same concept of linearity, it is straightforward to see that:

|I + ǫM | = 1 + ǫa1(M) + ǫ2a2(M) + . . . ǫnan(M)

where ai(M) are numbers that depend only on M . The
function a1(M), noted tr(M), is called the trace of M . A
simple computation shows that in a given basis, tr(M) is
the sum of diagonal elements of the matrix of M in this
basis:

a1(M) =
∑

i

M i
i (16)

Change of Variable. Consider two n−dimensional
physical spaces referenced by coordinates xi and X i

(i = 1 . . . n) and a mapping φ between them where

X i = X i(x1, x2, ...xn) i = 1, . . . n

A volume va around the point a in the first spaced is
transformed into a Volume VA around the point A (A =
φ(a) ) in the second space. The ratio between these two
volumes is given by the determinant J of the Jacobian
Matrix J = ∂(X1, . . . Xn)/∂(x1 . . . xn) where the matrix
elements are

(J)
i
j =

∂X i

∂xj

Differential equations. The above discussion applies
directly to system of first order differential equations of
the form

ẋi = f i(x1, . . . , xn) i = 1, . . . , n (17)

where we can see the numbers x1, . . . xn as coordinates of
a point Pa in an n−dimensional space at time t. During a
short (infinitesimal ) time dt, a point a transforms into a
point A with coordinates X i = xi + dtf i(x1, x2, . . . , xn).
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Figure 2. When a point a moves to a point A during a short
time dt according to the differential equation 17, a small vol-
ume Va around this point is transformed into a volume VA.

To the first order in dt, the relative change in the volume is
given by relation (18)

According to the above discussion, the Jacobian applica-
tion is

J = I + dt
∂f

∂x

where the matrix elements f i
j of the linear application

∂f/∂x are the usual ∂f i/∂xj . Recalling the above dis-
cussion on trace, we see that the rate of change, around
the point a, of a volume is (figure 2):

1

V

dV

dt
= tr

(

∂f

∂x

)

=
∑

i

∂f i/∂xi (18)

The sum is usually called the divergence of the field f .
Liouville’s theorem. For a Hamiltonian system such

as (4,5) the change in the volume enclosing a point P as
it moves in this space, according to equation (18) is

1

VH

dVH

dt
=

∂

∂x

(

∂H

∂p

)

+
∂

∂p

(

−∂H

∂x

)

= 0 (19)

The Hamiltonian equations conserve automatically the
volumes in the phase space because by construction, the
linear mappings they induce are trace-less. Relation (19)
is known as the Liouville’s theorem.

On the other hand, in the original (x, y) space of equa-
tions (2,3), the change in the volume around a point is

1

VO

dVO

dt
=

∂

∂x
(y) +

∂

∂y
(f(x, y)) =

∂f

∂y

The change of variable y → p is made precisely to correct
for this loss (or gain) of volume in the original space as
points move along their trajectories.

Liouville’s theorem is at the heart of the Hamiltonian
formulation and is used in fundamental approaches to
mechanics. For example, the Poincarré’s recurrence the-
orem, stating that for bounded systems, given enough
time, a system always comes back arbitrary close to its
initial state, is based on Liouville’s theorem. Liouville’s
theorem is also used in discussing the ergodic hypothesis
in statistical mechanics.

IV. FINDING THE MOMENTS

A. Momenta and the metric tensor.

Hamiltonian formulation is interesting only we are able
to reformulate easily the Newton’s equation in this frame.
Here for simplicity, we consider at first one particle of
mass m moving in a n−dimensional space and then gen-
eralize the formulation to a system of N particles.

In a generalized system of coordinates q1, ..., qn, the
fundamental quantity that defines the underlying geom-
etry of the physical space is the distance ds between two
close points whose coordinates differences are dqi :

ds2 = gijdq
idqj (20)

Note that from now on, we use the repeated index sum-
mation convention : if an index is repeated in an expres-
sion, once in the lower position and once in the higher

one, we assume that it is summed over. Hence, instead of
writing for example

∑

i,j Γ
i
jkpiq

j (whatever the meaning

of this expression), we just write Γi
jkpiq

j . The expression

(20) therefore assumes summation over the two dummy
indexes i, j.

the quantity (gij) (which can be seen as an n×n matrix
) is called the metric tensor and without loss a generality,
we suppose it to be symmetric : gij = gji. We note g̃ij

its inverse with the usual property of the inverse matrix:

gij g̃
jk = δki

where δki is the Kronecker symbol. In general, gij is a
function of coordinates.

The Newton equations of motion in generalized coor-
dinates (see appendix 1) are

d

dt

(

gij q̇
j
)

− 1

2

∂gkℓ
∂qi

q̇k q̇ℓ = − 1

m

∂V

∂qi
i = 1, . . . , n (21)

Where in the above expression, all indexes except i are
repeated and therefore summed over. One can check the
above formula for the example of the 2 dimensional move-
ment in a central field (equations 9,10).

The left part of relation (21) is the equation of
“geodesics” when no external potential exists. In a “flat ”
space, geodesics are straight lines, which are the tra-
jectories of particles moving in the absence of exter-
nal forces. Geodesics generalize the concept of straight
lines to curved spaces. For example, on the unit sphere
where spherical coordinates θ, φ are used and ds2 =
(dθ)

2
+ sin2 θ (dφ)

2
, solving equations (21) for V = 0

shows that geodesics are great circles.
When an outside potential exists, trajectories deviate

from the geodesics. Einstein realized that for gravita-
tional problems, one can “include” the potential term into
the metric tensor: particles still move on geodesics, but
the metric tensor is modified compared to the metric of
a flat manifold.
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Coming back to the question of finding a correct map-
ping for Hamiltonian formulation of conservative classical
dynamics, we see in the expression (21) that the mapping
q̇ → p seems obvious:

pi = mgij q̇
j (22)

which we can invert as

q̇i =
1

m
g̃ijpj (23)

Expression (21) thus transforms into

d

dt
pi −

1

2m

∂gkℓ
∂qi

g̃kj g̃ℓmpjpm = −∂V

∂qi
i = 1, . . . , n (24)

In order to put the above expression into its final Hamil-
tonian form, we have to arrange the middle term:

∂gkℓ
∂qi

g̃kj g̃ℓm =
∂
(

gkℓg̃
kj
)

∂qi
g̃ℓm − ∂g̃kj

∂qi
gkℓg̃

ℓm

but

gkℓg̃
kj = δjℓ ; gkℓg̃

ℓm = δmk

so

∂gkℓ
∂qi

g̃kj g̃ℓmpjpm = −∂g̃kj

∂qi
δmk pjpm = −∂g̃kj

∂qi
pjpk

and expression (24) can finally be written as

ṗi = −
{

1

2m

∂g̃kj

∂qi
pjpk +

∂V

∂qi

}

= −∂H

∂qi

where we have defined

H =
1

2m
g̃kjpjpk + V (q) (25)

Note that for H = H(q, p), coordinates q and momenta
p are considered independent variables. Therefore, for
derivations ∂/∂qi, the momenta pj are considered as con-
stants. By the same token,

∂H

∂pj
=

1

m
g̃kjpk = q̇j

according to expression (23). We see that the form of the
Hamiltonian (relation 25) and the mapping q̇i → pi are
automatically obtained from the metric tensor.

The generalization to a system of N particles is trivial
and is obtained by repeating the above arguments for
each particle. In particular, the momenta are defined as

pα,i = mαgij q̇
i
α i = 1 . . . n, α = 1 . . .N

and the Hamiltonian is defined as

H =

N
∑

α=1

1

2mα

g̃kjpα,jpα,k + V (q1
1
, . . . qnN )

The generalization is even broader if we consider the
movement of N particle in an n dimensional space as the
movement of a single particle in an N × n−dimensional
space.

B. Gauge functions.

There is some indeterminacy in the definition of the
momenta. To see this, consider the Newton equation for
a one dimensional system

m
d

dt
(g(q)q̇)− m

2
g′(q)q̇2 = −V ′(q) (26)

which we can write, by adding the same quantity to both
side of the equation as

m
d

dt

(

g(q)q̇ +
1

m
f(q)

)

− m

2
g′(q)q̇2 = −V ′(q) + q̇f ′(q)

where f(q) is an arbitrary smooth function of the position
q. Following our previous discussion, we can set

p = mg(q)q̇ + f(q) ; q̇ =
1

mg(q)
(p− f(q)) , (27)

write the Hamiltonian as

H(q, p) =
1

2mg(q)
(p− f(q))

2
+ V (q)

and still get the canonical equations

q̇ = ∂pH ; ṗ = −∂qH

This generalization of the momenta can be easily ex-
tended to n spatial dimensions when dealing with the
Newton equation (21). Writing the Newton equation as

d

dt

(

mgij q̇
j + fi

)

− 1

2

∂gkℓ
∂qi

q̇k q̇ℓ = −∂V

∂qi
+

∂fi
∂qj

q̇j

by adding the arbitrary functions fi, we can define the
momenta as

pi = mgij q̇
j + fi(q) (28)

Following the same line of arguments as above, we see
that the Hamiltonian is now:

H =
1

2m
g̃kj (pj − fj) (pk − fk) + V (q) (29)

provided that the functions fi(q) obey the following con-
straints:

∂fj
∂qk

− ∂fk
∂qi

= 0 (30)

In Lagrangian dynamics, this indeterminacy is reflected
in the fact that the Lagrangian is defined up to a total
differential.

Until now, we have considered conservative systems
where the potential is defined only as a function of po-
sitions. The above discussion shows how to deal with
some type of potentials that contain also the velocities.
A case in point is the time-independent electromagnetic
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force where the right hand side of Newton equation is of
the form

−∂V

∂qi
+

(

∂Aj

∂qi
− ∂Ai

∂qj

)

q̇j

and summation over the dummy index j is assumed. Fol-
lowing the same procedure as discussed above, we see
that we can write the momenta and the Hamiltonian as
in relations (28-29) where fi = Ai+Ci and the arbitrary
functions Ci (usually called gauge functions) obey the
constraint (30).

V. CANONICAL TRANSFORMATIONS.

The Hamiltonian formulation is of fundamental im-
portance for a deep understanding of mechanics. The
Hamiltonian approach can also be useful to find an ex-
act solution if we make an adequate change of variables.
In the Newtonian approach, making a change of variable
to simplify the potential term usually makes the kinetic
energy term complicated. In Hamiltonian mechanics on
the other hand, coordinates and momenta are considered
as independent variables and we have more freedom to
find an interesting change of variables. We are interested
in the kind of change that preserves the structure of the
Hamiltonian. In one dimension, if we call X,P the new
variables, we wish to have

Ẋ = ∂PH ; Ṗ = −∂XH (31)

The change of variables that preserve the Hamiltonian
structure are called canonical. We will see below the
general principles guiding these transformations. Canon-
ical transformations are valid for all Hamiltonians and
are not restricted to a specific problem. However, a spe-
cific problem can be greatly simplified if the transformed
Hamiltonian does not contain one or more position co-
ordinate X i. Then for this coordinate, Ṗi = 0 and the
transformed momenta Pi is a conserved quantity of our
mechanical system, associated to a symmetry of the prob-
lem through the Noether theorem[17]. A basic example
is the angular momentum of the movement in a central
field (equation 11). I don’t develop the systematic search
for conserved quantities in this article. Let us just men-
tion that this investigation is usually performed by us-
ing the Hamilton-Jacobi equation, which, in the words of
Arnold[12], “[...] is the most powerful method known for
the exact integration [of Hamilton equations]”.

A. The structure of canonical transformations.

For simplicity, let us first consider a one-dimensional
system in the physical space. The mapping (x, p) we
have found to transform the Newton equation into its
Hamiltonian equivalent is by no mean unique. Once we
have found a correct mapping (x, p), we can find infinitely
many others (X,P ) that have the same property.

Consider a change of variable from (x, p) to (X,P )
space, i.e. X = X(x, p) and P = P (x, p). Using the
usual tools of change of variables (see below), we find
that

dX

dt
= J(X,P )

∂H

∂P
(32)

dP

dt
= −J(X,P )

∂H

∂X
(33)

where the proportionality factor J(X,P ) is precisely the
Jacobian of the transformation

J =

∣

∣

∣

∣

∂(X,P )

∂(x, p)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂xX ∂pX
∂xP ∂pP

∣

∣

∣

∣

discussed in section III. When a point moves in (x, p)
space, the volume Vxp around it is conserved. If J = 1 (or
more generally any constant) throughout the whole phase
space, at each time, the volume around the transformed
point (X,P ) equals the volume Vxp and hence it is also
conserved as the point moves in the (X,P ) space.

Therefore, in one dimension, any transformation for
which J = 1 is a canonical one and conserves the form of
the Hamilton equations as in relation (31).

As an example, consider the change of variable

X = x cos s+ p sin s (34)

P = −x sin s+ p cos s (35)

where s is an arbitrary constant. It is trivial to check that
this is indeed a canonical transformation. More over,
if the Hamiltonian for the original equation were H =
p2 + x2, in the new variables it becomes H = P 2 +X2.

A slightly less trivial canonical transformation is

x =
√
2P sinX ; p =

√
2P cosX (36)

For this canonical transformation, the Hamiltonian H =
p2 + x2 transforms into H = 4P , effectively eliminating
the variable X from the Hamiltonian.

It is worthwhile to detail the transformation. In order
to shorten the notations, we use the (column) vector ~η =

(x, p)T for the old variables and ~ζ = (X,P )T for the new
variables. The Hamilton equation for the old variables is

d

dt

(

η1

η2

)

=

(

0 1
−1 0

)

(

∂η1H, ∂η2H
)T

(37)

where we stress that derivatives of H constitute a row
vector (a linear form). Noting Ω the anti-symmetric ma-
trix of the above relation, we can write this equation as

d

dt
~η = Ω.(∂~ηH)T (38)

Consider now a change of variable from ηi to ζi that
we write in differential form and using the summation
convention as

dηi = f i
jdζ

j (39)

dζj = f̃ j
i dη

i (40)
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The matrix
(

f i
j

)

and
(

f̃ i
j

)

are the usual transition matrix

where

f i
j = ∂ηi/∂ζj ; f̃ i

j = ∂ζi/∂ηj

The chain rule of derivation applied to H is

∂H

∂ηi
= f̃ j

i

∂H

∂ζj
(41)

or in matricial notation,

(∂~ηH) = (∂~ζH).f̃

where again distinction between column and row vectors
is stressed. Relation (41) is just a shorthand for expres-
sions like

∂H

∂x
=

∂H

∂X

∂X

∂x
+

∂H

∂P

∂P

∂x

Now, making the actual change of variables in relation
(38), we have

f.
d

dt
~ζ = Ω.f̃T .(∂~ζH)T

Left-multiplying both side by f̃ , we see that the trans-
formation is canonical if (and only if)

f̃Ωf̃T = Ω (42)

or equivalently

fΩ = Ωf̃T (43)

Multiplication by the 2 × 2 Ω matrix is straightforward.
Performing this multiplication in relation (42) results in
our claim

J = 1 (44)

Performing this multiplication in relation (43) results in
a more detailed relation :

∂x

∂X
=

∂P

∂p
;
∂p

∂P
=

∂X

∂x
(45)

∂x

∂P
= −∂X

∂p
;
∂p

∂X
= −∂P

∂x
(46)

The above relations (44) or (45-46) give the sufficient
and necessarily conditions for a transformations to be
canonical.

Generalization of these relations to n−dimensional
systems (and hence 2n−dimensional phase space) is
straightforward (see appendix B for details). Hamilton
equations have a fine structure: not only the linear map-
ping they induce is trace-less (relation 19), but it is so
on each set of variables (xi, pi). Writing dH =

∑n
i=1

dHi

where

dHi =
∂H

∂xi
dxi +

∂H

∂pi
dpi

Figure 3. For a canonical transformation, the sum of a pro-
jected area in a given plane (xi, pi) into all planes (Xj , Pj)
(j = 1 . . . n) is conserved.

we see that each dHi = 0 if the variables (~x, ~p) follow the
Hamilton equations.

For a transformation ~X(~x, ~p), ~P (~x, ~p) to be canonical,
it has to preserve this fine structure, i.e. for each couple
i, j, we must have (see appendix B)

∂xi

∂Xj
=

∂Pj

∂pi
;
∂pi
∂Pj

=
∂Xj

∂xi
(47)

∂xi

∂Pj

= −∂Xj

∂pi
;
∂pi
∂Xj

= −∂Pj

∂xi
(48)

The meaning of these relations is close to what we dis-
cussed above (figure 3): Consider an areas (2-volumes)
in a given (xi, pi) plane and the projection of its trans-
formed into all planes (Xj , Pj). Relations (47-48) imply
that the sum of the projected area is conserved, i.e.

n
∑

j=1

∣

∣

∣

∣

∂(Xj , Pj)

∂(xi, pi)

∣

∣

∣

∣

= 1 (49)

Details of the explanation is given in appendix B. The
conservation can be generalized to 2k−volumes (k =
1, . . . n).

B. Finding canonical transformations.

Relations (44) or (45-46) are not only necessary con-
ditions, they also provide for an efficient method to find
canonical transformations.

Consider an arbitrary function K(X,P ), an arbitrary
variable s and set

dX

ds
=

∂K

∂P
;
dP

ds
= −∂K

∂X
(50)

with the initial condition X(0) = x and P (0) = p. For
a given value of s, we can see (X(s), P (s)) as a mapping
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Figure 4. Consider in (X,P ) space points transforming ac-
cording to relation (A12) with the initial condition X(0) = x;
P (0) = p. For a given value of s, (X(s), P (s)) is a mapping
φ : (x, p) → (X,P ) that is canonical, i.e. conserves volumes.

from (x, p) space into (X,P ) space (figure 4). Because
equation (50) has an Hamiltonian form, we know that it
automatically conserves the volumes and therefore, what-
ever the value of s, we have J(s) = 1. The example (34-
35) of canonical transformation, which corresponds to a
rotation in (x, p) space, is found by setting

K = P 2 +X2

In continuous group theory (Lie groups), relation (50) is
called an infinitesimal generator of the group of canonical
transformations. The Original Hamilton equations are
themselves such a generator if we set s = t and K = H .
It is straightforward to generalize the Lie approach to
n−dimensional systems.

The Lie approach is very elegant. However, we are only
able to solve analytically simple differential equations and
this approach does not seem to provide for an easy way
to obtain all canonical transformations.

There exists however an algebraic way of finding canon-
ical transformations. Consider an arbitrary function
F (x,X) (called a generating function) and set

p =
∂F

∂x
; P = − ∂F

∂X
(51)

Mixing old and new variables may seem at first strange.
Relations (51) are however two equations relating four

variables, so in principle and at least locally (provided
some conditions on F ), we can always solve it to ex-
press (X,P ) as a function of (x, p). Transformations
(36) for example are obtained by choosing F (x,X) =
(1/2)x2 cotX .

Differentiating relations (51) and rearranging the
terms, we have

(

∂2F
∂x∂X

0

− ∂2F
∂X2 −1

)

(

dX
dP

)

=

(

−∂2F
∂x2 1

∂2F
∂x∂X

0

)

(

dx
dp

)

(52)

or in shorthand matricial notations,

A.d~ζ = B.d~η

Provided that A is an invertible matrix, i.e.
∂2F/∂x∂X 6= 0, the Jacobian of the transformation is

J =
∣

∣A−1B
∣

∣ = |B| / |A| = 1

Some care must be taken if ∂2F/∂x∂X = 0 at some
points of null measure.

Four generating functions can be obtained by mixing
differently the old and new variable. For example, by
choosing the generating function F (p,X) and setting

x = −∂F

∂p
; P = − ∂F

∂X
(53)

we also obtain a canonical transformation.
The method of generating function is generalized to

n−dimensional systems. For example, choosing the gen-
erating function F (x1, . . . xn;X1, . . . Xn) and setting

pi =
∂F

∂xi
; Pi = − ∂F

∂X i

leads to a canonical transformation.

VI. CONCLUSION.

The main intention of this article was to stress the ge-
ometry of the Hamilton’s equation in classical dynamics,
using volume conservation (Liouville’s theorem) as the
guiding line. In particular, the usual road of Lagrangians
and Legendre transforms have been avoided.

I believe this approach can simplify some of the con-
cepts of Hamiltonian dynamics for some undergraduate
students that discover this field for the first time, by pre-
senting the material from a different angle. It can also
serve to initiate students to powerful tools such as tensor
calculus or symplectic geometry that they will discover
later in their studies.

As I stressed in the introduction, the approach I pro-
pose is only complementary to the powerful standard one.
The materials developed in this short article, which does
not contain the usual mathematical complexity found in
most textbooks, can be covered in one or two lectures
and I hope help students to get a better understanding
of the Hamiltonian formalism.

Acknowledgment. I’m grateful to Marcel Vallade and
Lado Samushia for fruitful discussions.

Appendix A: Newton equation in generalized

coordinates

There are various methods to deduce the Newton equa-
tions of motion in generalized coordinates. The most
natural way is to observe that in Cartesian coordinates,
the Newton equations are of variatonal type, deduce the
Lagrangian in these coordinates, make the change of vari-
ables directly in the Lagrangian and deduce the Euler-
Lagrange equations in the new set of coordinates. An-
other method is to begin with the Alembert’s principle,
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make the adequate virtual displacement in generalized
coordinates and obtain the dynamical equations. In this
article, I have avoided the Lagrangian formalism. The
d’Alembert’s method, to be rigorous, needs the concept
of parallel transport of vectors and covariant derivation.
Here I use a middle approach, making the change of vari-
ables directly in Newton’s equations of Cartesian coordi-
nates. Even though the computation can seem of some
length, it involves only basic algebraic manipulation such
as multiplying and summing over repeated indexes.

Consider a change of coordinates from Cartesian coor-
dinates xi to generalized coordinates qi :

xi = f i(q1, ...qn) i = 1, . . . n

which we can write in differential form as

dxi = f i
j(q)dq

j (A1)

where

f i
j(q) =

∂f i

∂qj
=

∂xi

∂qj
(A2)

As we suppose the matrix
(

f i
j

)

to be invertible, we can
reverse relation (A1) :

dqj = f̃ j
i dx

i (A3)

where the matrix
(

f̃k
i

)

= ∂qk/∂xi is the inverse of
(

f i
j

)

,

or in other terms

f i
j f̃

k
i = δkj (A4)

Furthermore, because of the equality of the cross deriva-
tions, we have

∂f i
j

∂qk
=

∂f i
k

∂qj
(A5)

The fundamental quantity in a physical space is the in-
finitesimal arc-length :

ds2 = δijdx
idxj = gijdq

idqj (A6)

where δij is the Kronecker symbol and gij is called the
metric tensor in generalized coordinates. Comparing
(A1,A6) we obtain

gαβ = δijf
i
αf

j
β = fjαf

j
β (A7)

where the operation of rising or lowering of indexes is
defined by

fjα = f j
α = δijf

i
α (A8)

In Cartesian coordinates (x1 . . . xn), the Newton’s
equations r̈ = −∇V/m can be written as

d

dt
δij ẋ

j = − 1

m

∂V

∂xi
i = 1, . . . , n (A9)

The reason to write δij ẋ
j instead of ẋi is that the latter

is the i-th element of a (column or contravariant) vector

while the former is the i-th element of a linear form (a
row or covariant vector). As ∂iV is also a linear form,
both side of the relation (A9) are of the same type. As

d

dt
ẋj =

d

dt
f j
k q̇

k

∂V

∂xi
=

∂V

∂qk
∂qk

∂xi
=

∂V

∂qk
f̃k
i

We can express the two sides of relation (A9) in the new
coordinates:

d

dt

(

fik q̇
k
)

= − 1

m

∂V

∂qk
f̃k
i i = 1, . . . , n (A10)

This form of the Newton equation is not very usable and
terms have to be rearranged. Let us multiply both side
of relation (A10) by f i

ℓ and sum over the repeated index
i :

f i
ℓ

d

dt
fik q̇

k = − 1

m

∂V

∂qk
f i
ℓ f̃

k
i = − 1

m

∂V

∂qℓ
ℓ = 1, . . . , n

by virtue of relation (A4). We can also rearrange the left
hand side:

f i
ℓ

d

dt

(

fik q̇
k
)

=
d

dt

(

f i
ℓfik q̇

k
)

− fik q̇
k d

dt
f i
ℓ

=
d

dt

(

gℓkq̇
k
)

− fik q̇
k ∂f

i
ℓ

∂qα
q̇α ℓ = 1, . . . , n(A11)

=
d

dt

(

gℓkq̇
k
)

− fik q̇
k ∂f

i
α

∂qℓ
q̇α ℓ = 1, . . . , n(A12)

where in the last line, we have used the property (A5)
to change the index of derivation. To rearrange the last
term of relation (A12), let us note that the derivative of
the metric tensor defined in (A7) is given by

∂gkα
∂qℓ

=
∂fik
∂qℓ

f i
α + fik

∂f i
α

∂qℓ
(A13)

Multiplying both side of the above expression by q̇k q̇α,
summing over the repeated indexes k and α and using
the symmetry of the product, we deduce

2fikq̇
k ∂f

i
α

∂qℓ
q̇α =

∂gkα
∂qℓ

q̇k q̇α

So finally, the Newton equation in generalized coordi-
nates reads:

d

dt

(

gℓkq̇
k
)

− 1

2

∂gkα
∂qℓ

q̇k q̇α = − ∂V

∂qℓ
ℓ = 1, . . . , n

The details of coordinate changes f i
j have disappeared

from the equation, and only the metric tensor gℓk remains
in the equation.
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Appendix B: General canonical transformations.

The generalization of canonical transformation to more
than one spatial dimension is a little more cumbersome,
but the procedure is technically the same. We want to
find a change of variable from (xi, pi) into (X i, Pi) (i =
1, . . . , n) such that the structure of Hamilton equation is
conserved, i.e.

dX i

dt
=

∂H

∂Pi

dPi

dt
= − ∂H

∂X i

In order to avoid manipulating xiand pi separately, we
can, as in subsection VA, group them together into a
vector ~η of 2n elements where the first n elements are
the xi and the last n elements are the pi. By the same
token, we can group the partial differential of H also into
a 2n linear form (row vector) ∂ηH :

~η =





















x1

...
xn

p1
...

pn





















∂ηH = (∂H/∂x1, . . . ∂H/∂xn|∂H/∂p1, . . . ∂H/∂pn)

With these notations, we can write the Hamilton equa-
tions as:

d~η

dt
= Ω(∂ηH)

T

where Ω is a symplectic matrix which can be written as
blocks

Ω =

(

0 In
−In 0

)

Let us now make a change of variable from ~η to ~ζ that
we write in differential form as

dηi = f̃ i
jdζ

j ; dζj = f j
i dη

i

where

f̃ i
j =

∂ηi

∂ζj

are the matrix element of the passage matrix from old

(~x, ~p) coordinates to the new ( ~X, ~P ) ones and f is the
inverse matrix:

f j
i =

∂ζj

∂ηi
; f j

i f̃
i
k = δjk (B1)

Upon this change of variable,

∂H

∂ηi
=

∂H

∂ζj
∂ζj

∂ηi
= f j

i

∂H

∂ζj

and the Hamilton equation transforms into

f̃
d~ζ

dt
= ΩfT (∂ζH)

T

where the subscript T denotes the transposition opera-
tion.

If we wish to keep the structure of Hamilton equation,
we must have

fΩfT = Ω

or in other terms,

ΩfT = f̃Ω (B2)

The Ω matrix has a very simple block structure. In order
to put this structure into use, we also divide the matrices
f and f̃ into four n× n blocks form:

f =

(

fa
a fa

b

f b
a f b

b

)

where

(fa
a )

i
j =

∂X i

∂xj
; (fa

b )
i
j =

∂X i

∂pj
(

f b
a

)i

j
=

∂Pi

∂xj
;
(

f b
b

)i

j
=

∂Pi

∂pj

and similar relations for the f̃ matrix. Now, using the
product between blocks, the matricial relation (B2) can
be written as

(

(fa
b )

T (f b
b )

T

−(fa
a )

T −(f b
a)

T

)

=

(

−f̃a
b f̃a

a

−f̃ b
b f̃ b

a

)

Detailing the above expression, we can explicitly write
the relations binding the new and old variables :

∂Xj

∂pi
= − ∂xi

∂Pj

(B3)

∂Pj

∂pi
=

∂xi

∂Xj
(B4)

∂Xj

∂xi
=

∂pi
∂Pj

(B5)

∂Pj

∂xi
= − ∂pi

∂Xj
(B6)

equations (B3-B6) are the necessary and sufficient con-
ditions for a change of variable to be canonical.

Relation (B2) leads automatically to volume conser-
vation : computing the determinant of both side the
above relation, and using the fact that |AB| = |A| |B|,
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∣

∣AT
∣

∣ = |A| and |Ω| 6= 0, we observe that we must have

|f | =
∣

∣

∣f̃
∣

∣

∣, which implies that

J = |f | = 1

As we mentioned (relation 49), canonical transformations
impose a more restrictive condition than the total volume
transformation : the sum of projected areas from a given
(xi, pi) into all (Xj , Pj) must be conserved:

n
∑

j=1

Jj,i =

n
∑

j=1

∣

∣

∣

∣

∂(Xj, Pj)

∂(xi, pi)

∣

∣

∣

∣

=

n
∑

j=1

∂Xj

∂xi

∂Pj

∂pi
− ∂Xj

∂pi

∂Pj

∂xi

=

n
∑

j=1

∂Xj

∂xi

∂xi

∂Xj
+

∂xi

∂Pj

∂Pj

∂xi

= 1

Where to go from the second to the third one, we have
used relations (B3-B6). The third line itself is the relation
(B1) written explicitly and therefore equals to one.
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