
HAL Id: hal-03259808
https://hal.science/hal-03259808

Submitted on 14 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Classical and alternative disinfection strategies to
control the COVID-19 virus in healthcare facilities: a

review
Hosoon Choi, Piyali Chatterjee, Eric Lichtfouse, Julie A Martel, Munok

Hwang, Chetan Jinadatha, Virender K Sharma

To cite this version:
Hosoon Choi, Piyali Chatterjee, Eric Lichtfouse, Julie A Martel, Munok Hwang, et al.. Classical and
alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: a review. En-
vironmental Chemistry Letters, 2021, 19, pp.1945-1951. �10.1007/s10311-021-01180-4�. �hal-03259808�

https://hal.science/hal-03259808
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Environmental Chemistry Letters (2021) 19:1945–1951 
https://doi.org/10.1007/s10311-021-01180-4
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Classical and alternative disinfection strategies to control 
the COVID‑19 virus in healthcare facilities: a review

Hosoon Choi1 · Piyali Chatterjee1 · Eric Lichtfouse2,3 · Julie A. Martel1 · Munok Hwang1 · Chetan Jinadatha1 · 
Virender K. Sharma4 

Abstract
The coronavirus disease COVID-19 has spread throughout the world and has been declared as a pandemic by the World 
Health Organization on March 11th, 2020. The COVID-19 is caused by the severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2). One possible mode of virus transmission is through surfaces in the healthcare settings. This paper reviews 
currently used disinfection strategies to control SARS-CoV-2 at the healthcare facilities. Chemical disinfectants include 
hypochlorite, peroxymonosulfate, alcohols, quaternary ammonium compounds, and hydrogen peroxide. Advanced strate-
gies include no-touch techniques such as engineered antimicrobial surfaces and automated room disinfection systems using 
hydrogen peroxide vapor or ultraviolet light.
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Introduction

Healthcare-associated infections, also named hospital-
acquired or nosocomial infections, are causing burden to 
the society by prolonging the stay in hospitals, which further 
increases the cost of healthcare (Ham et al. 2020; Ngueme-
leu et al. 2020). These infections are newly acquired infec-
tions by multidrug-resistant pathogens contracted within 
a healthcare environment. Rising pathogen resistance is 
explained by indiscriminate use of antibiotics and the lack 

of hygiene measures. In the USA, the number of hospitalized 
patients may reach 2 million per year soon. Contaminated 
healthcare surfaces and medical instruments are usually 
the main sources of pathogen transmission (Ogunsola and 
Mehtar 2020). Days to months survival on dry inert surfaces 
has been observed for bacteria, such as vancomycin-resistant 
Enterococci, Pseudomonas spp., and methicillin-resistant 
Staphylococcus aureus; viruses such as hepatitis C virus, 
rotavirus, and norovirus, and spores such as Clostridioides 
difficile (Kramer et al. 2006).

Known pathways of virus transmission include direct 
contact, e.g., by hand shaking, with an infected individual, 
aerosol transmission involving air transmission of droplets 
from an infected person to healthy individuals, and surface 
transmission by touching contaminated surfaces (Fig. 1a; 
Bhattacharya et al. 2020; Garcia de Abajo et al. 2020; Rico 
et al. 2020). Viruses can be transmitted from an infected 
individual to a healthy person during speaking, sneezing, 
and coughing. Transmission of COVID-19 by food and par-
ticles emitted by laser printers are also likely (Han et al. 
2020; He and Han 2020). Figure 1b–g presents the most 
common situations during which transmission may occur 
via airborne or surface-mediated processes. The magnitude 
of virus transmission is controlled by environmental fac-
tors such as indoor or outdoor, ventilation, humidity, wind, 
temperature, density of population, and infectiousness of 
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the infected person (Lacotte et al. 2020; Paital et al. 2020; 
Sharma et al. 2020).

The coronavirus disease (COVID-19) has spread 
throughout the world and was declared as a pandemic by 
the World Health Organization on March 11th, 2020. This 
pandemic is caused by severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2), which originated in 2019 
from Wuhan, China. This novel coronavirus pandemic has 
turned out to be one of the biggest threats of the century 
to the human well-being. Epidemiological studies have 
shown that human–human transmission through droplets 
is the main route of transmission of SARS-CoV-2 (Liu 
et al. 2020b). This highly contagious respiratory virus is 
causing huge burden to global public health, and there 
is a heightened risk of infection to healthcare workers 

within healthcare settings. One other possible route of 
transmission includes close contact of healthcare workers 
to the SARS-CoV-2-contaminated surfaces in the health-
care environment. Both porous surfaces, e.g., curtains, 
and nonporous surfaces, e.g., bed rails, nurses’ stations, 
computers, sinks, and toilet seats, can be contaminated in 
healthcare facilities. Additionally, non-healthcare facili-
ties may also serve as a potential source for transmis-
sion (Saravanan et al. 2020; Sun and Han 2020). Disin-
fection of healthcare surfaces is very important to prevent 
transmission of SARS-CoV-2 to healthcare workers and 
to other patients that occupy the facility (Totaro et al. 
2020). Several approaches can be used for disinfection 
including chemical disinfectants, no-touch automated 

Fig. 1  Pathways of viral infection in everyday life. a Direct, aero-
sol, and surfaces  act as  pathways for virus transmission. Exposure 
to virus in everyday activities when b using elevators, c taking pub-
lic transportation, d spending time in shared indoor spaces such as 
workplaces, schools, and centers for other social activities, e walking 
through corridors, f using common facilities such as toilets, office 

pantries, and storerooms, and g dining at restaurants or accessing 
other public services with high customer turnover. Colored items 
indicate airborne viruses (red dots), surface-deposited viruses (orange 
dots), contaminated-air flow (reddish arrows), and fresh/cleaned-air 
flow (blueish arrows). Reprinted from Garcia de Abajo et al. (2020) 
with permission from the American Chemical Society



processes, enhanced coatings, and surfaces with antimi-
crobial properties.

Chemical disinfectants often used in the healthcare facili-
ties include sodium hypochlorite, potassium peroxymono-
sulfate, alcohols, quaternary ammonium compounds, and 
hydrogen peroxide (De Lorenzi et al. 2020; Juszkiewicz 
et al. 2019; Khokhar et al. 2020). In the current paper, we 
review the basic science involved in chemical and alterna-
tive disinfection strategies, followed by examples of their 
applications to prevent transmission of SARS-CoV-2.

Chemical disinfectants

Chlorine has been applied as a disinfectant for several dec-
ades (Deborde and von Gunten 2008, Silverman and Boehm 
2020). Chlorine in aqueous solution exists in hypochlorite 
(HOCl) and its anionic form  (OCl−), which are in equilib-
rium (Carrell Morris 1966):

The disinfection with hypochlorite depends on the specia-
tion, which is a function of pH (Fig. 2). HOCl and  OCl− are 
both present in the pH range of 6.0–9.0. Hypochlorite spe-
cies exists predominately below pH 7.5, while  OCl− is the 
major species above pH 7.5. Chlorine has high reactivity 
with amino acids and proteins (Sharma 2013) and has a 
strong capability to inactivate virus (Khokhar et al. 2020). 
The standard redox potential Eo of hypochorite is + 1.48 V in 
acidic media and + 0.84 V in basic media. Therefore, HOCl 
is much more effective to inactivate virus than  OCl− species. 
This suggests that hypochlorite disinfection is more effective 
at neutral pH than at alkaline solution.

HOCl ⇌ H+
+ OCl−; pKa = 7.6

Peroxymonosulfate has been used as a disinfectant 
because it generates reactive radicals. Peroxymonosulfate 
generates sulfate and hydroxyl radicals as the main reac-
tive species (Lee et al. 2020). Sulfate radical  SO4

●− has 
redox potentials in the range of + 2.60 to + 3.1 V, while 
the redox potential of the hydroxyl radical ●OH is in the 
range of + 1.90 to + 2.70 V (Lee et al. 2020; Oh et al. 2016; 
Waclawek et al. 2017). Therefore, there is high capability 
of peroxymonosulfate to inactivate viruses (Delcomyn et al. 
2006; Wallace et al. 2005). Examples include effectiveness 
of potassium peroxymonosulfate against African swine virus 
fvirus (ASF) (Juszkiewicz et al. 2019, 2020). Alcohols such 
as ethanol, 1-propanol, and 2-propanol have been applied to 
disinfect inert surfaces (Khokhar et al. 2020). Indeed, alco-
hols induce proteins denaturation, lipids solubilization, and 
membrane disruption (Boyce 2018; McDonnell and Russell 
2001). Researchers have varied types and levels of alcohols 
to enhance the effectiveness of disinfection (Edmiston et al. 
2020). Alcohols are flammable, and therefore, precautions 
should be maintained in their uses.

Compounds of quaternary ammonium are in use for sur-
face disinfection (Diaz et al. 2019; Hora et al. 2020; Liu et al. 
2020a; Schmidt et al. 2019). Examples include alkyl benza-
lkonium chlorides. These compounds are currently present 
in more than 200 disinfectants approved by the United States 
Environmental Protection Agency (US EPA). The disinfec-
tion by quaternary ammonium compounds involves cyto-
plasmic membrane adsorption and the leakage of cellular 
constituents (Edmiston et al. 2020). The use of hydrogen 
peroxide  H2O2 as antiseptic has been known for more than 
a century (Haering et al. 2020; Khokhar et al. 2020; Totaro 
et al. 2020).  H2O2 produces ●OH radicals under UV light 
irradiation and in combination with metal ions, e.g.,  Fe2+ 
and  Cu+; then, radicals cause disinfection (Nieto-Juarez and 
Kohn 2020; Ueno et al. 2020). The generated ●OH radicals 
react highly with proteins, lipids and nucleic acids to result 
in cleavage of RNA and DNA and destruction of sulfhydryl 
bonds in proteins and biological membranes (Arjunan et al. 
2015; Lam et al. 2020).

Classical strategies of disinfection

Typically, pre-cleaning of both organic and non-organic 
debris precedes disinfection events. Chemical disinfectants 
are effective to break the outer lipid layer of corona viruses. 
Due to acute shortage of commercial disinfectants during the 
early stages of the pandemic, alternate disinfectants such as 
70% alcohol or 1/3 cup of 5.25–8.25% hypochlorite added 
to 1.0 gallon of water was recommended by the Center for 
Disease Control and Prevention, USA. The current guide-
lines for disinfection include a potassium peroxymono-
sulfate and sodium hypochlorite solution, listed in the US 

Fig. 2  Speciation of hypochlorite as a function of pH. This figure 
shows that hypochlorite is mainly present as HOCl below pH 6.0, as 
about half HOCl half  OCl− at pH 7.5, and as  OCl− above pH 9.0



EPA-approved chemical solvents. Potassium peroxymono-
sulfate and sodium hypochlorite are suitable for hard non-
porous surfaces as recommended in the list of disinfectants 
for use against SARS-CoV-2 (List N, US EPA). Indeed, 
Canine parvovirus and Adenovirus type 5 pathogens, which 
are harder to inactivate than SARS-CoV-2, could be killed 
by potassium peroxymonosulfate and sodium hypochloritie. 
Ethanol solution and dilute sodium hypochlorite disinfect-
ant, sprayed electrostatically, have also been shown to be an 
effective form of disinfection and could be useful for port-
able equipment or large open spaces (Cadnum et al. 2020, 
US. Environmental Protection Agency List N: Disinfectants 
for Use Against SARS-CoV-2 (COVID-19)). Another com-
mercial product containing liquid hydrogen peroxide with 
surfactants, (ACCEL TB, Unimed Corp), is effective at a 
concentration of 0.5% against HCoV-229E within a minute 
(Omidbakhsh and Sattar 2006). More studies are needed for 
hydrogen peroxide use on various other surfaces and condi-
tions. List N on the EPA’s website provides information on 
various disinfectants that are effective against SARS-CoV-2.

During the 2003 SARS-CoV-1 epidemic, studies have 
shown that four different types of quaternary ammo-
nium-based surface disinfectants, i.e., benzalkonium 
chloride  and  laurylamine, benzalkonium chloride,  glu-
taraldehyde and didecyldimonium chloride, magnesium 
monoperphthalate, and glutaraldehyde and ethylenedioxy-
dimethanol had high effectiveness to destroy the virus after 
30 min of contact time (Rabenau et al. 2005). Additionally, 
the biocidal agent ethanol was shown to effectively inacti-
vate SARS-CoV-1 and MERS-CoV with an 80% solution 
after only 30 s (Kampf et al. 2020). More specifically, a dis-
infecting wipes containing quaternary ammonium solution 
have also been found to effective against SARS-CoV-2 (US. 
Environmental Protection Agency List N: Disinfectants for 
Use Against SARS-CoV-2 (COVID-19)).

No‑touch strategies

Disinfection efficiency is limited by the fact that cleaning is 
done episodically in healthcare facilities. This limitation can 
be overcome by use of “no-touch” (automated) disinfection 
approaches such as hydrogen peroxide vapor and ultraviolet 
light (UV). Hydrogen peroxide vapor has been widely used 
for disinfecting coronaviruses (Carlos Rubio-Romero et al. 
2020). Virucidal efficacy of hydrogen peroxide vapor has 
been demonstrated against SARS-CoV-2 surrogates such as 
feline calicivirus, human adenovirus type 1, transmissible 
gastroenteritis coronavirus of pigs, avian influenza virus, and 
swine influenza virus. This vapor was virucidal with more 
than 4 log reduction for structurally distinct viruses dried on 
surfaces, suggesting that the vapor can be considered for the 
disinfection of contaminated surfaces (Goyal et al. 2014).

UV disinfection devices contain either a mercury-based 
source or pulsed-xenon bulb source to generate UV rays. 
Inhibition of the Middle East respiratory syndrome corona-
virus (MERS-CoV) was done by 5 min application of UV-C 
from an automated whole-room (Bedell et al. 2016). Far 
UV-C light at 207-222 nm induced 99.9% inactivation of 
the airborne βHCoV-OC43 strain in 25 min, and presum-
ably would have a similar effect on the SARS-CoV-2 (Buo-
nanno et al. 2020). Studies conducted with UV-C indicate 
that a dose ranging from 3.7 mJ/cm2 to 10.6 mJ/cm2 should 
inactivate the viruses in 5 min. Recently, a pulsed-xenon-
based UV device demonstrated 4.2  log10 reduction on hard 
surfaces and 4.79  log10 and reduction on N95 respirators 
following 5 min of exposure (Simmons et al. 2020).

UV-A has been shown to have a weaker effect even after 
15 min of exposure, suggesting that UV-C is more potent 
(Heilingloh et al. 2020). Additionally, simulated sunlight 
appeared to decrease the recovery of SARS-CoV-2 on non-
porous surfaces after 20 min of exposure to 1.6 W/m2 ultra-
violet-B (UV-B) (Ratnesar-Shumate et al. 2020). Moreover, 
a recent study demonstrates the feasibility of passive heating 
of vehicles in parking lots under the sun to inhibit the virus 
because indoor car temperatures reach 52–57 °C in 90 min 
(Wang et al. 2020a): this is probably the most sustainable 
method because it requires no chemicals, no energy pro-
duction, no human intervention, and it can be done when 
vehicles are not in use during parking time. These alternative 
methods could be used during commercial shortages of UV 
devices due to COVID-19.

UV application on aerosols using an AGI-30 liquid 
impinger showed that coronaviruses were more impacted 
than the bacteriophage MS2 virus and adenovirus (Walker 
and Ko 2007). UV germicidal devices also allow to decon-
taminate personal protective equipment, airport security bins 
and mobile phones. Viral survivability depends on many 
factors such as wavelength, dose, distance and duration of 
UV radiation, which should be studied and tuned prior to 
use in healthcare and other non-healthcare settings (Hes-
sling et al. 2020). The combination of hydrogen peroxide 
and ultraviolet light that generates reactive hydroxyl radicals 
can be used to disinfect surfaces (Donskey 2019; Wallace 
et al. 2019). The lamps include mercury bulbs emitting con-
tinuous radiation (UV-C) and xenon gas bulbs. The mercury 
bulbs emit radiation in the wavelength of 200–270 nm, while 
xenon gas bulbs emit radiation with short high-intensity 
pulses consisting of both ultraviolet light in the range of 
100–280 nm and visible spectra at 380–700 nm.



Antimicrobial surfaces

Using materials or coatings with antimicrobial properties is 
another approach to controlling the infection. Copper and 
copper-based alloys are known to possess antimicrobial 
properties. A rapid inactivation of coronaviruses has been 
observed for copper and brass alloys; this inactivation was 
proportional to the content of copper or brass in the mate-
rial (Warnes et al. 2015). A combination of cuprous oxide 
and polyurethane coating that can adhere to both glass and 
stainless steel, is durable and can survive multiple cycles 
of disinfection even when immersed in water. Interestingly, 
doorknobs, credit card holders, and pens can be coated with 
cuprous oxide and polyurethane. Both glass and stainless 
steel coated with cuprous oxide and polyurethane were found 
to inactivate SARS-CoV-2 up to 99.9% (Behzadinasab et al. 
2020). Viral inactivation of surfaces was also tested using 
single-wall carbon nanotubes (SWCNTs) decorated with Pt, 
Pd, Ni, Cu, Rh, and Ru for adsorption of hydrogen peroxide. 
Here, Pt and Cu displayed a longlasting shelf life (Aasi et al. 
2020).

The Centers for Disease Control and Prevention has rec-
ommended high-touch surfaces be cleaned and disinfected 
repeatedly to continually prevent the spread of SARS-
CoV-2. Many hospitals implement policies for more rig-
orous cleaning and disinfecting, especially on high-touch 
surfaces to prevent the transmission of virus (Kornack et al. 
2020; Shabto et al. 2020; Wang et al. 2020a, b). Portable 
medical equipment like computer on wheels or pumps can 
also be considered as high-touch surfaces (Jinadatha et al. 
2017). Apart from daily cleaning and disinfection strate-
gies, no-touch technologies can be supplemented to achieve 
higher disinfection capabilities.

Conclusion

Generally, chemical disinfectants are widely used in hos-
pitals, but thorough manual cleaning of surfaces may not 
be adequate to fully control pathogens or transmission of 
the virus. Increased cleaning and disinfection of healthcare 
surfaces is essential for effective prevention and control 
of SARS-CoV-2 infection. Results suggest that chemical 
disinfectants are efficient at reducing if not eliminating 
SARS-CoV-2 from the surfaces. In the future, the state-of-
the art technologies involving no-touch approaches may be 
developed to fully disinfect the contaminated surfaces. The 
application of UV light as stand alone or in combination 
with oxidants would increase the chance of thorough surface 
disinfection. The use of innovative advanced materials such 
as nanomaterials are forthcoming, which may be applied 
with conventional disinfectants and UV light irradiation to 

enhance the efficiency with shorter contact time to fully dis-
infect the surfaces in the healthcare settings.
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