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Abstract. A very staggering result that has been constantly highlighted in granular media is that the shear
strength of granular assemblies is independent of the particle size dispersity. In other words, a packing com-
posed of monodisperse particles has similar strength properties to those of polydisperse systems. This has been
shown numerically for the simplified case of disc and polygon assemblies in 2D and spheres in 3D. In this pa-
per, we use three-dimensional contact dynamics simulations to revisit these results for the more complex case
of assemblies composed of highly polydisperse rigid polyhedra. Although non-spherical shapes induce more
intricated spatial correlations than spherical shapes because of the multiple contact types (i.e., vertex-face, edge-
edge, edge-face, face-face), our numerical data provide evidence that the shear strength independence as the
particle size dispersity increases still holds up for assemblies of polyhedra. We explain this finding from com-
pensation mechanisms at the micro-scale between geometrical and mechanical anisotropies developed within
the assemblies.

1 Introduction

Most granular materials in their natural state or in indus-
trial processes are characterized by a very wide range of
grain shapes and sizes. Polydispersity can result from vari-
ous natural processes by which grains are formed (by frag-
mentation or mineral precipitation). Polydispersity may
also be a target in the production, transformation or use
of grains. Although the space-filling properties of highly
polydisperse systems and their elastic properties under
uniaxial compression tests have widely been studied in the
past [1–4], it is remarkable to note that very few studies
are devoted to their shear behavior.

In this case, the few existing works have constantly
highlighted that the shear strength of dry granular assem-
blies is independent of the particle size polydispersity.
Such surprising result has been evidenced in 2D simula-
tions (via discrete-element modeling) using disks [5–7],
using regular and irregular polygons [8], and in 3D sim-
ulations with spheres [9–11]. The present paper is not
intended to review on the practical or industrial implica-
tions of phenomenon of the shear strength independence
on grain size dispersion. It is instead a generalization of
such counterintuitive observation to general angular three-
dimensional grains.

In the following, we present the numerical procedures
to build and test the shear strength of samples composed
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of polyhedra (Sec. 2). In Sec. 3, we focus on the evolution
of shear strength and packing fraction with particle size
polydispersity. The microstructure, described in terms of
force and fabric anisotropies, is discussed in Sec. 4. We
conclude, in Sec. 5 with a summary and perspectives of
this work.

2 Numerical procedures

We use the Contact Dynamics (CD) [12, 13] to simulate
assemblies of angular rigid grains in interaction. The CD
method is based on implicit time integration of the equa-
tions of motion and a nonsmooth formulation of mutual
exclusion and dry friction between particles. The contact
forces and body velocities are found by means of an iter-
ative nonlinear Gauss-Seidel algorithm. This method re-
quires no elastic repulsive potential and no smoothing of
the Coulomb friction law to determine interaction forces.
For this reason, simulations can be performed with larger
time steps compared to molecular dynamics simulations.
We used LMGC90 [14], a multipurpose software devel-
oped in Montpellier, capable of modeling a collection of
deformable or rigid particles of various shapes by di↵er-
ent algorithms.

We consider grains of octahedral shape whose size, de-
fined by the diameter d of the circumscribed sphere, is var-
ied in the range of [dmin, dmax] with a uniform distribution
of particle volume fractions. We define the size span S of
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Figure 1. Screenshots of samples with a grain size dispersion
S = 0.8.

the distribution as

S =
dmax � dmin

dmax + dmin
, (1)

In this work, we systematically varied S in the range
[0, 0.8] in steps of 0.1. For each value of S , 19000 friction-
less grains where geometrically deposited in a cubic box
and then isotropically compressed to reach a dense state.
Figure 1 shows a screenshots for S = 0.2 and 0.8 after the
isotropic compression.

Then, we removed the four lateral walls, we set peri-
odic boundary conditions and the friction coe�cient be-
tween particles is set to 0.4. The shear tests were per-
formed by fixing the bottom wall and applying on the up-
per wall a pressure P in the vertical direction and a con-
stant velocity v

x

in the x-direction so the inertial number I

is below 10�3 for all the simulations. All the particles in
contact either with the upper or the lower wall are bonded
and follow the boundary constrains. Gravity was set to 0
to avoid a force gradient within the samples and to prevent
particle size segregation. The shearing was undertaken up
to reaching the so-called steady flow state in which the
volume and shear strength remain constant or present only
small fluctuations.

3 Shear strength and packing fraction

The shear strength is computed from the well known for-
mula of the granular stress tensor �, defined as �

i j

=
(
P

c

f

c

i

`c
j

)/V where, f is the contact force, ` is the branch
vector (i.e., the vector joining the centers of particles in-
teracting at contacts c) and the sum run over all contacts
in a control volume V . Due to the geometry of the simple
shear test, the stress state is considered invariant along the
y direction. Thus, we may only consider the stresses of the
tensor � on the shear plane xz.

According to the Mohr-Coulomb model, the e↵ective
macroscopic friction coe�cient ' is given by sin' = q/p,

where p = (�1 +�2)/2 is the mean stress, q = (�1 ��2)/2
is the deviatoric stress, and �1 and �2 are the principal
values of the stress tensor on the shear plane [15]. The
sample’s density is quantified by the packing fraction ⌫ =P

p

V

p

/V , where V

p

is the volume of a particle p.

As a general observation (see Fig.2a), sin' increases
rapidly at the beginning of the shearing, and reaches
a maximum value before decreasing towards a constant
value at large strains (steady state). Along the same line,
starting with an initially dense state, all packings dilate
during shear and, hence, the volume increases (i.e., ⌫ de-
clines) and tend to a constant value presenting only minor
fluctuations. Figure 2 shows sin'⇤ and ⌫⇤, the averaged
steady state values of sin' and ⌫, as a function of S . For
the set of samples tested, we see that the average shear
strength remains almost constant and around sin'⇤ ' 0.5.
In contrast the packing fraction ⌫⇤ increases with S . This
finding thus extends to polyhedral particles assembly a
similar behavior previously observed in the case of cir-
cular/polygonal particles in 2D and spherical particles in
3D.

The fact that the shear strength remains constant while
the particle size polydispersity is increased reflects the or-
ganization of the microstructure and the features of force
transmission that we discuss below.

(a)

(b)

Figure 2. (a) Evolution of the shear strength q/p as a function
of the shear deformation �. In the inset: The solid fraction ⌫ as
function of �. (b) In black squares: the verage shear strength in
the steady state as sin'⇤ as a function of S . With red circles: the
microstructural prediction of strength strength using Eq. (3). In
the inset: The solid fraction at the steady state as a function of S .
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4 Micro-scale compensation mechanisms

At the contact scale, the local geometry and the mechani-
cal equilibrium associated with two touching particles can
be statistically characterized via the analysis of the angu-
lar distributions of the branch vector h`i(⌦) and the con-
tact force h f i(⌦), where ⌦ is the solid angle. For co-
herence with the previous section, the branch and force
vectors are projected on the shear plane ‘xy’and can be
thus split into their normal contributions h`

n

i(✓), h f
n

i(✓),
respectively, and tangential contributions h`

t

i(✓), h f
t

i(✓),
respectively, where ✓ is the orientation of n0, the projec-
tion of the real normal contact vector on the shear plane.
Along with these distributions, we also define the angu-
lar distribution of contacts along the shear plane as P(✓).
As shown in a number of previous studies, the analysis of
these distributions should reveal the key microscopic ele-
ments in play as the particle size polydispersity increases.

Figure 3. Angular distribution of (a) contact orientations, (b)
normal force and (c) tangential force intensities, and (d) normal
branch and (e) tangential branch components for di↵erent values
of S at the steady state.

Under simple shear, these distribution take relatively
simple shapes. Figure 3 displays polar representations of
the five angular distributions P

c

(✓), h`
n

i(✓), h`
t

i(✓), h f
n

i(✓)
and h f

t

i(✓) as a function of the angle ✓, and averaged in the
steady state for three di↵erent values of S . For all S values,
we observe an anisotropic behavior in P

c

(✓) and h f
n

i(✓),
where the peak value occurs, in average, along the major
principal stress direction ✓� ' 3⇡/4. Although less pro-
nounced, an anisotropic orientation along the major prin-
cipal stress is also seen for h`

n

i(✓). In contrast, the peak
values for h`

t

i(✓) and h f
t

i(✓) occurs at ✓
f

t

' ⇡/2. These
distributions are well approximated by their lowest-order
Fourier expansions [16, 17]
8>>>>>>>><
>>>>>>>>:

P
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)} (b)
h`

t

i(✓) = h`
n

i{�a

lt

sin 2(✓ � ✓
lt

)} (c)
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f t

)} (e),

(2)

where a

c

is the contact orientation anisotropy, a

ln

is the
normal branch anisotropy, a

lt

is the tangential branch
anisotropy, a

f n

is the normal force anisotropy, and a

f t

is

tangential force anisotropy. From Fig. 3, we get the corre-
sponding privileged directions ✓

c

, ✓
ln

, ✓
lt

, ✓
f n

, and ✓
f t

, that
are nearly equal and aligned respect to the shear direction.

Figure 4 displays the averaged contact and branch
anisotropies in the steady state, as function of S . We see
that a

c

declines from 0.55 to 0.4 as S increases. The de-
crease of a

c

traduce the fact that the mean connectivity
of the particles increases. In fact, a detailed analysis of
the connectivity as a function of particle size evidence that
large particles are increasingly surrounded by a number of
small particles as the size span is increased [9, 18]. In same
time, the increases of normal branch anisotropies, from 0
to ' 0.09, while the tangential branch anisotropy remains
close to 0, evidence that longer branch appears preferen-
tially in the direction of shear. This suggest that biggest
particles self-organise along the strong force chains.

(a)

(b)

Figure 4. (a) Contact orientation anisotropy as a function of
S at the steady state. (b) The normal and tangential branch
anisotropies (a

ln

, a
lt

) as a function of the particle size span S .
Bars present the standard deviation of the data.

The variations of the normal and tangential force
anisotropies with S are shown in Fig. 5. Basically, a

f n

slightly increases with S , from 0.4 to 0.5. In contrast the
tangential force anisotropy remains independent with S

and close to 0.2. In fact, the above anisotropic parame-
ters are the key elements behind the macroscopic friction
coe�cient '. Indeed, it can be shown that the general ex-
pression of the stress tensor leads to the following simple
relation [17, 19]:

sin'⇤ ' 1
2

(a
c

+ a

ln

+ a

lt

+ a

f n

+ a

f t

). (3)

The predicted values of sin'⇤ by Eq. (3) are shown in
Fig. 2 together with the measured values as a function
of S . We see that the approximation of our data by Eq.
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Figure 5. Evolution of the normal and tangential force
anisotropies (a

f n

, a
f t

) as a function of the particle size span S .
Bars represent the standard deviation of the data.

(3) is outstanding for all values of S . By virtue of this
equation, the independence of sin'⇤ with respect to S re-
sults from a compensation mechanism between geometri-
cal and mechanical source of anisotropy. More precisely,
the decreases of a

c

is compensated by the increases of
a`n + a

f n

together with the fact that a

f t

is independent
of S . Such compensation mechanism was also observed
in previous studies with assemblies of discs, polygons and
spheres but was unexpected for polyhedra particles assem-
blies. Indeed, when dealing with three-dimensional regu-
lar grains, a rich contact configuration appears given the
di↵erent contact types that can occur: vertex-face, edge-
edge, edge-face, face-face and punctually, vertex-vertex.
In particular, it is now well known that these contact con-
tribute di↵erently to the shear strength [17]. For exam-
ple, face-face contacts are more likely to mobilize friction
while vertex-face contacts, as more unstable interactions,
are supporting relatively lighter stresses. But a surprising
observation, detailed in [18], is that, in fact, the contribu-
tions of each family of contacts to the shear strength and
anisotropies remain independent of the grain size span too.

5 Conclusion

In this paper, we developed a set of numerical experiments
using the three dimensional Contact Dynamics method
to generalize - or the opposite - the shear strength inde-
pendence on particle size using very angular polyhedral
grains. We built a set of samples composed of octahedra,
where the grain size span varied from mono-size particles,
to highly polydisperse particles with a size ratio (maxi-
mum/minimum) equivalent to ⇠ 10. The systems were
sheared until a steady state, under quasi-static conditions,
was reached.

Our numerical data clearly allow us to generalize
to three-dimensional angular grains the observation that
grain size span does not a↵ect the shear strength although
the solid fraction increases as a broader grain size distribu-
tion is considered. This unexpected result, consistently ev-
idenced with more simple particle geometry, appear thus

to be a robust observation. By means of an additive de-
composition of the shear strength in terms of anisotropic
parameters related to particle connectivity, force transmis-
sion and friction mobilization, we show that subtle com-
pensation mechanisms between anisotropies explains the
invariance of shear strength as the particle size polydisper-
sity is increased.

This long series of numerical experiments that include
more and more realistic properties (from 2D discs assem-
bly to 3D polyhedra systems), suggest that it is now time
to develop controlled and systematic physical experiments
to definitively conclude on this phenomenon.
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[3] J. Wiącek, M. Molenda, Int. J. Solids Struct. 51, 4189

(2014)
[4] J. Wia̧cek, M. Stasiak, Granul. Matter 20, 1 (2018)
[5] C. Voivret, F. Radjai, J.Y. Delenne, M.S. El Yous-

soufi, Phys. Rev. Lett. 102, 178001 (2009)
[6] N. Estrada, Phys. Rev. E 94, 062903 (2016)
[7] E. Azéma, S. Linero, N. Estrada, A. Lizcano, Phys.

Rev. E 96, 022902 (2017)
[8] D.H. Nguyen, E. Azéma, P. Sornay, F. Radjai, Phys.

Rev. E 91, 032203 (2015)
[9] D. Cantor, E. Azéma, P. Sornay, F. Radjai, Phys. Rev.

E 98, 052910 (2018)
[10] S. Zhao, J. Zhao, N. Guo, Phys. Rev. E 101, 012906

(2020)
[11] J. Hao, Y. Li, Y. Guo, H. Jin, J.S. Curtis, Powder

Technol. 361 (2020)
[12] M. Jean, J. Moreau, Dynamics in the presence of

unilateral contacts and dry friction: A numerical ap-
proach, in Unilateral problems in structural analysis,
edited by G. Del Piero, F. Maceri (1987), pp. 151–
196

[13] M. Jean, Comput. Methods in Appl. Mech. Eng. 177,
235 (1999)

[14] F. Dubois, M. Jean, et al, LMGC90 wiki page,
https://git-xen.lmgc.univ-montp2.fr/lmgc90/
lmgc90_user/wikis/home (2019), [Online; accessed
28-Jul-2019]

[15] J.K. Mitchell, K. Soga, Fundamentals of Soil Be-

havior (Wiley, New-York, 2005), ISBN 978-0-471-
46302-3

[16] L. Rothenburg, R.J. Bathurst, Geotechnique 39, 601
(1989)

[17] E. Azéma, F. Radjai, F. Dubois, Phys. Rev. E 87,
062203 (2013)

[18] D. Cantor, E. Azéma, I. Preechawuttipong, Phys.
Rev. E 101, 062901 (2020)

[19] H. Ouadfel, L. Rothenburg, Mech. Mater. 33, 201
(2001)

4

EPJ Web of Conferences 249, 06009 (2021) https://doi.org/10.1051/epjconf/202124906009
Powders and Grains 2021


