
HAL Id: hal-03259801
https://hal.science/hal-03259801v1

Submitted on 14 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attention-based distributed speech enhancement for
unconstrained microphone arrays with varying number

of nodes
Nicolas Furnon, Romain Serizel, Slim Essid, Irina Illina

To cite this version:
Nicolas Furnon, Romain Serizel, Slim Essid, Irina Illina. Attention-based distributed speech enhance-
ment for unconstrained microphone arrays with varying number of nodes. EUSIPCO 2021 - 29th
European Signal Processing Conference, IEEE, Aug 2021, Dublin / Virtual, Ireland. �10.23919/EU-
SIPCO54536.2021.9616358�. �hal-03259801�

https://hal.science/hal-03259801v1
https://hal.archives-ouvertes.fr


Attention-based distributed speech enhancement for
unconstrained microphone arrays with varying

number of nodes
Nicolas Furnon
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Abstract—Speech enhancement promises higher efficiency in
ad-hoc microphone arrays than in constrained microphone
arrays thanks to the wide spatial coverage of the devices in
the acoustic scene. However, speech enhancement in ad-hoc
microphone arrays still raises many challenges. In particular,
the algorithms should be able to handle a variable number of
microphones, as some devices in the array might appear or
disappear. In this paper, we propose a solution that can efficiently
process the spatial information captured by the different devices
of the microphone array, while being robust to a link failure. To
do this, we use an attention mechanism in order to put more
weight on the relevant signals sent throughout the array and to
neglect the redundant or empty channels.

Index Terms—Speech enhancement, distributed processing,
attention mechanisms, ad-hoc microphone arrays

I. INTRODUCTION

Ad-hoc microphone arrays are made of several devices
like telephones, tablets or hearing aids, each embedded with
one or more microphones. They are usually randomly spread
in a room, which brings a wide spatial coverage of the
room and thus rich recordings of the acoustic scene. Speech
enhancement in ad-hoc microphone arrays can benefit from
the increased number of microphones in the array and its
wide spatial coverage, but it also raises many challenges. In
particular, the limited power and computing capacities of the
devices, as well as the unconstrained architecture of the array,
make it impossible to rely on a fusion center and impose
a distributed processing. Besides, the person carrying one
of the devices of the array may come in or leave the area
covered by the microphone array. This brings the necessity
of a flexible processing that can handle a varying number of
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microphones. Solutions based on a classical signal processing
approach have been proposed to alleviate the bandwidth or
power constraints [1]–[3], and some solutions can be used in
arbitrary array topologies [4]–[6]. In recent years, solutions
based on deep neural networks (DNNs) have outperformed
the signal-based solutions [7]–[9]. However, one drawback
of DNNs is that they often require a fixed input dimension,
constant at training and testing time, which makes these
solutions unflexible to a varying number of channels. A few
architectures have been proposed to address the problem of a
varying number of microphones. Casebeer et al. for example
use recurrent units over the channel axis [10], but this implies
that the order of the input channels is relevant, which can’t be
guaranteed in real scenarios. Other solutions propose to use
shared parameters across input channels and to further fuse
the different channels [11], [12]. These solutions suffer from
the drawback that all channels are considered identically by
the neural network, whereas they might contain very different
information, especially in the context of ad-hoc microphone
arrays where the microphones can be wide apart.

In this paper, we address the typical use case of a person
remotely communicating with someone else in a noisy room
and recorded by several devices like a telephone or a laptop.
Since only the audio signals (and no video) are exchanged
between the several devices, we assume that the communi-
cation bandwidth is not a limit and that the signals can be
exchanged without rate distortion. Rate-constrained speech
enhancement in wireless acoustic sensor networks (WASNs)
remains an issue, especially with low resource devices like
hearing aids [13], [14]. We also assume that the signals are
perfectly aligned, although synchronization in WASNs is an
open problem [15], [16]. Our main point of concern is to
enhance the speech in a manner that does not rely on a fusion
center and remains efficient if some of the recording devices
disappear, e.g. if one of them shuts down. To do so, we
propose a speech enhancement solution that combines classic



signal processing with DNNs. It processes the information
captured over the whole microphone array but limits the
number of signals exchanged between nodes and operates
in arrays with a varying number of devices. This solution
is based on our previous work [17], which benefits from a
distributed multichannel Wiener filter (MWF) [1] to alleviate
the constraints on the fusion center. It also benefits from the
modelling power of DNNs which proved to efficiently use
spatial information for a more precise time-frequency (TF)
mask estimation. We extend our previous work by designing
the DNN so that the mask estimation remains accurate while
resilient to a link failure. Missing channels are replaced by
a constant value indicating a link failure, and an attention
mechanism attributes more weight to the relevant channels.
We also design an empirical study to clarify the performance
improvement brought by the attention mechanism.

This paper is organised as follows. In Section II, the problem
is formalised. We introduce our solution in Section III and the
experimental setup in Section IV. The results are reported in
Section V and Section VI concludes this paper.

II. PROBLEM FORMULATION

A. Notations

We consider K devices, thereafter called nodes. Each node
k contains Mk microphones, so that the total number of
microphones is M =

∑K
k=1 Mk. Following an additive noise

model in the short-time Fourier transform (STFT) domain,
the signal recorded by the m-th microphone of the k-th
node is yk,m(f, t) = sk,m(f, t) + nk,m(f, t) where sk,m(f, t)
and nk,m(f, t) are respectively the target speech and the
noise recorded by the m-th microphone of the k-th node
at time step t and frequency index f . For the sake of
conciseness, we will thereafter drop the time and frequency
indexes. The signals recorded by node k are stacked in a
vector yk = [yk,1, ..., yk,Mk

]T . In the following, bold
lowercase letters represent vectors. Bold uppercase letters
represent matrices. Regular lowercase represent scalars. The
signals recorded by the whole microphone array are stacked
into the vector y = [yT

1 , ...,y
T
K ]T .

B. Distributed multichannel Wiener filter

Bertrand and Moonen introduced the distributed adaptive
node-specific signal estimation (DANSE) algorithm which
estimates the target speech as recorded by a reference micro-
phone at each node [1]. At each node, a MWF minimizes the
mean squared error between the filtered signal and the target
speech:

wk = arg min
w

E{|sk,m −wH ỹk|2} , (1)

E{·} denotes the expectation and ·H is the Hermitian transpose
operator. ỹk =

[
yT
k , zT−k

]T
gathers the signals of the micro-

phones of node k and the so-called compressed signals z−k

sent by the other nodes: z−k = [z1, ..., zk−1, zk+1, ..., zK ]T .
The compressed signal zj sent by node j 6= k is the
output of a local MWF applied at node j: zj = wH

jjyj ,

Fig. 1. Example of the DNN-based distributed speech enhancement for two
nodes, where both the target and the noise estimates are sent as compressed
signals. The single-node DNNs (SN-DNN) have access to the local reference
only to predict the mask. The multi-node DNNs (MN-DNN) have access to
the local reference and the compressed signals to estimate the mask.

where wjj = arg minw E{|sj,m −wHyj |2}. The solution to
Equation (1) is given by:

wk = R−1
ỹỹ Rỹsek,m , (2)

where the covariance matrices Rỹỹ and Rỹs are estimated
from the signals ỹk and sk,m thanks to a voice activity detector
(VAD) or a TF mask, and where ek,m is a vector of M-1 zeros
and a 1 for to the m-th microphone of the k-th node.

This algorithm converges to the centralized node-specific
MWF, while sparing bandwidth cost as each node sends only
one compressed signal to the other nodes [1].

In their paper, Bertrand and Moonen estimate the target
speech at node k in an adaptive way where the covariance
matrices needed to compute the filter wk in Equation (2)
are estimated by averaging over time the instantaneous spatial
covariance matrices. This however raises stability issues that
are beyond the scope of this paper. Thus, we split the adaptive
process of DANSE into two distinct steps represented in
Figure 1. The first step computes the compressed signals and
the second step estimates the target speech signal once every
node has received the compressed signals of the other nodes.

C. DNN-based distributed multichannel Wiener filter

In previous work [18], we replaced the oracle VAD used in
DANSE by a TF mask predicted by a convolutional recurrent
neural network (CRNN), in a similar manner as [7], [8]. We
showed that the compressed signals sent to compute the filter
of Equation (2) could also help to improve the mask prediction
at the second step by a multi-node DNN. This achieved better
performance than with an oracle VAD. In an extended study,
we generalized these results to real-life scenarios and showed
that sending the noise estimate rather than the target estimate
could improve the performance depending on the source to
interferences ratio (SIR) at the receiving node [17]. To take
full advantage from the spatial coverage of the distributed
microphone array, in the following, both the target and noise1

estimates will be sent as represented in Figure 1.

1Assuming a noise additive model, the compressed noise ñk at node k is
estimated as ñk = yk,m − zk .



Fig. 2. Schematization of a situation where three nodes are expected to
send compressed signals, but only two nodes actually send them. The CRNN
expects the local (green) mixture and the target and noise estimates of all
distant nodes (yellow, blue, red).

III. ATTENTION-BASED DISTRIBUTED SPEECH
ENHANCEMENT ALGORITHM

In this paper, we focus on the typical problem of a node
disappearing from the microphone array, for example because
the owner of the corresponding device leaves the room. Such
a case is schematized in Figure 2. The model architecture
used in our previous work requires a constant number of input
channels so it cannot be used for a variable number of nodes.
In the context of broken or disappearing links, this raises an
issue which we address in this paper. The contribution of this
paper is twofold. First, we propose a solution to deal with
a variable number of nodes which is robust to broken links.
Second, we examine the performance of this solution with an
empirical study in order to explain the obtained performance.

To cope with a variable number of nodes, we fix the number
of input channels to a constant maximal number. If a node
disappears, we replace the corresponding unreceived signals
with a small constant negative value, which symbolises a
broken link. While this is limited by the maximal number
of devices considered, it seems a valid solution in scenarios
where a small number of devices already captures most of the
spatial information. We propose to use an attention mechanism
to force the DNN to consider differently the input channels.
This is illustrated in Figure 3. The attention mechanism is
a Squeeze-and-Excitation (SE) block introduced by Hu et
al. [19]. The mechanism operates in two steps. In the first step,
it squeezes the input tensor over the time and frequency axis
to output a one-dimensional vector. The squeezing operation is
an average pooling that enables to compress the whole spatial
information into one bin. It embeds the input data into a global
vector so that contextual information can be exploited in the
second step. In the second step, the one-dimensional vector
is passed to a multilayer perceptron composed of two fully-
connected layers. These layers form a bottleneck where the
input dimension is reduced by a factor r in order to reduce
the complexity of the mechanism and to prevent overfitting.
This mechanism was shown to exploit contextual information
and dependencies over the channel axis while limiting the
complexity of the model [19]. In the sequel, we will refer
to the output of the SE mechanism as weights.

Squeeze
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Excite
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𝐶 𝐶

𝐶

𝑟

Fig. 3. Illustration of the Squeeze-and-Excitation attention mechanism. C,
T and F denote the number of channels, time frames and frequency bins
respectively. r is the reduction ratio.

IV. EXPERIMENTAL SETUP

A. Models

Four models are compared in order to study the performance
of our proposed approach. The first model is a single-node
CRNN whose structure is described in Section IV-C. It has
only access to the local reference signal to estimate the mask
at the second step of the algorithm. This is the simplest method
that is invariant to the number of nodes, since it does not rely
on the compressed signals to predict the mask. It is denoted
“SN”. The second model is the model that has been used in our
previous experiments [17]. It is a multi-node neural network
that estimates the mask based on the local reference signal and
the compressed signals sent from the other nodes. At inference
time, its missing channels are replaced by a constant negative
value, but during the training, all the links were always valid. It
is denoted by “MN0”. The third model is the same architecture
as the second model, but each training sample could contain
0 to 3 broken links. It is denoted by “MN0−3”. The fourth
model is our proposed solution with a SE mechanism at its
input. It is trained with 0 to 3 broken links at every training
sample. It is denoted by “MN-SE”.

B. Dataset

The dataset used to train and test our proposed solution is
the same as the one of our previous work [17]. It consists
of simulations of typical shoebox-like rooms with one target
source and one noise source randomly laid in the room. Four
nodes of four microphones each are also randomly placed in
the room. All sources and nodes are distant of at least 50 cm
of the closest source, node and wall.

The speech material is taken from LibriSpeech [20]. The
noise material is downloaded from Freesound [21]. It is split
into two non-overlapping subsets of Freesound users for the
training and testing sets. Some speech-shaped noise was also
used to train the DNN because it was shown to improve the
robustness of the DNN [17].

The rooms were simulated with the Python toolbox Py-
roomacoustics [22]. The SIR of the non-reverberated source
signals is randomly taken between 0 dB and 6 dB. The
reverberation time ranges from 150 ms to 400 ms. We created
around 25 hours of training material and 2.5 hours of testing
material2.

2The code to generate the dataset is publicly available at https://github.com/
nfurnon/disco/tree/master/dataset generation.



C. Setup

All the signals are sampled at 16 kHz. The STFT is com-
puted with a Hann window of 32 ms with an overlap of 16 ms.
The CRNN architecture is composed of three convolutional
layers followed by a recurrent layer and a fully-connected
layer. The convolutional layers have 32, 64 and 64 filters, with
kernel size 3 × 3 and stride 1 × 1. Each convolutional layer
is followed by a batch normalisation and a maximum-pooling
layer of kernel size 4 × 1 so that no pooling is applied over
the time axis. The recurrent layer is a 256-unit GRU. The
fully-connected layer has 257 units with a sigmoid activation
function. The reduction ratio in the excitation operation is
set to 2. The input of the model are the magnitudes of the
STFT windows of 21 consecutive frames and the ground truth
labels are the corresponding frames of the ideal ratio mask.
At test time, only the middle frame of the predicted window
is considered to estimate the mask, so sliding windows of the
input are fed to the DNN. The mask of the whole signal is
predicted before being used to enhance the speech in a batch
mode. When a link is broken between a node and the rest
of the array, both the target and the noise magnitudes which
are missing are replaced by an array equal to −10−7 in all
TF bins. This way, the DNN always has 7 input channels
(one local signal plus 3× 2 compressed signals) whatever the
number of nodes it is connected to.

To better analyse the impact of missing channels on the
DNN performance, we only consider missing channels at the
input of the DNN and still use all the compressed signals at
the filtering operations. This is purely artificial, since available
signals at the filtering operations should also be available to
predict the mask. However, this setup allows us to disentangle
the impact of a broken link on the DNN and on the MWF.
We can then analyse the performance from a DNN point of
view which is the focus of this paper3.

D. Performance evaluation

Three metrics are used to evaluate the results: the SIR
improvement [23], denoted as ∆SIR; the source to artifacts
ratio (SAR); and the short-time objective intelligibility (STOI)
improvement [24], denoted as ∆STOI. The references needed
to compute these metrics are the non-reverberated noise and
speech signals. All the reported results correspond to the
average metric over all the nodes of all configurations of
the test set. This was decided in order to report the overall
performance in the microphone array.

V. RESULTS AND ANALYSIS

A. Resilience to missing channels

We compare the four models introduced in Section IV-A
on the testing set and report the results in Figure 4. Replacing
the missing channels by a fixed value can help the DNN to
be resilient to link failures, at the condition that this DNN
was trained to deal with such signals (MN0−3, MN-SE). The

3Preliminary studies showed that missing channels at the filtering operation
lead to a limited drop of performance.

Fig. 4. Performance over link failures. L refers to the number of broken
links. The error bars represent the 95% confidence intervals.

second DNN (MN0), which was not trained with broken links,
fails to enhance the speech as soon as one of the four nodes
is disconnected from the rest of the microphone array. If the
DNN is trained to deal with missing channels (MN0−3), it
can still exploit the spatial information sent from the other
nodes since MN0−3 outperforms the single-node DNN when
2 or fewer links are broken. When all nodes are disconnected
(L = 3), the noise reduction is lower than with the single-
node CRNN, because the amount of missing data is too high
for the MN0−3. Still, the performance in terms of SAR and
STOI is equal between the two models. With an attention
mechanism (MN-SE), the noise reduction also decreases when
the number of broken links increases, but to a lesser extent than
for the other models, and it always significantly outperforms,
in terms of SIR and SAR, both the single-node DNN and the
multi-node DNN trained with missing channels. Besides, the
SAR with MN-SE is constant over L, which shows that using
this model does not introduce artefacts although channels are
missing. This means that the SE mechanism not only helps
to exploit the spatial information that is actually received, but
also increases the performance of the CRNN even when no
compressed signal is received (L = 3). Lastly, the increased
difference between the performance of MN0−3 and MN-SE
when L increases indicates a stronger resilience of MN-SE
compared to the former model.

B. Dissociation of the effects of the attention mechanism

In this section, we propose an ablation study to disentangle
the effects of the SE branch and the effects of the weights.
The performance improvement can have two reasons. The first
reason is that the weights applied to the channels highlight the
channels of interest. The second reason is that the SE branch
helps the whole DNN to train better. Considering these two
hypotheses, we train the following three DNNs:

• rand-MN; a multi-node CRNN without SE mechanism,
and with random weights applied on the input channels.

• SE-rand-MN; a multi-node CRNN with SE mechanism
but whose attention weights are replaced by random
values at train time and at inference time.



Fig. 5. Performance over link failures when the effects of the SE mechanism
and of the weights are dissociated. L refers to the number of broken links.
The error bars represent the 95% confidence intervals.

• SE-1-MN; a multi-node CRNN with SE mechanism but
whose attention weights are replaced by 1 at train time
and at inference time.

The results of these models, together with the results of
the previous models MN-SE and MN0−3, are represented in
Figure 5. The impact of the SE module alone can be studied
by comparing MN-SE-rand with MN-rand and MN-SE with
MN0−3. In both cases the SE module helps improving the
overall performance and the robustness of the model. The
impact of the weights alone is more complex to analyse.
Comparing MN-rand with MN0−3 and MN-SE-rand with
MN-SE-1 helps understanding the influence of applying any
weights on the input of the CRNN. Although this brings worse
performance in terms of STOI, it increases the robustness of
the models. Indeed, when L increases, the performance of the
models with weights decreases much less than the performance
of the models without weights. Lastly, comparing MN-SE-1
with MN-SE helps analysing the influence of applying the
correct weights on the input of the CRNN. From the results,
using the correct weights increases the SIR and SAR but
lowers the STOI. However, the model without weights is
much less robust to missing channels, as the STOI decreases
drastically when L increases. To sum up, the SE branch helps
increasing the performance of the whole model, even with
random weights applied on the input of the CRNN. Using
the correct values of the weights is important primarily for a
higher number of missing channels.

VI. CONCLUSION

We introduced a distributed multichannel speech enhance-
ment algorithm that handles a varying number of input chan-
nels. Based on an attention mechanism, it exploits the spatial
information and minimizes the performance drop due to link
failures. An ablation study led to the conclusion that the SE
mechanism helps to improve the performance of the whole
network, and that the weights importance increases with the
number of missing channels. Future works foresees to analyse
the behaviour of the proposed system when the assumptions
about the bit-rate and synchronization do not hold.
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