N

N
N

HAL

open science

Bulk modulus of soft particle assemblies under
compression

David Cantor, Manuel Cardenas-Barrantes, Itthichai Preechawuttipong,

Mathieu Renouf, Emilien Azéma

» To cite this version:

David Cantor, Manuel Cardenas-Barrantes, Itthichai Preechawuttipong, Mathieu Renouf, Emilien
Azéma. Bulk modulus of soft particle assemblies under compression. Powders & Grains, Jul 2021,

Buenos Aires (virtual), Argentina. 10.1051/epjconf/202124914014 . hal-03259722

HAL Id: hal-03259722
https://hal.science/hal-03259722

Submitted on 14 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-03259722
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

EPJ Web of Conferences 249, 14014 (2021)
Powders and Grains 2021

https://doi.org/10.1051/epjconf/202124914014

Bulk modulus of soft particle assemblies under compression

David Cantor"*, Manuel Cardenas-Barrantes?, Itthichai Preechawuttipong3, Mathieu Renouf?, and Emilien Azéma

2,4

! Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Québec, Canada

2LMGC, Université de Montpellier, CNRS, Montpellier, France

3Department of Mechanical Engineering, Chiang Mai University, Chiang Mai, Thailand

“Institut Universitaire de France (IUF), Paris, France

Abstract. Using a numerical approach based on the coupling of the discrete and finite element methods, we
explore the variation of the bulk modulus K of soft particle assemblies undergoing isotropic compression. As
the assemblies densify under pressure-controlled boundary conditions, we show that the non-linearities of K
rapidly deviate from predictions standing on a small-strain framework or the, so-called, Equivalent Medium
Theory (EMT). Using the granular stress tensor and extracting the bulk properties of single representative
grains under compression, we propose a model to predict the evolution of K as a function of the sample’s solid
fraction and a reference state as the applied pressure P — 0. The model closely reproduces the trends observed
in our numerical experiments confirming the behavior scalability of soft particle assemblies from the individual
particle scale. Finally, we present the effect of the interparticle friction on K’s evolution and how our model

easily adapts to such a mechanical constraint.

1 Introduction

Soft granular particulate materials such as powders, gels,
bubbles, rubber chunks, and even cells are challenging
materials to characterize and model due to the large de-
formation they can undergo. Besides, their discrete na-
ture calls for adequate interaction laws for multi-contact
systems. Amongst the different numerical approaches to
model highly deformable particle assemblies, the discrete-
element approach is one of the most frequently used. By
means of smoothed interaction laws between bodies, simu-
lations may reproduce some elasticity due to a virtual con-
tact deflection, although the bodies themselves do not un-
dergo strains. Using this approach, the elastic properties of
particle assemblies have been studied, however restricting
considerations of the small-strain domain of deformations
[1-4]. More recently, the development of more advanced
methods coupling discrete and finite elements [5—10] or
meshless methods [11, 12] have permitted to explore the
compression behavior of soft granular media beyond jam-
ming. Nonetheless, the study of the evolution of elastic
properties of particulate assemblies undergoing large de-
formation is still challenging to characterize.

In this paper, we simulate assemblies of 2D circular
particles under isotropic compression using the contact dy-
namics method and the finite-element method to account
for the large deformation of meshed bodies. Systemati-
cally increasing the pressure on assemblies of disks, we
have access to the macroscopic stress-strain relation let-
ting us deduce the evolution of the bulk modulus during
the compaction. Then, using the granular stress tensor and
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the behavior of individual representative particles, we pro-
pose an analytical equation for the bulk modulus evolution
fitting very well our numerical experiments.

In Sec. 2, we present the details of the numerical ap-
proach and the isotropic test procedures. Then, in Sec. 3,
we show the stress-strain relation measured at the sample
scale and the bulk modulus evolution. In order to look
for the origins of the macroscopic bulk modulus, we ex-
plore in Sec. 4 the behavior of individual particles un-
der compression. In Sec. 5, we introduce an analytical
approach based on the stress tensor decomposition from
microstructural parameters letting us deduce an equation
for the macroscopic bulk behavior. Finally, in Sec. 6, we
present the effect of the interparticle coefficient of friction
on the evolution of the bulk modulus and how our ana-
Iytical model easily adapts to such mechanical constraint.
Section 7 concludes this work with a summary and per-
spectives.

2 Numerical procedures

To simulate assemblies of soft particles, we used the cou-
pling of the discrete method known as contact dynamics
(CD) [13, 14] and classic finite elements in the framework
coined as non-smooth contact dynamics (NSCD) by M.
Jean [15]. With this method, we were capable of building
assemblies of circular meshed bodies that interact using
unilateral contacts and dry friction.

We built samples composed of N, = 1500 circular
bodies slightly disperse in size (the ratio between the max-
imal over the minimal particle diameter is 1.5), meshed
using 92 triangular finite elements, and deposited within

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Screenshots of a sample under a relative pressure
P/E = 5 x 107 (left), and P/E = 5 x 107" (right). The in-
tensity of the color is proportional to the volumetric strain within
the particles.

square boxes by means of an algorithm based on sim-
ple geometrical properties. For the finite elements, we
used the non-Hookean hyper-elastic material model [16],
setting incompressible bulk behavior, plane strain condi-
tions, and an elastic modulus E. We previously tested
the mesh resolution concluding that the number of finite
elements per grain we ended up using does not compro-
mise the results’ quality. Then, we set pressure controlled
conditions on the four rigid walls of the boxes in a se-
ries of steps varying the relative pressure P/E in the range
[1x107*,5x107']. The interparticle coefficient of friction
u was set to zero and gravity was neglected to avoid pres-
sure gradients. Also, note that the loading was performed
using slow gradual steps to avoid dynamic effects and pro-
mote a rapid dissipation of elastic waves. Figure 1 shows
the sample’s configuration at the beginning of the loading
and its deformed state at the end of the tests.

3 Macroscopic bulk modulus

In our simulations, we can easily track the deformations
of the servo-controlled boundary walls. For convenience,
we relate the volumetric strain of the sample ¢, to the
solid fraction ¢, as €, = —In(¢o/¢), with ¢y being the
solid fraction as the ratio P/E — 0. This reference state
can be understood either as the solid fraction the assem-
bly presents with perfectly rigid bodies or with vanish-
ing external pressure. The macroscopic bulk modulus K
can be then computed as a function of the solid fraction as
K = (dP/d¢)(dp/de,).

Figure 2 presents the evolution of K as a function of
¢. Different strategies have been used to predict the non-
linear evolution of the bulk modulus, being most of then
introduced in the small-strain framework or the Equivalent
Medium Theory (EMT) [17-20]. That approach adopts an
analogue model considering a set of springs joining the
center of mass of bodies in contact and whose deforma-
tion represents the relative approaching of their centers as
they deform. Using this type of approach, it is then pos-
sible to integrate the set of springs’ deformation and de-
duce a stress-strain relation for the whole system; thus, a
bulk equation can also be deduced. Nonetheless, the def-
inition of the spring behavior is, in that vein, at the origin
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Figure 2. Evolution of the bulk modulus during compaction in
our experiments (black disks), and the predictions given by Egs.
(2) and (5) with a dashed blue and red lines, respectively.

of the macroscopic strains and bulk evolution. Similarly,
smooth discrete-element methods can consider the force-
overlapping relations to be the spring characteristics for
an equivalent medium analogy. If we use a similar strat-
egy, we can first consider ¢ to be the average spring length
and g; = In(¢/d) to be the average strain, with d being
the average particle diameter (our numerical experiments
also show that g, = 4g,). Second, the homogeneous field
of springs allows us to suppose that the contact level pres-
sure is Py = E¢gy. The granular stress tensor can be written
as 0j = n(fif;), with the contact number density being
n. = N./V, N, is the number of contacts, V is the sam-
ple volume, and (... ) the average of contact forces f and
branch vectors £ (i.e., the inter-center vector of particles in
contact). We can then deduce a micromechanical defini-

tion of pressure as

P= Z—¢0'g, (1)
b

with the coordination number Z = 2N./N, and o, =
(ft)/d*. Note that to deduce the expression above, we
consider P = (0| + 0,)/2, where 0| and o, are the prin-
cipal stresses of tensor ;. If we consider that the coordi-
nation number evolves as a power-law of the solid fraction
(as consistently shown in previous studies as [5, 12, 21],
and also verified in our simulations), in the form (Z—Z,) =
k(¢ — ¢)?, with @ = 0.5, Z; the coordination number in
the reference state, and k a proportionality parameter eas-
ily deduced knowing that, when ¢ tends to unity, the par-
ticle structure tends to a hexagonal-like arrangement and
Z — 6. So, k = 5. Finally, considering that oy = P,, we
can deduce a microscopic definition of the bulk modulus
upon the derivative of Eq. (1) as

(5 _e0)_ 2w
K/E_47r( ) 8r

o @)

This equation is displayed in Fig. 2 with a solid blue
line. We can observe that the predictions with such an ex-
pression can be considered relatively good for the first part
of the compression, and up to ¢ ~ 0.85. Beyond that value,
the bulk modulus starts to increase more rapidly and is ex-
pected to diverge as the solid fraction tends to unity (i.e.,
the sample ends up behaving as an incompressible solid).
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Figure 3. Compaction behavior of a single particle under

isotropic compression. The dashed red line shows the analytical
expression in Eq. (3) nicely fitting the results of our simulations.
Screenshots show the deformed state of the particles inside the
squared box.

The equivalent medium composed of springs cannot cap-
ture the diverging behavior of the bulk. It is necessary then
to track the evolution of K for the multi-particle system us-
ing an alternative approach.

4 Single-particle scale

Let us consider the system composed of a single soft par-
ticle inside a square box and following the preset bound-
ary conditions as undertaken with the assembly. Figure 3
presents the evolution of the corresponding solid fraction
(¢,) as a function of the applied pressure P,. Note that the
volumetric strain for this case is akin to the multi-particle
system but denoted &, ,. The compression behavior of the
single-particle test can be considered analogous to the col-
lapse of a cavity inside a circular body employing a ho-
mogeneous external pressure [22]. For that case, elastic
solutions allow us to write the relation P, — ¢, as

3

P,/E = —bln(—¢”’m“x 0 )

¢p,max - ¢p,0

with ¢, ., the solid fraction as P, — oo, and ¢, = n/4
the solid fraction at the reference state (i.e., as P, — 0).
Finally, parameter b is found out to be ~ 0.12 after fitting
Eqg. (3) to our data. We can observe that this expression fits
very well the behavior of the single-particle compression
as it is plotted with a red dashed line in the same Fig. 3.
We can then easily deduce an analytical bulk modu-
lus equation by using the derivative of the last expression,
yielding to K,/ E = (b¢p,)/(¢pmax — ¢p). In sum, at single-
particle scale, we can comprehensibly identify analytical
equations for both the compression and bulk evolution.

5 Conciliating scales

Let us consider again Eq. (2) on the macroscopic bulk
modulus. In the limit of ¢ — ¢y, and in agreement with
many previous works [17-20], that equation shows that
K o Z¢E. This means that, for small deformations, the
bulk modulus scales via the Young modulus of a single
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Figure 4. Evolution of the macroscopic bulk modulus as a func-
tion of the solid fraction for different values of interparticle co-
efficient of friction u. The dashed lines are drawn using Eq. (5)
fitting cases u = 0.0 (black) and ¢ = 0.8 (orange).

particle and the structural parameters Z and ¢ of an as-
sembly of particles. Naively, we may wonder whether
the single-particle bulk modulus K|, is more representa-
tive than the Young modulus E for such scaling. In other
words, is there a more general scaling between the bulk
modulus of the multi-particle and the single-particle sys-
tem? In fact, by comparing these two systems at equivalent
deformation (i.e., &, = &), our numerical simulations re-
veal that
Z¢

K/E =K. 4)

Equation (4) points out that the single-particle con-
figuration can indeed be considered the smallest repre-
sentative scale in our multi-particle system. Now, by re-
placing K, by its analytical form identified before and
by mapping ¢ with ¢, (since &, = &,,), we get a gen-
eral micro-mechanically based constitutive equation for
the bulk modulus evolution beyond the jamming as

L b
- 27r(¢max - ¢)

Equation (5) is shown in Fig. 2 showing an excellent
agreement with the measured K in our tests. In this case,
the equation follows the nonlinear increase of K for large
deformations and its divergence.

K/E {Zo + k(¢ — ¢o)"}. &)

6 Effect of the coefficient of friction

The inter-particle coefficient of friction is a mechanical
constraint rapidly limiting the particle reorganization and,
thus, their capacity of filling voids. We reproduce a series
of tests with the same samples as for the frictionless case,
but setting this time the interparticle coefficient of friction
to u, = {0.2,0.4,0.6,0.8}. We tracked the evolution of
pressure and deformation, and finally, we could compute
the evolution of K for these cases.

Figure 4 gathers the results for the evolution of K as a
function of the assembly’s density for the different values
of u,. We can observe that for small increments of solid
fraction after jamming, the evolution of K is indistinguish-
able for the different coefficients of friction. Nonethe-
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less, for higher values of solid fraction (i.e., larger defor-
mations), the data gathered from the simulations slightly
shifts towards the left as u,, increases. This means that the
additional constraint added by friction limits the deforma-
bility of the assembly. Many authors have shown that fric-
tion modifies the jammed state of rigid grains assemblies
and the maximal solid fraction a soft assembly of grains
can reach [23, 24]. Consequently, the reference state, as
P — 0, and the limit state, as P — oo, are modified with
respect to the frictionless case. These facts indeed affect
the proposed model in Eq. (5). While for the frictionless
case Zg =~ 3.9, ¢p =~ 0.805, and our fitting procedure re-
sulted in @pq,y = 0.998, the case with u = 0.8 shows that
Zy =~ 3.6, ¢po ~ 0.795, and fitting of the data ends up es-
timating ¢,,,x ~ 0.978. Using these parameters, we plot
in the same figure the predictions of bulk evolution using
our model with dashed lines. We can observe that the fit-
ting is still excellent, and we can follow the macroscopic
evolution of the bulk modulus up to densities very close to
unity.

7 Conclusions

We studied the bulk modulus behavior of two-dimensional
particle grain assemblies undergoing isotropic compres-
sion using a coupled discrete-finite element simulation
platform. By finely describing the assemblies’ compaction
behavior, we presented the bulk modulus evolution as a
function of the solid fraction.

We first introduced a model approach for the bulk
modulus evolution standing on the ideas of the equivalent
medium approach and considering the soft particle assem-
bly as a series of interconnected springs governed by the
particles elastic modulus E. We observed that such an ap-
proach leads to a formulation of the bulk modulus evo-
Iution that is acceptable only for relatively small strains
and does not reproduce the divergence of K as the den-
sity approaches unity. To overcome this challenge, we first
studied the compression of a single particle under isotropic
compression in a box. We observed that the compression
behavior and bulk evolution for such a case could be an-
alytically obtained based on elastic solutions of a circu-
lar geometry under compression. Then, standing on the
definition of the granular stress tensor and supposing that
the most elemental scale of the assemblies is the single-
particle, we conciliated the single and multi-particle scales
and deduced a model equation for K. Our model turned
out to reproduce the evolution of the bulk modulus very
well, highlighting its strong non-linearities and asymp-
totes. We finally showed that it is straightforward to in-
troduce friction between particles into our model and then
consider the impact this mechanical constraint has on limit
configurations the system can reach.

The reader can also deduce that our modeling approach
lets us describe the compaction evolution the writing of a
relationship P vs. ¢. This constitutive description can be
found in Ref. [25] by the same authors of this work, or
in Ref. [26] taking into account mixtures of rigid and de-

formable particles. Nonetheless, to enrich the constitutive
modeling of granular materials and structures upon dis-

crete systems, it is still necessary to explore the shear be-
havior of soft particle media. It is also important to extend
this work to varied shape and size particles, as well as to
the 3D case.
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