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Abstract. The shape of the particles and local friction, separately, are known to strongly affect the macroscopic
properties of an assembly of grains. But the combined effects of these two parameters still remain poorly
described. By means of extensive two dimensional contact dynamics simulations, we perform a systematic
analysis of the interplay between friction and shape on strength properties of granular systems. The shape
of the particles is varied from disks to triangles, while the friction is varied from 0 to 0.7. We find that the
macroscopic friction first increases with angularity, but it may decline (for low friction values), saturate (for
intermediates friction values), or continue to increase (for large friction values) for the most angular shapes. In
other words, the effect of the particle’s angularity on the shear strength depends on the level of sliding friction.
In contrast, the effect of local friction on the shear strength does not depend on the specific properties of shape.
The results presented here highlight the subtle coupling existing between shape and friction effects.

1 Introduction

Particle shape is an intrinsic characteristic that plays an
important role in the microstructure and mechanical be-
havior of granular media [1]. Several studies have re-
cently been carried out for angular shapes [2–7], elongated
particles [8–11], non-convex shapes [12], as well as for
“super-balls” [13]. All these studies have revealed rather
unexpected behaviors, such as the non-linear increase of
shear strength as particle’s angularity is increased [4] or
the non linear variation of the packing fraction with re-
spect to the particle’s aspect ratio [9], to name a few. The
non-linear variation in strength finds its origin in subtle
shape-dependent compensation mechanisms at the micro-
scopic scale between stress transmission, the mobilization
of friction, and grain connectivity.

Along with particle shape, local friction is a key ele-
ment in the build-up of anisotropic structures at the ori-
gins of strength. Basically, it has been constantly shown
in the literature that shear strength first increases with lo-
cal friction and then saturates at a constant value, even if
local friction continues to increase [14–20]. This has been
shown in assemblies of disks, spheres, and cube-like par-
ticles [21, 22]. These results have been verified in a para-
metric study where the particles interact by means of both
sliding friction and high rolling resistance [18, 23]. But the
use of a rolling resistance in disks assemblies ignores the
geometrical restrictions induced by a non-circular shape.
In this sense, such studies assume that shape and friction
are uncoupled.
∗e-mail: itthichai.p@cmu.ac.th

The aim of this work is thus to take a step forward in
the understanding of the joint effect of local variables by
considering the effects of friction and particle shape on the
macroscopic strength of granular systems. In the follow-
ing, we present the numerical procedures to build and test
the shear strength of samples composed of (2D) angular
grains (Sec. 2). In Sec. 3, we focus on the evolution of
shear strength and packing fraction as a function of shape
and friction. We conclude in Sec. 4, with a summary and
some perspectives.

2 Numerical setup

We use the Contact Dynamics (CD) method, a class of
discrete element method (DEM), with irregular polyg-
onal particles [24, 25]. The CD method is based
on implicit time integration of the equations of mo-
tion together with a nonsmooth formulation (i.e no reg-
ularization) of the contact normal force and dry fric-
tion. Consequently, the only physical parameter is the
coefficient of friction µs, which is varied in the set
{0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. The method
is implemented in the LMGC90 plateforme 1, a multipur-
pose software developed in Montpellier, capable of mod-
eling collections of deformable or undeformable particles
of various shapes by means of different algorithms as well
as a parallel version to ensure reasonable CPU times [26].

Each numerical sample is composed of 10 000 parti-
cles, geometrically deposed and randomly oriented in a

1https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home
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rectangular box with frictonnless walls. We prepare 11
packings, each of them composed of particles having the
same number of sides ns: one packing of disks and 10
packings with ns ∈ [50, 30, 20, 10, 8, 7, 6, 5, 4, 3]. In ad-
dition, shape properties were described by the angularity,
α = 2π/ns. In order to avoid local ordering, a slight
polydispersity in size and shape is introduced. Particle
size is defined from the circumscribed circle diameter of
each polygon and varied between dmin and dmax, where
dmax = 1.25dmin, with an uniform distribution per volume
(area) fraction. Particle shape polydispersity is controlled
by the level of irregularity of the polygons by randomly
perturbing the position of the vertices over a small interval
angle. In all cases, gravity and friction between particles
and walls are set to zero.

For each combination of ns and µs, the packing is
isotropically compressed under a stress σ0 applied at the
top and right walls, while the left and bottom walls are kept
fixed. At the end of isotropic compression, this is when a
jammed mechanically stable configuration of particles is
obtained (see the example in Fig. 1), a bi-axial compres-
sion is imposed. We impose a vertical compression with a
constant velocity v0 and a lateral constant confining stress
σ0. Quasi-static limit behavior is considered in this study,
controlled through the inertial number I, set to 5 × 10−4.

3 Numerical result

3.1 Definition of macroscopic quantities

For a 2D system, we define the deviatoric stress as q =

(σ1 − σ2)/2 and the mean stress as p = (σ1 + σ2)/2, with
σ1 and σ2 being the principal values of the stress tensor σ.
In a granular system, σ is defined from the contact scale
by the well-known formula [27]:

σi j =
1
V

∑
cεV

f c
i lci , (1)

where f is the contact force, ` is the branch vector (i.e., the
vector joining the centers of particles interacting at contact
c) and the sum runs over all contacts in a control volume V .
According to the Mohr-Coulomb model, the shear strength
is defined from the ratio [1]:

µ =
q
p
. (2)

We also define the vertical strain ε1 = ∆h/h0, where h and
h0 are the height and initial height of the box, respectively,
and ∆h = h0 − h is the cumulative displacement. Finally,
the packing fraction is given by:

ρ =

∑
p Vp

V
, (3)

where Vp is the volume of a particle p inside the volume
of the box V .

3.2 Stress-strain behavior and effects of local
parameters

Figure 2 shows the evolution of q/p and ρ (inset) as func-
tions of the vertical strain ε1: (a) for packings made of

(a) (b)

(c) (d)

(e) (f)

Figure 1. Particle scale views of dense samples at end isotropic
compression: (a) ns = 3, (b) ns = 5, (c) ns = 7, (d) ns = 10,(e)
ns = 20, and (f) disks.

pentagons and for all values of µs, and (b) for µs = 0.5 and
all shapes simulated in this paper. Basically, for all fric-
tions and shapes the shear strength first increases from 0
and then reaches a constant shape-dependent and friction-
dependent value for larger deformations. Typically, for
ε1 > 0.2 we can consider that the shear strength is con-
stant up to small fluctuations. But what is also interesting
to note on these figures is that there is a stress peak (q/p
goes through a maximum) only if the inter-granular fric-
tion is greater than µs > 0.1. Let us recall that, due to
isotropic compression, all samples are initially dense, and
thus the existence of the strength peak cannot be attributed
exclusively to high values of the packing fraction.

Along the same line, we see that the packing fraction ρ
decreases from its initial value and tends toward a constant
value, also for ε1 > 0.2. From these observations, we
thus define the residual shear strength µ∗ and the residual
packing fraction ρ∗ as the mean values of µ (ρ respectively)
in the range of ε1 ∈ [0.2, 0.4].

The variations of the residual shear strength µ∗ as a
function of friction µs and for all angularities α are shown

2
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Figure 2. Stress ratio q/p and solid fraction ρ (inset) as functions
of the vertical strain ε1. (a) Packings of pentagons for all values
of the local friction µs. (b) Packings with µs = 0.5 for all shapes.

in Fig. 3, and as a function of α for all µs in Fig. 4. Ba-
sically, for all shapes a similar trend is observed. This is,
µ∗ first increases with µs and then saturates at a shape-
dependent value. Our result is consistent with previous
works with assemblies of disks, spheres, or cube-like par-
ticles in 3D [16, 18, 20, 21, 28].

In contrast, the evolution of µ∗ with α clearly depends
on µs. For weakly frictional systems (i.e., for µs below
0.3), µ∗ first increases with α but it declines as particles
become more angular (i.e., for ns below 6). This means
that a weakly frictional packing composed of triangles or
squares can have a macroscopic friction that is smaller
than that of a packing of disks. For intermediate values of
friction, typically for µs ∈ [0.3, 0.4], µ∗ remains constant,
while it continues to increase for frictions larger than 0.4.
This behavior is rather unexpected and clearly suggests
that representing particle shape through a rolling friction
coefficient in circular particle assemblies may be accept-
able for intermediate values of sliding friction [29], but it
is not sufficient for small, or on the contrary large, friction
values.

Finally, in the insets of Figs. 3 and 4 we show the
variations of the residual packing fraction ρ∗ as a function
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Figure 3. Macroscopic friction coefficient µ∗ and packing frac-
tion ρ∗ (inset) in the steady state, as functions of the contact fric-
tion µs. The error bars show the standard deviation in the steady
state.
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Figure 4. Macroscopic friction coefficient µ∗ and packing frac-
tion ρ∗ (inset) in the steady state, as functions of the particle an-
gularity α. The error bars show the standard deviation in the
steady state.

of µs for all α, and as a function of α for all µs, respectively.
Basically, ρ∗ varies conversely as µ∗. More precisely, ρ∗

increases with α in weakly frictional systems and declines
with α for the largest values of µs.

4 Conclusions

To conclude, by means of two dimensional Contact Dy-
namics simulations, we presented a systematic analysis of
the coupled effects of particle shape and local friction on
the strength properties of granular systems. Assemblies
composed of irregular polygonal particles were systemati-
cally sheared from their initial state to a large deformation
until a steady state was reached. The shape of the particles
was varied from triangles to disks and friction was varied
from 0 to 0.7.

For all shapes, we find that the shear strength first in-
creases with local friction and then saturates at a shape-
dependent value. This result extends previous results ob-
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tained for simplified shapes to a large variety of shapes.
But, a counterintuitive finding of this work is that the ef-
fect of particle shape on the shear strength strongly de-
pends on the value of the local friction. The shear strength
first increases for all shapes, but it may decline, satu-
rate or continue to increase at larger angularity depend-
ing on the value of the local friction. This behavior is
rather unexpected, and suggests a complex interplay at
the microscopic scale [30]. Furthermore, our numerical
results clearly highlight that attempting to represent non-
circular/non-spherical shapes by hindering the rotations in
assemblies of circular/spherical particles [31, 32] must be
reconsidered. In this case, the rolling friction coefficient
could depend on sliding friction, and new behavior mod-
els would need to be developed.
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