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Abstract—In information visualization, it has become manda-
tory to assess visualization techniques efficiency either to write
a survey, optimize a technique or even design a new one. To
do so, the common way is to conduct user evaluations through
which human subjects are asked to solve a task on different
visualization techniques while their performances are measured
to assess which technique is the most efficient. These evaluations
can be complex to design and setup in order not to be biased
and, in the end, their results can become contestable when the
evaluation methods standards evolve. To overcome these flaws,
new evaluation methods are emerging, mostly making use of
modern and efficient computer vision techniques such as deep
learning. These new methods rely on a strong assumption that has
not been studied deeply enough yet: humans and deep learning
models performances can be correlated.

This paper explores the performances of both a state-of-the-art
deep neural network and human subjects on an outlier detection
task taken from a previous experiment of the literature. The
objective is to study whether the machine and humans behaviors
were different or if some correlations can be observed. Our study
shows that their results are significantly correlated and a machine
learning model efficiently learned to predict human performances
using deep neural network metrics as input. Hence, this work
presents a use case where using a deep neural network to assess
human subjects performances is efficient.

Index Terms—Information visualization, Deep learning, User
evaluation, Correlations, Automated evaluation

I. INTRODUCTION

Since many years, information visualization has established
itself as an efficient way to explore complex data [1]. Victim of
its own success, the number of visualization techniques greatly
increased. Now that the scope of techniques is very large, the
need to evaluate them has emerged to answer questions such
as “which technique fits best to my data and task?” or “is my
visualization technique better than existing ones?”. As it is
complicated to quantify visualization techniques efficiency, it
is common to compare them to assess their relative efficiency
(i.e., “V ISA is better than V ISB when [condition]”). Usually,
these comparisons are conducted with user evaluations [2]–
[4]. If user evaluations methods can be different, the main
process they rely on is to ask a population of human subjects
to solve a task on data represented with different visualization
techniques, and measure their performances. The most efficient
technique to solve the task will be the one which led to the
best performances during the evaluation.

If user evaluations are the main (if not the only) accepted
method to evaluate visualization techniques, it is principally
because the targeted end-users of these techniques are human

beings. Hence, evaluating the techniques efficiency on human
subjects makes the experimental results generalization to all
potential end-users (i.e., humankind) straightforward. However,
they also comprise limiting constraints and drawbacks, some of
which are described in the following. (i) The experiments with
users involvement can be complicated and time-consuming
to setup and conduct. (ii) Special care must be taken in
order not to bias the experiment with preliminary design
choices [5] (e.g., selected trials conditions, evaluation duration,
subjects population). (iii) Subjects environments must all be
equally conducive for conducting the experiment. (iv) It is
complicated to recruit a sufficient number of subjects. These
drawbacks make evaluations difficult to reproduce. Although
it is possible to minimize them, there most of the time remain
some subjective design choices that can be contested or become
contestable when user evaluation standard methods evolve.

Lately, the great performances of Deep Learning (DL) on
image analysis tasks led to an increase of the information
visualization community interest in these techniques. More
specifically, some researchers are studying how accurately DL
techniques can assess representations readability and how well
they can model human perception. Therewith, we expect to be
able to overcome user evaluations flaws by using DL-based
automated approaches. If some works have already shown how
DL techniques could be used to help visualization techniques
evaluations [6]–[9], only a few measured how Deep Neural
Networks (DNNs) are correlated with humans on perception
tasks [6], [10].

In this paper, we make use of an existing experiment data
from Giovannangeli et al. [7] to explore the relations between
DL techniques and human behaviors on perception tasks. In
their study, the authors built a difficulty metric based on the
performances of a Deep Neural Network to statistically assess
human perception of an outlier detection task difficulty. The
experiment itself and its data are detailed later in Section III.

The contributions in this paper are the qualitative and
quantitative study of the correlations between a DNN and
human subjects performances when requested to solve the
same visual outlier detection task. In the qualitative study,
we compare the DNN and humans known strategies to solve
the task. The quantitative study measures the correlation
coefficients between some DNN metrics and human subjects
performances. These correlation coefficients are shown to be
strong, and we further increase the understanding of the DNN
results to assess human performances by fitting a Machine



Learning (ML) model to predict human performances from
various DNN metrics. The model effectively approximated a
function relating the DNN performances to human subjects
performances and improved our understanding of how and
when we can trust the DNN results to assess human behaviors.
More generally, this work contributes to the ML4VIS [11] field
by validating an application of DL techniques to assess human
behaviors on perception tasks and shows an example where
DNN results are strongly correlated with human performances.

The remainder of the paper is organized as follows. Section II
presents related works on ML4VIS and existing comparisons of
DNNs with human capabilities. Section III presents the original
experiment from which we use the DNN and human subjects
data to study if they are correlated. Section IV qualitatively
presents the relations between the DNN and human subjects
strategies to solve the task, while Section V presents the
quantitative study of their performances correlations. Finally,
we conclude the study in Section VI and present leads for
future work.

II. RELATED WORKS

A. Deep Neural Networks for Information Visualization

Since Deep Neural Networks (DNNs) have proven to be
efficient computer vision techniques, several works made use of
them to assess humans capabilities to solve a task. In a survey
on quality metrics for information visualization, Behrisch
et al. [9] stated that DNNs were a promising direction for
evaluating representations qualities. Some studies continued
exploring this thematic, comparing human subjects to DNNs
on the interpretation of simple graphical elements [10] or
even complex data structures representations [6], [8]. This
field of research is getting more and more interest in the
recent years as shown in the Wang et al. [11] survey on the
application of Machine Learning (ML) techniques to various
Information Visualization domains, which they called ML4VIS.
Some studies are already defining generic workflows to make
use of Deep Learning (DL) models to address some information
visualization problems [6], [12]. These methods rely on the
assumption that ML techniques could model the perception
of graphical content by humans. Yet, we still lack knowledge
about this cornerstone assumption and we currently know more
about the differences between humans and ML techniques than
we know about their correlations. This lack of knowledge
makes it ambiguous how well these methods are suited for
the problems they address and makes information visualization
experts skeptical about them.

B. Deep Neural Networks and Humans

The comparison of computer vision techniques performances
and human being capabilities were initially studied to motivate
and drive the research axes of these computer programs. For
example, Fleuret et al. [13] studied how some ML techniques
performed compared to human subjects on a scene categoriza-
tion task. They concluded that ML techniques performances
remained worse than their subjects ones for this task. Stabinger

et al. [14] extented Fleuret study by comparing two state-
of-the-art DNNs (namely, LeNet and GoogLeNet) to Fleuret
subjects performances on the same task and data. Again, they
found human subjects to outperform these computer programs
both in terms of accuracy and training time. They claimed that
the better performances of human subjects were due to their
abstraction capabilities and prior knowledge. Recently, Dodge
and Karam [15] compared Convolutional Neural Networks
(CNNs) and humans performances when asked to classify dogs
on images with varying distortion. They found that DNNs
accuracy was greater or equal to human accuracy on non-
distorted images. As the distortion increases, their correlations
decreases. Finally, CNNs were not able to efficiently solve the
classification task on images with high distortion, while human
subjects could still. They imputed this to humans capabilities
to consider the global image and abstract its meaning even
with very pronounced distortions. On the contrary, it becomes
difficult for the CNNs convolution operations to extract features
as images becomes noisy. They conclude that DNNs remain
interesting tools despite their performances on distorted images
since they are much faster than humans to solve the task. For
example, they state that humans take one minute in average to
classify an image in the ImageNet dataset, and are likely to lose
performances as they fatigue. Dodge and Karam [16] continued
this evaluation with another study where their human subjects
were only exposed the images to classify for 100ms. Still,
human subjects outperformed DNNs on distorted images. They
concluded that humans higher accuracy was not favored by high-
level interpretation capabilities since their better performances
are reached using early human visual system only.

For the most part, these works compared humans and DNNs
accuracy on classification tasks to study which was best to solve
them under various circumstances. However, only a few of
these works studied the correlations that could occur between
them and none of them studied information visualization related
tasks. Haehn et al. [10] reproduced existing perception studies
with CNNs and compared their performances to human subjects
ones. The studies consisted in evaluating a set of elementary
graphical perceptual tasks across various encoding. They found
that CNNs are not good models for human graphical perception
and that their strengths are the opposite of humans ones. CNNs
are better at solving tasks that require to interpret simple
elements many times, whereas humans are more capable of
interpreting complex representations requiring a higher level
of abstraction or prior knowledge. Finally, Giovannangeli et
al. [6] reproduced two information visualization evaluations
of graph representations (i.e., representations of complex data)
with CNNs. They were able to draw the same conclusions as
the experiments they were reproducing and that were conducted
on human subjects. They concluded that the CNNs and humans
performances might be correlated, although such a claim would
require further investigations.

III. ORIGINAL EXPERIMENT: HUMANS AND RESNET DATA

In this section, we describe the experiment we used the data
of to study correlations between human performances solving



(a) color type (b) shape type

(c) redundant type (d) conjunction type

Fig. 1: Examples of images of the original experiment [7]. Each
image has a different Type, has exactly 4 #colors, 3 #shapes,
and the outlier is at position 8 (second row, first column).

an outlier detection task in abstract graphical content and the
same task performed by ResNet [17], one of the most popular
and efficient DNN frameworks.

A. Description of the Original Experiment

The Deep Neural Network (DNN) and human subjects data
used to study correlations are taken from the Giovannangeli et
al. [7] study of the capacity limit of color and shape visual
attributes. They evaluated a task that consisted in locating
an outlier stimulus in a 8× 8 grid of colored shapes. The
experiment parameters space comprized various possibilities
of stimuli aspects. The task difficulty was defined by the
outlier encoding Type and the display heterogeneity. Type is
the parameter that encodes the visual attributes which make
the outlier unique in the grid and was shown to be the major
condition of the task difficulty. It has four values: color means
the outlier color is unique in a grid; shape means the outlier
shape is unique; redundant means its color and its shape are
both unique; and conjunction means its combination color-
shape is unique. The experiment parameters space is presented
in Table I and example images can be seen in Figure 1.

B. DNN-based Metric

In their experiment [7], authors used a DNN-based metric to
assess how variations of the outlier encoding and the display
heterogeneity affected the task difficulty. The process consisted
in training a DNN model architecture (in this case, ResNet [17])
to solve the task and statistically study how the variations
of some conditions affected its performances, which is then
interpreted as a difficulty metric. With this process, they were
able to evaluate a broad parameters space (3290 configurations

Visual attribute values Image
Shape Color Position Type (Outlier encoding) #colors #shapes

#1B9E77 0 color 1 1
#D95F02

... 2 2
#7570B3 63 shape 3 3
#E7298A 4 4
#66A61E redundant (red.) 5 5
#E6AB02 6
#A6761D conjunction (conj.) 7

-

TABLE I: Parameters space of the original experiment [7].
Every stimulus was defined by a Shape, a Color and a Position
corresponding to the row-major order of the grid. Each image
was given an outlier encoding Type, number of colors (#colors)
and number of shapes (#shapes). Underlined values were
the ones kept and uniformly distributed after the DNN-based
parameters space reduction for the user evaluation.

repeated 64 times each) and the resulting metric was designed
to their specific task and data. The metric was finally used to
refine their hypotheses and to sub-sample the parameters space
of a user evaluation (see Table I underline parameter values).
Finally, the latter user evaluation studied these hypotheses and
measured the capacity limits of color and shape.

Their method rely on the assumption that the DNN and
human subjects performances would be affected by the same
conditions (variations in display heterogeneity and outlier
encoding). However, they also supposed that the behaviors of
humans and DNNs were not expected to be strictly correlated,
and their study did not aim at exploring their hypothetical
correlations. In this work, we want to verify this assertion.

C. Experimental Data

In this paper we aim at studying how human performances
and DNN decision making are correlated. The DNN used for
outlier detection task is ResNet [17] and the data are taken
from the previous experiment of Giovannangeli et al. [7] later
referred to as original experiment.

Human subjects data are made of the 22 subjects answers
to the 44 trials of the evaluation. More specifically, subjects
Response Time (RT) on each trial was measured and we can
compute subjects Error Rates (ER) out of their answers. For
each trial, a time limit was set to 30 seconds. If a subject did
not answer within the 30 allotted seconds, a wrong answer is
registered but its RT is not accounted. In this study, subjects
performances were measured with their ER (between 0 and 1),
their mean RT (between 0 and 30 seconds) and these measures
standard deviations.

ResNet data are taken from the trained ResNet50 [17] model
performances on a test dataset (i.e., data the model has not seen
during its training), which corresponds to 21056 samples. The
model was pretrained on ImageNet and then fine-tuned with the
objective to locate the outlier on the dataset of graphical images
from [7]. Since the correlations between human subjects and DL
techniques have not been much studied on perception tasks, we
do not have any a priori about the ResNet performance metrics
that would best enable to study these correlations. The intuition



is that as the task becomes more difficult, human subjects
performances and ResNet performances will decrease. But
while human subjects performances are commonly measured
with ER and RT, there are more considerable metrics for DNN
classifiers, each of them measuring different aspects of a model
performances. Hence, the metrics we selected are among the
most common ones with classification tasks in ML community:
• Confidence: Max value of the softmax prediction vector,

i.e., the predicted class probability
• Categorical Cross Entropy (CCE): quantifies how accu-

rately the model predicted the correct class based on the
logarithm of the correct class predicted probability

• Area Under the Curve (AUC): quantifies how well a model
is able to distinguish correct from incorrect classes based
on the Receiver Operator Characteristic (ROC) curve
which plots TP rate against FP rate.

• Categorical Hinge: makes sure that the correct class
probability is greater than the sum of incorrect classes
probabilities by a safety margin

• Error Rate (ER)= 1−(T P+T N)/(T P+FP+FN+T N)
• Recall = T P/(T P+FN)
• Precision = T P/(T P+FP)
• F1 score = 2∗ (Recall ∗Precision)/(Recall +Precision)
where TP and TN are respectively True Positive/Negative

predictions; FP and FN are respectively False Positive/Negative
predictions.

IV. RESNET AND HUMAN SUBJECTS STRATEGIES

In this section, we discuss a qualitative evaluation of the
strategies employed by ResNet and human subjects to solve
the task of outlier detection in graphical images and how these
strategies can tell us about their correlations or uncorrelations.

A. Human Subjects Strategy: Perception and Visual Search

The Visual Search and Perception literature are cornerstones
to understand how human brain would process the outlier
detection task on such representations. According to this
literature, and mainly the Treisman and Gelade Feature-
Integration Theory of Attention [18], the human brain strategy
will be the following. First, the display is pre-attentively
processed: it is read as a whole (or several regions, i.e., texture
segregation) and, if the outlier pops out, the task is solved
very easily. This corresponds to the combination of bottom-
up attention (attraction by contrasts, outstanding colour our
singularities in the orientation, [18]) and top-down one, as the
visual search task was defined and subjects were instructed.
Then, a top-down processing takes place: subjects look from
most general to more specific elements of the display in a task-
driven visual search. Finally, if the task is not solved yet, human
brain goes through a top-down process of visual search: every
element is serially processed until the visual task is solved. This
behavior was confirmed in the original experiment [7] through
the qualitative study of subjects’ answers to a questionnaire.
The absence of gaze fixation data in the original experiment
unable us to verify the impact of other visual attention theories
such as central fixation bias [19] on subjects performances.

B. ResNet Strategy

By design, Convolutional Neural Networks (CNNs) model
a bottom-up process of their inputs. The first convolution
layer(s) of a CNN detect pixel-wise information while later
convolutions only work on more and more abstracted views
of the input. Although the ResNet architecture is made of
residual blocks to enable the model to work on different levels
of abstraction at once, it still follows a bottom-up process. We
assume that ResNet and human subjects performances would
only be correlated on complex cases that require subjects to
go through a serial process of the graphical patterns.

Built around convolution operations, CNNs work best at
identifying objects outlines. Hence, we can expect ResNet to
perform better when the outlier can be identified by its unique
shape. Such assumption was mentioned as a limitation in the
original experiment since it led to major differences between
ResNet and subjects error rates. In this study, we assume
that we will observe lower correlations between ResNet and
humans on this condition.

Although ResNet and humans used different means to solve
the task, the outcome of their respective strategies might still
be correlated (i.e., both strategies can be affected by the same
conditions). It is the intuition on which ML4VIS is based on.

V. (COR)RELATIONS ANALYSIS

In this section, we study the correlations and relationships
between ResNet and human subjects experimental results. Since
we do have more ResNet prediction samples than human
subjects results, we compare their performances aggregated
by various parameters. As stated in the original experiment,
the parameters that affect most the task difficulty are Type,
number of colors (#colors) and number of shapes (#shapes).
We compare ResNet and the subjects averaged performances
for each Type-#colors-#shapes combinations. This leads to
44 performances aggregations that are computed from 21056
samples for ResNet and 44∗22 samples for human subjects. In
addition to the subjects Error Rates (ER) and mean Response
Times (RT), we consider their standard deviations since two
conditions that have the same mean RT might very well
not be of the same difficulty if their standard deviations are
significantly different.

A. Correlation Coefficients

The first approach to study ResNet and subjects correlations
is with usual correlation coefficients such as Pearson [20],
which captures linear correlations. Since the Pearson
correlation coefficient (commonly referred to as R) works
best on normally distributed ensembles [21], we used the
Kurtosis and Skewness statistics [22] to determine whether
our data were normally distributed or not. When Kurtosis and
Skewness are both between −2 and +2, data are considered
normally distributed [5]. In the following, all considered
data were found to be normally distributed, meaning that
Pearson correlation coefficients and their corresponding
p-values are reliable. As stated in the original experiment,



Subjects Performances
ER ER STD RT RT STD

R
es

N
et

M
et

ri
cs

Confidence -0.851 -0.77 -0.91 -0.7
Area Under the Curve -0.846 -0.756 -0.916 -0.676

Categorical Cross Entropy 0.827 0.761 0.912 0.69
Error rate 0.806 0.759 0.903 0.699

Recall -0.806 -0.759 -0.902 -0.699
Precision -0.806 -0.759 -0.902 -0.699

Categorical Hinge 0.785 0.753 0.894 0.7
F1 Score -0.788 -0.75 -0.893 -0.687

TABLE II: Pearson correlation coefficients between ResNet
and human subjects metrics (Error Rate, Error Rate standard
deviation, Mean Response Time and Mean Response Time
standard deviation). All correlation tests were significant
(p-value� 0.001). Data are normally distributed according to
Kurtosis and Skewness statistics, making Pearson coefficients
reliable. ResNet metrics are ordered from most to less correlated
to subjects performances in average.

Type is a parameter that has a strong impact on the task
difficulty. According to Type definition (see Section III-A)
and our assumption on ResNet strategy to solve the task (see
Section IV-B), we expect ResNet–subjects correlations to be
different on the various Type values. In the next, correlations
will be studied Overall and per Type. Acceptance thresholds
for Pearson tests p-value are α = 0.05 Overall and α = 0.025
per Type (due to a Bonferroni correction).

Table II presents the Overall correlation coefficients between
ResNet metrics and subjects performances. ResNet metrics
are ordered from strongest average coefficients with human
performances to weakest ones. If all subjects performances
metrics follow the order lower is better, it is not the case for
all the ResNet metrics. Hence, we expect to observe negative
correlation coefficients (i.e., anticorrelations). For example,
as the task becomes easier, we expect ResNet Confidence
to increase whereas other metrics such as Error Rates are
expected to decrease. Coefficients signs is not what we
are interested in so we interpret both −1 and 1 as strong
coefficients, whereas −0.1 and 0.1 are weak. As we can
see, all the coefficients reveal strong correlations between
ResNet and the subjects on all pairs of metrics, the weakest
coefficient being −0.676 which remains relatively acceptable.
ResNet metrics strongest correlations are with subjects mean
Response Times where the coefficients are all stronger than
0.89. To compare, the correlation between subjects ER and
subjects RT is 0.912; p-value � 0.001. It means that the
ResNet metrics correlations with subjects RT is of the same
order of magnitude as the subjects ER one. ResNet metrics
are also strongly correlated with the subjects ER, the mean
of these coefficients absolute values being 0.814. Finally,
subjects performances standard deviations correlations with
ResNet metrics are weaker that the previous we observed,
although they remain acceptable. Correlation coefficients with
subjects ER STD are between 0.753 and 0.77, and are slightly
even weaker with subjects RT STD where they range between
0.676 and 0.7 (considering their absolute values).

Type
Overall color shape redundant conjunction

ER -0.851 -0.798 -0.86 – -0.89
ER STD -0.77 -0.806 -0.881 – -0.847

RT -0.91 -0.861 -0.487 -0.762 -0.913
RT STD -0.7 -0.813 -0.414 -0.821 -0.722

TABLE III: ResNet Confidence Pearson correlation coefficient
with human subjects performances. Results are shown Overall
and per Type (see Section III-A). Bold coefficients mean
their corresponding p-value was higher than the acceptance
threshold. The acceptance threshold was α = 0.05 Overall, and
α = 0.025 per Type (Bonferroni correction). Correlations could
not be computed on Type redundant ER and ER STD since
the subjects never made any error under this condition (i.e.,
their sequence of errors is constant).

Table II shows that ResNet Confidence is the metric that
is the most correlated with subjects performances in average.
In the following, we detail the correlations per Type between
the subjects performances and ResNet Confidence only. This
choice was made for the sake of readability and because all
ResNet metrics follow the same trend as Type varies. The
results of these correlation tests are presented in Table III.
In the Overall column, one can see the results presented in
Table II while other columns present the ResNet Confidence
correlation coefficients with subjects performances for each
Type value. On Type color, ResNet Confidence is strongly
correlated with all the subjects performances (R≤−0.798). As
opposed to Overall, the correlations with subjects ER STD are
not weaker than with subjects ER. Only a slight decrease can
be observed with subjects RT STD compared to with subjects
RT. On Type shape, ResNet Confidence is strongly correlated
with both subjects ER and subjects ER STD. However, the
coefficients of correlations with subjects RT and RT STD are
weak and the corresponding p-values are above the acceptance
threshold. With both low coefficients and high p-values,
we can conclude that ResNet Confidence is uncorrelated
with subjects RT and RT STD. On Type redundant, no
correlation coefficient could be computed on ER and ER
STD since subjects never made any errors on this condition.
Nevertheless, we see that ResNet Confidence is strongly
correlated with subjects RT and RT STD. It is noteworthy that
the correlation with RT STD is stronger than with RT, which
is the opposite of the trend we have seen on Overall results.
Finally, on Type conjunction condition, ResNet Confidence
correlation with subjects performances is always stronger
than Overall. Again, correlations with subjects performances
standard deviations are weaker than on their very performances.

In general, we observed that ResNet and human subjects
performances are strongly correlated. It is encouraging and
justifies the use of ResNet in the original experiment, although
we have seen that ResNet ER was not the most optimal
measure to base the difficulty metric on. But, these correlation
coefficients might not tell us what is the relationship between
ResNet and the subjects performances. Moreover, although



Fig. 2: Pipeline of the best regressor model selection. The three
regressors are trained with all ResNet metrics combinations.
In addition, some hyper-parameters Random Forest and SVR
are fine-tuned. The pipeline results are presented in Table IV.

the correlations are strong, they might not be strong enough
to be used as is to assess human performances. In fact, we
believe that there are more chances that the relationship between
ResNet and subjects performances is complex and that standard
correlation coefficients which work on one-to-one dimensions
may not be suited to this problem. For this reason, we will
study how the combinations of several ResNet metrics can be
related to human subjects performances.

B. Macine Learning Regression

Regression is a common way to find many-to-many or many-
to-one relations. Our assumption is that if there is a function
such that f : X → Y where X are ResNet performances and
Y are human subjects performances, then there is a relation
between the ResNet and the subjects performances. We look
for relations here (as opposed to correlations) since, if such
a relation was to exist, we could not assume that it admits
a reciprocal. The existence of this relation alone would be
sufficient since, in most ML4VIS use cases, Deep Learning
techniques are used to assess human behaviors and not the
other way around.

Since the performances we study are computed on 44
samples, Deep Learning techniques are not suited to this task
as they would require more samples. We preferred them other
state-of-the-art Machine Learning (ML) techniques that works
well with fewer data. We tested three ML algorithms to search
for the relation function. We used the Scikit-Learn python
library [23] implementation of Linear Regressor, Random
Forest and SVR (Support Vector Regression). We selected
Linear Regressor for its simplicity and Random Forest and
SVR as they are state-of-the-art and well proven models. We
used Leave One Out cross-validation [24] to make reliable
estimations of ML techniques with few samples and avoid
sample-based bias. We tested two methods to predict subjects
performances: (1) fit one regressor to predict all four subjects
performance measures, and (2) fit four regressors to predict
one subject measure each. We assumed that the second method
could be more effective since each regressor could be optimized

to predict its dedicated measure. However, the first method
appeared to be more accurate by a slight margin and is the one
that is discussed in the following. Figure 2 summarizes the best
regressor selection pipeline. As shown in the figure, we tuned
some Random Forest and SVR hyper-parameters. For Random
Forest, the number of trees varied between 1 and 400. For SVR,
the two hyper-parameters C and γ varied as proposed in [25]:
C ∈ {2−5;2−3; ...;215} and γ ∈ {2−15;2−13; ...;23}. No hyper-
parameters was tuned for Linear Regressor models. The best
selected models hyper-parameters are shown in Table IV. The
three methods hyper-parameters that have not been addressed
where left to their default value in the Scikit-Learn python
library [23]. As we cannot a priori assert which ResNet metrics
can be related to human subjects performances, each ML
method was fit with all the (255) combinations of metrics. In
the end, the best model is evaluated on the mean of 44 Leave
One Out trainings Mean Absolute Error (MAE). Although the
process is computationally expensive, it returns the best model
for each ML regressor according to all the hyper-parameters
and ResNet metrics combinations.

The best regressor models for each ML techniques are shown
in Table IV. The coefficients of determination (R2 scores)
are defined by the square of Pearson correlation coefficients
between a set of ground truths and predictions. We used R2

scores to assess how well the models learned as it is a very
common Machine Learning regression metric. As we can
see, the ML technique that learned best to predict human
performances from ResNet metrics is Random Forest, with an
R2 score of 0.956. The model used ResNet Confidence, AUC
and Recall metrics to make its predictions and obtained low
MAE scores for each performance to predict. In average, its
prediction are only 4.4% away from the subjects ER, and 1.4s
from their mean RT (which is low since RT ranges to up to 30
seconds). In view of the subjects performances, these MAEs
are significantly small enough so that we can consider the
model has found a relationship between the ResNet metrics it
used and the subjects performances.

To verify that the regression approach finds a more accurate
relation between ResNet and the subjects performances than
standard one-to-one correlations, we computed the Pearson
correlation coefficients between the subjects performances and
the best regression model predictions (i.e., the best Random
Forest). We expect these correlations to be higher than the best
ResNet metric correlations with subjects performances (i.e.,
Confidence) presented in Table III. The results of the Pearson
correlation coefficients on the best Random Forest model
are shown in Table V. Overall, we see that the ML model
predictions are strongly correlated with the subjects results,
and are significantly stronger than the ResNet Confidence
correlations with subjects performances. On Type color
condition, the ML model predictions are strongly and almost
perfectly correlated with subjects ER and RT (R > 0.96). As
it was observed in Section V-A, we can see that correlations
with subjects performances standard deviations are slightly
weaker than with their very performances, but they remain
above 0.89 here. On Type shape, the correlations between



MAE between ML predictions and ground truths
R2 Hyper-parameters ResNet Metrics Used ER ER STD RT RT STD

Linear Regressor 0.715 – Confidence, CCE, AUC, Recall 0.06 0.085 1.865 1.516
Random Forest* 0.956 9 trees Confidence, AUC, Recall 0.044 0.059 1.418 1.166

SVR 0.753 C = 29; γ = 23 Confidence, CCE, AUC, Hinge 0.059 0.121 2.586 1.962

TABLE IV: Performances of the best model for each Machine Learning regressor. For each regressor, its best model R2 score,
hyper-parameters and ResNet metrics used to achieve its results are shown. The remaining columns correspond to the MAE
between each regressor best model predictions and the corresponding subjects performances ground truths. Subjects ER range
between 0 and 1 while subjects RT range between 0 and 30 (seconds), meaning that observed MAEs are low. The best regressor
(noted with the symbol *) is the Random Forest.

Type
Overall color shape redundant conjunction

ER 0.914 0.964 0.885 – 0.983
ER STD 0.809 0.892 0.893 – 0.983

RT 0.934 0.982 0.557 0.841 0.988
RT STD 0.786 0.925 0.312 0.872 0.966

TABLE V: Pearson correlation coefficients between human
subjects performances and the best Random Forest model
predictions of the subjects performances. Refer to Table III
caption for more information.

the ML model predictions and human subjects performances
are not significantly stronger than those observed in Table III
with ResNet Confidence. No significant improvement is
observed on correlations with subjects ER and ER STD; and
no correlations can be observed between the model predictions
and the subjects RT and RT STD. Again, on Type redundant,
no correlation could be computed with subjects ER and ER
STD (see Section V-A). Nevertheless, the ML model MAE on
these two conditions is 0, meaning that the model captured
the human perception of the task difficulty on this condition.
Correlations are significantly stronger between the ML model
predictions and subjects RT and RT STD than with ResNet
Confidence. Finally, on Type conjunction, the Random Forest
predictions are very close to being perfectly correlated with
human subjects performances (R≥ 0.966).

Considering how accurately the best ML model approx-
imated human subjects performances from ResNet metrics,
we conclude there is a relationship between the ResNet and
human subjects performances to solve the perception task.
The only significant uncorrelation that was initially observed
with standard one-to-one correlation coefficients studies and
remained after the improvements found with the ML model
regression is between ResNet performances and subjects
Response Time on the Type shape condition. This uncorrelation
is probably due to CNNs capabilities to detect outlines as
presented in Section IV-B. With these results, we understand
better how we must interpret ResNet performances to assess
human performances in the original experiment task: we know
that they are strongly correlated on all conditions but Type
shape where subjects RT and RT STD should not be assessed
from ResNet results.

VI. CONCLUSION

In this paper, we studied the correlations between a Deep
Neural Network model (ResNet) and human subjects perfor-
mances on a perception task consisting in identifying an outlier
defined by its color and/or shape in a 8× 8 grid of colored
shapes. Although we know that humans and DNN models
intrinsic strategies differ, their resulting performances could be
correlated.

First, we showed that ResNet and human subjects results
are strongly correlated with standard Pearson correlation
coefficients between various ResNet metrics and subjects Error
Rates and mean Response Time. To deepen the study of
correlations, we used Machine Learning techniques to fit a
model to predict human subjects performances on the main
aggregations of conditions for the task difficulty. We expected
that fitting a model to predict human performances with ResNet
metrics as inputs would lead to stronger relations than those
we observed with Pearson correlation coefficients on pairs of
metrics. The best performing model shown that ResNet and
human subjects performances to solve the task are strongly
related, except when the outlier must be identified by its unique
shape only. On this latter condition, their respective strategies
efficiency might have been so different in favor of ResNet that
it is not possible to find a relationship with human subjects
Response Time.

These results show that the original study [7] assumption
to use ResNet results as a difficulty metric that assesses the
trends of difficulty that should be observed when humans solve
the task was not conceptually wrong. However, our results also
show that ResNet Error Rate was not the best metric to build
such a metric on.

It is important to note that this paper has presented a study
of a Deep Neural Network correlations with human subjects
on a perception task. Hence, this work cannot be extended for
designing an evaluation since it needs the human subjects
data to compute correlation coefficients. This work rather
aims at validating the use that was made of a DNN results
to assess human performances in an evaluation. If experts
remain skeptical about the use of DNNs to predict humans
performances, these results are a step forward to trust Deep
Learning techniques for predicting human performances on
perception tasks. We believe this study benefits the ML4VIS
field of research by participating in the clarification of the
humans–DNNs correlations on visual interpretations tasks.



As our results have shown, the correlation is dependent on
the visual attributes that were used to encode the data in the
representations. As we can also assume that the correlations
would be dependant on the DNN model architecture and the
task considered, our major lead for future work is to propose
a taxonomy based on DNN architecures, perception tasks and
visual attributes (that are used to encode data). This taxonomy
would guide experts on the DNN architecture to choose and
inform them on how to read their trained DNN results to
assess the task difficulty for human subjects and refine their
experiments.
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