Analysis of Deep Neural Networks Correlations with Human Subjects on a Perception Task - Archive ouverte HAL
Proceedings/Recueil Des Communications Année : 2021

Analysis of Deep Neural Networks Correlations with Human Subjects on a Perception Task

Analysis of Deep Neural Networks Correlations with Human Subjects on a Perception Task

David Auber
Jenny Benois-Pineau
Romain Bourqui

Résumé

In information visualization, it has become mandatory to assess visualization techniques efficiency either to write a survey, optimize a technique or even design a new one. To do so, the common way is to conduct user evaluations through which human subjects are asked to solve a task on different visualization techniques while their performances are measured to assess which technique is the most efficient. These evaluations can be complex to design and setup in order not to be biased and, in the end, their results can become contestable when the evaluation methods standards evolve. To overcome these flaws, new evaluation methods are emerging, mostly making use of modern and efficient computer vision techniques such as deep learning. These new methods rely on a strong assumption that has not been studied deeply enough yet: humans and deep learning models performances can be correlated. This paper explores the performances of both a state-of-the-art deep neural network and human subjects on an outlier detection task taken from a previous experiment of the literature. The objective is to study whether the machine and humans behaviors were different or if some correlations can be observed. Our study shows that their results are significantly correlated and a machine learning model efficiently learned to predict human performances using deep neural network metrics as input. Hence, this work presents a use case where using a deep neural network to assess human subjects performances is efficient.
Fichier principal
Vignette du fichier
IV2021_106_corr_reset_human_cameraReady.pdf (764.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03259690 , version 1 (14-06-2021)

Identifiants

Citer

Loann Giovannangeli, Romain Giot, David Auber, Jenny Benois-Pineau, Romain Bourqui. Analysis of Deep Neural Networks Correlations with Human Subjects on a Perception Task. IEEE, pp.129-136, ⟨10.1109/IV53921.2021.00029⟩. ⟨hal-03259690⟩

Collections

CNRS
85 Consultations
504 Téléchargements

Altmetric

Partager

More