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Abstract. We study a class of spatial discretizations for the Vlasov-Poisson system written as an
hyperbolic system using Hermite polynomials. In particular, we focus on spectral methods and discon-
tinuous Galerkin approximations. To obtain L2 stability properties, we introduce a new L2 weighted
space, with a time dependent weight. For the Hermite spectral form of the Vlasov-Poisson system, we
prove conservation of mass, momentum and total energy, as well as global stability for the weighted
L2 norm. These properties are then discussed for several spatial discretizations. Finally, numerical
simulations are performed with the proposed DG/Hermite spectral method to highlight its stability
and conservation features.
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1. Introduction

One of the simplest model that is currently applied in plasma physics simulations is the Vlasov-
Poisson system. This system describes the evolution of charged particles in the case where the only
interaction considered is the mean-field force created through electrostatic effects. The system consists
in Vlasov equations for phase space density fβ(t,x,v) of each particle species β of charge qβ and
mass mβ

(1.1)


∂fβ
∂t

+ v · ∇xfβ +
qβ
mβ

E · ∇vfβ = 0 ,

fβ(t = 0) = fβ,0 ,

coupled to its self-consistent electric field E = −∇xΦ which satisfies the Poisson equation

(1.2) − 4π ε0 ∆xΦ =
∑
β

qβnβ , with nβ =

∫
Rd
fβ dv ,

where ε0 is the vacuum permittivity. On the one hand, for a smooth and nonnegative initial data fβ,0,
the solution fβ(t) to (1.1) remains smooth and nonnegative for all t ≥ 0. On the other hand, for any
function G ∈ C1(R+,R+), we have

d

d t

∫
R2d

G(fβ(t)) dx dv = 0, ∀t ∈ R+ ,

which leads to the conservation of mass, Lp norms, for 1 ≤ p ≤ +∞ and kinetic entropy,

H(t) :=

∫
R2d

fβ(t) ln (f(t)) dx dv = H(0), ∀t ≥ 0 .

We also get the conservation of momentum∑
β

∫
R2d

mβ v fβ(t) dx dv =
∑
β

∫
R2d

mβ v fβ,0 dxdv

and total energy

E(t) :=
∑
β

mβ

2

∫
R2d

fβ(t)‖v‖2 dxdv + 2πε0

∫
Rd
‖E‖2 dx = E(0) , ∀t ≥ 0 .

Numerical approximation of the Vlasov-Poisson system has been addressed since the sixties. Particle
methods (PIC), consisting in approximating the plasma by a finite number of macro particles, have
been widely used [4]. They allow to obtain satisfying results with a few number of particles, but a
well-known drawback of this class of methods is their inherent numerical noise which only decreases in
1/
√
N when the number of particles N increases, preventing from getting an accurate description of

the distribution function for some specific applications. To overcome this difficulty, Eulerian solvers,
that is methods discretizing the Vlasov equation on a mesh of the phase space, can be considered.
Many authors explored their design, and an overview of many different techniques with their pros
and cons can be found in [11]. Among them, we can mention finite volume methods [10] which are
a simple and inexpensive option, but in general low order. Fourier-Fourier transform schemes [19]
are based on a Fast Fourier Transform of the distribution function in phase space, but suffer from
Gibbs phenomena if other than periodic conditions are considered. Standard finite element methods
[31, 32] have also been applied, but may present numerical oscillations when approximating the Vlasov
equation. Later, semi-Lagrangian schemes have also been proposed [29], consisting in computing the
distribution function at each grid point by following the characteristic curves backward. Despite these
schemes can achieve high order allowing also for large time steps, they require high order interpolation
to compute the origin of the characteristics, destroying the local character of the reconstruction.

In the present article, using Hermite polynomials in the velocity variable, we write the Vlasov-
Poisson system (1.1)–(1.2) as an hyperbolic system. This idea of using Galerkin methods with a small
finite set of orthogonal polynomials rather than discretizing the distribution function in velocity space
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goes back to the 60’s [1, 18]. More recently, the merit to use rescaled orthogonal basis like the so-
called scaled Hermite basis has been shown [8, 16, 28, 26, 30]. In [16], Holloway formalized two possible
approaches. The first one, called symmetrically-weighted (SW), is based on standard Hermite functions
as the basis in velocity and as test functions in the Galerkin method. It appears that this SW method
cannot simultaneously conserve mass and momentum. It makes up for this deficiency by correctly
conserving the L2 norm of the distribution function, ensuring the stability of the method. In the
second approach, called asymmetrically-weighted (AW), another set of test functions is used, leading
to the simultaneous conservation of mass, momentum and total energy. However, the AW Hermite
method does not conserve the L2 norm of the distribution function and is then not numerically stable.
In addition, the asymmetric Hermite method exactly solves the spatially uniform problem without
any truncation error, a property not shared by either the traditional symmetric Hermite expansion or
by finite difference methods. The aim of this work is to present a class of numerical schemes based on
the AW Hermite methods and to provide a stability analysis.

In what follows, we consider two types of spatial discretizations for the Vlasov-Poisson system (1.1)-
(1.2), written as an hyperbolic system using Hermite polynomials in the velocity variable: spectral
methods and a discontinuous Galerkin (DG) method. Concerning spectral methods, the Fourier basis
is the natural choice for the spatial discretization when considering periodic boundary conditions.
Spectral Galerkin and spectral collocation methods for the AW Fourier-Hermite discretization have
been proposed in [8, 21, 24]. In [5], authors study a time implicit AW Fourier-Hermite method
allowing exact conservation of charge, momentum and energy, and highlight that for some test cases,
this scheme can be significantly more accurate than the PIC method.

For the SW Fourier-Hermite method, a convergence theory was proposed in [25]. In [20], authors
study conservation and L2 stability properties of a generalized Hermite-Fourier semi-discretization,
including as special cases the SW and AW approaches. Concerning discontinuous Galerkin methods,
they are similar to finite elements methods but use discontinuous polynomials and are particularly
well-adapted to handling complicated boundaries which may arise in many realistic applications. Due
to their local construction, this type of methods provides good local conservation properties without
sacrificing the order of accuracy. They were already used for the Vlasov-Poisson system in [14, 6].
Optimal error estimates and study of the conservation properties of a family of semi-discrete DG
schemes for the Vlasov-Poisson system with periodic boundary conditions have been proved for the
one [2] and multi-dimensional [3] cases. In all these works, the DG method is employed using a phase
space mesh.

Here, we adopt this approach only in physical space, as in [13], with a Hermite approximation in the
velocity variable. In [13], such schemes with discontinuous Galerkin spatial discretization are designed
in such a way that conservation of mass, momentum and total energy is rigorously provable.

As mentionned before, the main difficulty is to study the stability of approximations based on
asymmetrically-weighted Hermite basis. Indeed, this choice fails to preserve L2 norm of the approx-
imate solution, and therefore to ensure long-time stability of the method. In this framework, the
natural space to be considered is

L2
ω :=

{
u : Rd × Rd → R :

∫
R2d

|u(x,v)|2 (2π)d/2e‖v‖
2/2 dxdv < +∞

}
,

and there is no estimate of the associated norm for the solution to the Vlasov-Poisson system (1.1)-
(1.2). To overcome this difficulty, we introduce a new L2 weighted space, with a time-dependent weight,
allowing to prove global stability of the solution in this space. Actually, this idea has been already
employed in [22, 23] to stabilize Hermite spectral methods for linear diffusion equations and nonlinear
convection-diffusion equations in unbounded domains, yielding stability and spectral convergence of
the considered methods. Here, we define the weight as

(1.3) ω(t,v) := (2π)d/2 e(α(t) ‖v‖)2/2,
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where α is a nonincreasing positive function which will be designed in such a way that a global stability
estimate can be established in the following L2 weighted space:

L2
ω(t) :=

{
u : R2d → R :

∫
R2d

|u(x,v)|2ω(t,v) dx dv < +∞
}
,

with ‖ · ‖ω(t) the corresponding norm, that is

‖u‖2ω(t) = (2π)d/2
∫
R2d

|u(x,v)|2 e(α(t)‖v‖)2/2 dx dv.

Let us now determine the function α. To do so, we compute the time derivative of ‖fβ(t)‖ω(t), fβ
being the solution of (1.1). Using the Vlasov equation (1.1) and the definition (1.3) of the weight
ω(t,v), one has

1

2

d

d t
‖fβ(t)‖2ω(t) =−

∫
R2d

fβ

(
v · ∇xfβ +

qβ
mβ

E · ∇vfβ

)
ω dx dv

+
1

2

∫
R2d

αα′ ‖v‖2 f2
β ω dv dx.

Then, since ∫
Rd
fβ E · ∇vfβ ω dv = −1

2

∫
Rd
α2f2

β E · vω dv,

we obtain
1

2

d

d t
‖fβ(t)‖2ω(t) =

1

2

∫
R2d

f2
β

(
qβ
mβ

α2E · v + αα′‖v‖2
)
ω dx dv.

Applying now Young inequality on the first term, we get for γ > 0,

1

2

d

d t
‖fβ(t)‖2ω(t) ≤

1

2

∫
R2d

f2
β

(
γ

2

q2
β

m2
β

α4 ‖E‖2∞ ‖v‖2 +
1

2 γ
+ αα′‖v‖2

)
ω dxdv.

We notice that if α is such that

(1.4) α′ = −γ
2

q2
β

m2
β

‖E(t)‖2∞ α3 =: I(α,E),

the first and third terms cancel each other, yielding

1

2

d

d t
‖fβ(t)‖2ω(t) ≤

1

4 γ
‖fβ(t)‖2ω(t).

Finally, applying Grönwall’s Lemma gives

‖fβ(t)‖ω(t) ≤ ‖fβ,0‖ω et/4γ .
It now remains to define α satisfying (1.4). We remark that

(1.5) α(t) := α0

(
1 + γ

q2
β

m2
β

∫ t

0
‖E(s)‖2∞ d s

)−1/2

is a suitable choice, where α0 is the initial value of α at t = 0 and corresponds to the initial scale of
the distribution function, whereas γ is a free parameter. This function is positive, nonincreasing and
the parameter γ > 0 will practically be chosen sufficiently small to ensure that α(t) does not decrease
too fast towards 0 as t goes to infinity.

Summarizing, we have established the following result.

Proposition 1.1. Assuming that the initial data fβ,0 belongs to L2
ω(0) = L2

ω0
, then the solution fβ(t)

to (1.1) satisfies for all t ≥ 0:

‖fβ(t)‖ω(t) ≤ ‖fβ,0‖ω0 e
t/4γ ,

where γ > 0 is the constant appearing in the definition (1.5) of α.
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Notice that the weight depends on the solution to the Vlasov-Poisson, hence it is mandatory to
control the L∞ norm of E in order that this estimate makes sense. In the next section, we introduce
the formulation of the Vlasov equation using the Hermite basis in velocity, and prove the analogous
of Proposition 1.1 for the obtained system. Then in Section 3, we discuss conservation and stability
properties for a class of spatial discretizations including Fourier spectral method and discontinuous
Galerkin approximations. In Section 4, we introduce the time discretization that will be used to
compute numerical results with the discontinuous Galerkin method. Finally in Section 5 we present
numerical results for two stream instability, bump-on-tail problem and ion acoustic wave to highlight
conservations and stability of our discretization.

2. Hermite spectral form of the Vlasov equation

For simplicity, we now set all the physical constants to one and consider the one dimensional
Vlasov-Poisson system for a single species with periodic boundary conditions in space, where the
Vlasov equation reads

(2.1)
∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= 0

with t ≥ 0, position x ∈ (0, L) and velocity v ∈ R. Moreover, the self-consistent electric field E is
determined by the Poisson equation

(2.2)
∂E

∂x
= ρ− ρ0 ,

where the density ρ is given by

ρ(t, x) =

∫
R
f(t, x, v) d v , t ≥ 0, x ∈ (0, L)

and ρ0 is a constant ensuring the quasi-neutrality condition of the plasma∫ L

0
(ρ− ρ0) dx = 0 .

2.1. Hermite basis. We approximate the solution f of (2.1)–(2.2) by a finite sum which corresponds
to a truncation of a series

(2.3) fNH (t, x, v) =

NH−1∑
n=0

Cn(t, x) Ψn(t, v) ,

where NH is the number of modes. The issue is then to determine a well-suited class of basis functions
Ψn and to find the expansion coefficients Cn. Here, our aim is to obtain a control on a L2 norm of fN ,
in the spirit of that established in Proposition 1.1. We then choose the following basis of normalized
scaled time dependent asymmetrically weighted Hermite functions:

(2.4) Ψn(t, v) = α(t)Hn (α(t)v)
e−(α(t)v)2/2

√
2π

,

where α is the positive nonincreasing function given by

(2.5) α(t) = α0

(
1 + γ

∫ t

0
‖ENH (s)‖2∞ d s

)−1/2

,

with ENH an approximation of the electric field that will be defined below. Functions Hn are the
Hermite polynomials defined by H−1(ξ) = 0, H0(ξ) = 1 and for n ≥ 1, Hn(ξ) has the following
recursive relation √

nHn(ξ) = ξ Hn−1(ξ)−
√
n− 1Hn−2(ξ) , ∀n ≥ 1 .

Let us also emphasize that H ′n(ξ) =
√
nHn−1(ξ) for all n ≥ 1, and that the Hermite basis (2.4) satisfies

the following orthogonality property

(2.6)

∫
R

Ψn(t, v)Hm(α(t)v) d v = δn,m,
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where δn,m is the Kronecker delta function.
Now the objective is to obtain an evolution equation for each mode Cn by substituting the expression

(2.3) for fNH into the Vlasov equation (2.1) and using the orthogonality property (2.6). Thanks to
the definition (2.4) of Ψn and the properties of Hn, we compute the different terms of (2.1). The time
derivative term is given by

∂tfNH =

NH−1∑
n=0

(
∂tCnΨn − Cn

α′

α

(
nΨn +

√
(n+ 1)(n+ 2) Ψn+2

))
,

the transport term is

v ∂xfNH =

NH−1∑
n=0

∂xCn
1

α

(√
n+ 1 Ψn+1 +

√
nΨn−1

)
,

and finally the nonlinear term is

ENH ∂vfNH = −
NH−1∑
n=0

ENH Cn α
√
n+ 1 Ψn+1.

Then taking Hn(α v) as test function and using orthogonality property (2.6), we obtain an evolution
equation for each mode Cn, n = 0, . . . , NH − 1:

(2.7) ∂tCn−
α′

α

(
nCn +

√
(n− 1)nCn−2

)
+

1

α

(√
n∂xCn−1 +

√
n+ 1 ∂xCn+1

)
−ENH α

√
nCn−1 = 0,

with the understanding that Cn = 0 for n < 0 and n ≥ NH . Meanwhile, we first observe that the
density ρNH satisfies

ρNH =

∫
R
fNH d v = C0 ,

and then the Poisson equation becomes

(2.8)
∂ENH
∂x

= C0 − ρ0 .

Observe that if we take NH = ∞ in the expression (2.3), we get an infinite system (2.7)-(2.8) of
equations for (Cn)n∈N and E, which is formally equivalent to the Vlasov-Poisson system (2.1)-(2.2).

In what follows, we rather consider a generic weak formulation of (2.7)–(2.8). Indeed, this will allow
us to straightforwardly apply the obtained results to spatial discretizations with spectral methods (see
Section 3.1).

Let V be a subspace of H1(0, L). We look for Cn(t, ·) ∈ V such that ∂tCn(t, ·) ∈ V and for all
ϕn ∈ V ,

d

d t

∫ L

0
Cn ϕn dx− α′

α

∫ L

0

(
nCn +

√
(n− 1)nCn−2

)
ϕn dx

− 1

α

∫ L

0

(√
nCn−1 +

√
n+ 1Cn+1

)
ϕ′n dx(2.9)

− α
√
n

∫
Ij

ENH Cn−1 ϕn dx = 0, 0 ≤ n ≤ NH − 1,

and for a couple ΦNH (t, ·), ENH (t, ·) ∈ V such that ∂tENH (t, ·) ∈ V , and for all η and ζ ∈ V , we have

(2.10)



∫ L

0
ΦNH η

′ dx =

∫ L

0
ENH η dx,

−
∫ L

0
ENH ζ

′ dx =

∫ L

0
(C0 − ρ0) ζ dx.
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In the rest of this section, we consider V = H1(0, L), and then (2.9)–(2.10) is the weak formulation
of (2.7)–(2.8).

2.2. Conservation properties.

Proposition 2.1. For any NH ∈ N, consider the distribution function fNH given by the truncated
series

fNH (t, x, v) =

NH−1∑
n=0

Cn(t, x)Ψn(t, v) ,

where (Cn, ENH ) is a solution to the Vlasov-Poisson system written as (2.9)-(2.10). Then mass,
momentum and total energy are conserved, that is,

d

d t

∫ L

0

Ck
αk

dx = 0, k = 0, 1,

and for the total energy,

ENH (t) :=
1

2

∫ L

0

(
1

α2

(√
2C2 + C0

)
+ |ENH |

2

)
dx = ENH (0) .

Proof. We consider the first three equations of (2.9): for all ϕ0, ϕ1, ϕ2 ∈ V ,

(2.11)



d

d t

∫ L

0
C0 ϕ0 dx − 1

α

∫ L

0
C1 ϕ

′
0 dx = 0 ,

d

d t

∫ L

0
C1 ϕ1 dx −α

′

α

∫ L

0
C1 ϕ1 dx− 1

α

∫ L

0

(
C0 +

√
2C2

)
ϕ′1 dx

−α
∫ L

0
ENH C0 ϕ1 dx = 0 ,

d

d t

∫ L

0
C2 ϕ2 dx −α

′

α

∫ L

0

(
2C2 +

√
2C0

)
ϕ2 dx− 1

α

∫ L

0

(√
2C1 +

√
3C3

)
ϕ′2 dx

−
√

2α

∫ L

0
ENH C1 ϕ2 dx = 0 ,

which will be related to the conservation of mass, momentum and energy. Thus, let us look at the
conservation properties from (2.11).

First the total mass is defined as∫ L

0

∫
R
fNH (t, x, v) d v dx =

∫ L

0
C0(t, x) dx ,

hence the conservation of mass directly comes from (2.11) by taking ϕ0 = 1 as test function in the
first equation.

Then the momentum is given by∫ L

0

∫
R
v fNH (t, x, v) d v dx =

∫ L

0

C1(t, x)

α(t)
dx .

We have
d

d t

∫ L

0

C1

α
dx =

∫ L

0

(
∂tC1

α
− α′

α2
C1

)
dx,

which taking ϕ1 = 1
α in the second equation of (2.11) yields

d

d t

∫ L

0

C1

α
dx =

∫ L

0
ENH C0 dx.

Now, choosing ζ = E in the second equation of (2.10) gives

d

d t

∫ L

0

C1

α
dx = ρ0

∫ L

0
ENH dx−

∫ L

0
ENH ∂xENH dx = ρ0

∫ L

0
ENH dx = 0,
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which gives the conservation of momentum.
Finally to prove the conservation of total energy ENH , we compute the variation of the kinetic energy

EKNH defined as

EKNH (t) =
1

2

∫ L

0

∫
R
v2fNH (t, x, v) dx d v =

1

2

1

α2

∫ L

0

(√
2C2 + C0

)
dx.

We have
d EKNH (t)

d t
=

1

2α2

∫ L

0
(
√

2 ∂tC2 + ∂tC0) dx− α′

α3

∫ L

0
(
√

2C2 + C0) dx.

Thus, combining the first equation of (2.9) with ϕ0 = 1
2α2 and the third equation of (2.9) with

ϕ2 = 1√
2α2 , we get

(2.12)
d EKNH (t)

d t
=

1

α

∫ L

0
ENH C1 dx.

Finally, taking η = C1 in the first equation of (2.10), we obtain

d EKNH (t)

d t
=

1

α

∫ L

0
ΦNH ∂xC1 dx.

We now compute the time derivative of the potential energy defined by

EPNH (t) :=
1

2

∫ L

0
|ENH |

2 dx.

Using η = ∂tENH ∈ V as test function in the first equation of (2.10) and an integration by parts, we
have

d EPNH (t)

d t
=

∫ L

0
∂tENH ENH dx =

∫ L

0
ΦNH ∂x∂tENH dx = −

∫ L

0
∂xΦNH ∂tENH dx.

Now, choosing ζ = Φ in the time derivative of the second equation of (2.10), and then ϕ0 = ΦNH in
the first equation of (2.9), we finally get

d EPNH (t)

d t
=

∫ L

0
∂tC0 ΦNH dx =

1

α

∫ L

0
C1 ∂xΦNH dx = − 1

α

∫ L

0
∂xC1 ΦNH dx = −

d EKNH (t)

d t
.

This concludes the proof since the total energy ENH (t) is the sum of the kinetic and potential energies.
�

2.3. Weighted L2 stability of fNH . We now establish the discrete counterpart of Proposition 1.1,
namely the stability in an appropriately weighted L2 norm. More precisely, with α defined by (2.5),

we consider the weight ω(t, v) :=
√

2π e(α(t)v)2/2, and denote by ‖ · ‖ω(t) the corresponding weighted

L2 norm. Using the definition (2.3) of fNH , we have

‖fNH (t)‖2ω(t) =

NH−1∑
n,m=0

∫ L

0

∫
R
αCnCm Ψm(t, v)Hn(α(t)v) d v dx,

which gives, using orthogonality property (2.6), the following expression for the weighted L2 norm
of fNH (t):

(2.13) ‖fNH (t)‖2ω(t) =

NH−1∑
n=0

α

∫ L

0
C2
n dx.

Proposition 2.2. Assuming that ‖fNH (0)‖ω(0) < +∞, the distribution function fNH given by the
truncated series (2.3) satisfies the following stability estimate:

‖fNH (t)‖ω(t) ≤ ‖fNH (0)‖ω(0) e
t/4γ , ∀t ≥ 0,

where γ > 0 is the constant appearing in the definition (2.5) of α.
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Proof. We compute the time derivative of ‖fNH (t)‖2ω(t) defined by (2.13):

d

d t
‖fNH (t)‖2ω(t) =

NH−1∑
n=0

(
α

∫ L

0
∂tCnCn dx+

α′

2

∫ L

0
C2
n dx

)
.

Thanks to equation (2.9) with ϕn = αCn, we then have to estimate

1

2

d

d t

NH−1∑
n=0

α(t)

∫ L

0
Cn(t, x)2 dx =

NH−1∑
n=0

∫ L

0
α′
[(
n+

1

2

)
C2
n +

√
n(n− 1)CnCn−2

]
dx

+

NH−1∑
n=0

∫ L

0

(√
nCn−1 +

√
n+ 1Cn+1

)
∂xCn dx

+

NH−1∑
n=0

∫ L

0
α2√nENH CnCn−1 dx.(2.14)

First of all, the transport term vanishes. Indeed, reindexing the sum over n and using that C−1 = 0 =
CNH , we have

NH−1∑
n=0

∫ L

0

(√
nCn−1 +

√
n+ 1Cn+1

)
∂xCn dx =

NH−1∑
n=0

∫ L

0

√
n∂x(Cn−1Cn) dx = 0.

Then on the one hand, using again that Cn = 0 for all n < 0 and n ≥ NH , we have

NH−1∑
n=0

[(
n+

1

2

)
C2
n +

√
n(n− 1)CnCn−2

]
=

1

2

NH+1∑
n=1

(√
nCn +

√
n− 1Cn−2

)2
.

On the other hand, we notice that

NH−1∑
n=0

√
nCnCn−1 =

1

2

NH+1∑
n=1

Cn−1

(√
nCn +

√
n− 2Cn−2

)
.

Gathering these two identities in (2.14), we get

1

2

d

d t

NH−1∑
n=0

α

∫ L

0
C2
n dx =

1

2

NH+1∑
n=1

∫ L

0
α′
(√
nCn +

√
n− 1Cn−2

)2
dx

+
1

2

NH+1∑
n=1

∫ L

0
ENH α

2Cn−1

(√
nCn +

√
n− 1Cn−2

)
dx.

Applying Young inequality in the second sum, this provides:

1

2

d

d t

NH−1∑
n=0

α

∫ L

0
C2
n dx ≤ 1

2

NH+1∑
n=1

∫ L

0
α′
(√
nCn +

√
n− 1Cn−2

)2
dx

+
1

2

NH+1∑
n=1

∫ L

0

(
γ

2
‖ENH‖

2
∞ α

3
(√
nCn +

√
n− 1Cn−2

)2
+

1

2 γ
αC2

n−1

)
dx.

Yet, using definition (2.5) of α, we have that

α′(t) = −γ
2
‖ENH (t)‖2∞ α(t)3,
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which yields

1

2

d

d t

NH−1∑
n=0

α

∫ L

0
C2
n dx ≤ 1

4 γ

NH+1∑
n=1

α

∫ L

0
C2
n−1 dx

≤ 1

4 γ

NH−1∑
n=0

α

∫ L

0
C2
n dx.

Using Grönwall’s lemma, this gives the expected result. �

2.4. Control of α. Using the definition (2.13) of ‖fNH (t)‖ω(t), the stability result established in

Proposition 2.2 gives a stability result in L2(0, L) for the coefficients Cn, provided that α(t) is bounded
from below by a positive constant. Due to definition (2.5) of α(t), this is achieved as soon as ‖ENH (t)‖∞
is controlled. This result is given in the following proposition.

Proposition 2.3. Under assumptions of Proposition 2.2, the solution ENH (t, ·) of (2.10) satisfies
that for all T > 0, there exists a constant CT > 0 depending on T such that for all t ∈ [0, T ],

‖ENH (t)‖∞ ≤ CT .

Proof. Since we are in one space dimension, by Sobolev inequality, there exists a constant c > 0 such
that for all t ≥ 0,

‖ENH (t)‖2∞ ≤ c ‖ENH (t)‖2H1 .

Moreover, since
∫ L

0 ENH dx = 0, Poincaré-Wirtinger inequality applies and then there exists c′ > 0
such that

‖ENH (t)‖2∞ ≤ c′ ‖∂xENH (t)‖22.
Taking ζ = ∂xENH in the second equation of (2.10) and applying Cauchy-Schwarz inequality gives

‖∂xENH (t)‖22 =

∫ L

0
∂xENH (C0 − ρ0) dx =

∫ L

0
∂xENH C0 dx ≤ ‖∂xENH (t)‖2 ‖C0(t)‖2,

and then one obtains

‖ENH (t)‖2∞ ≤ c′ ‖C0(t)‖22.
Hence, we need to control ‖C0(t)‖2 as,∫ L

0
C2

0 dx =

∫ L

0

(∫
R
fNH (t, x, v)ω(t, v)1/2 ω(t, v)−1/2 d v

)2

dx

≤
∫ L

0

(∫
R
fNH (t, x, v)2 ω(t, v) d v

)(∫
R
ω(t, v)−1 d v

)
dx

≤ 1

α(t)
‖fNH (t)‖2ω(t),

which depends on α, that is, on ‖E‖∞. Then, using the definition (2.5) of α, it yields

α0

α(t)
=

(
1 + γ

∫ t

0
‖ENH (s)‖2∞ d s

) 1
2

≤ 1 + γ

∫ t

0
‖ENH (s)‖2∞ d s,

which gives

‖ENH (t)‖2∞ ≤ c′ ‖fNH (t)‖2ω(t)

(
1 + γ

∫ t

0
‖ENH (s)‖2∞ d s

)
.

Furthermore, by Proposition 2.2, we have for all t ∈ [0, T ],

‖fNH (t)‖2ω(t) ≤ cT := ‖fNH (0)‖2ω(0) e
T/2γ .

Thus,

‖ENH (t)‖2∞ ≤ c′ cT
(

1 + γ

∫ t

0
‖ENH (s)‖2∞ d s

)
.
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By Grönwall’s lemma, we conclude that for all t ∈ [0, T ],

‖ENH (t)‖2∞ ≤ c′ cT ec
′cT γ t.

�

2.5. Filtering technique. As proposed in [13], we finally apply a filtering procedure to reduce the
effects of the Gibbs phenomenon inherent to spectral methods [15]. The filter consists in multiplying
some spectral coefficients Cn in (2.3) by a scaling factor σ to reduce the amplitude of high frequencies,

for any NH ≥ 4. Concretely, coefficients Cn in (2.3) are replaced by C̃n, with

C̃n = Cn σ (n/NH) .

As in [13], we consider the Hou-Li’s filter, which reads

σ(s) =


1 , if 0 ≤ |s| ≤ 2/3 ,

e−β |s|
β
, if |s| > 2/3 ,

where the coefficient β is chosen as β = 36.
Remark that since the filter is applied only when NH ≥ 4, the filtering process does not modify

the three first coefficients C0, C1 and C2. Then conservations of mass, momentum and total energy
established in Proposition 2.1 are not affected. Moreover, since σ ≤ 1, this process does not impact
the stability result established in propositions 2.2 and 2.3 either.

3. A class of spatial discretizations

This section is devoted to the space discretization of the Vlasov-Poisson system written in the form
(2.7)-(2.8). We first consider a spectral method, and then a class of discontinuous Galerkin methods.

3.1. Fourier method. When considering periodic boundary conditions, spectral method with Fourier
basis is a natural choice for the spatial discretization. As for example in [20], we consider an odd
number 2Nx + 1 of Fourier modes, and look for an approximation fNH ,Nx of the distribution function
f solution of Vlasov equation (2.1) defined as

(3.1) fNH ,Nx(t, x, v) =

NH−1∑
n=0

Nx∑
j=−Nx

cjn(t) ej(x) Ψn(t, v),

where

ej(x) :=
1√
L
e2iπjx/L.

This corresponds to approximate the Hermite modes Cn(t, x) defined in Section 2 as

Cn,Nx(t, x) =

Nx∑
j=−Nx

cjn(t) ej(x).

The electric field ENH is also approximated in the Fourier basis as

(3.2) ENH ,Nx(t, x) =

Nx∑
j=−Nx

Ej(t) ej(x).

Equations satisfied by the coefficients (cjn) and Ej are obtained by considering the weak formulation
(2.9)–(2.10) for Cn,Nx and ENH ,Nx in the space

VNx := span {ej , j = −Nx, . . . , Nx} ,
and taking ej as test functions. Remark that here the function α arising in the definition (2.4) is
given by

α(t) = α0

(
1 + γ

∫ t

0
‖ENH ,Nx(s)‖2∞ d s

)−1/2

.
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For this Fourier-Hermite discretization of the Vlasov-Poisson equation, all the results presented
in the previous section are satisfied. They are summarized in the following theorem and can be
proved exactly in the same way as propositions 2.1, 2.2 and 2.3 by considering V = VNx in the weak
formulation (2.9)–(2.10).

Theorem 3.1. For any NH , Nx ∈ N, consider the approximate solution (fNH ,Nx , ENH ,Nx) given by

(3.1)-(3.2), where the coefficients (cjn, Ej)j satisfy (2.9)–(2.10) in VNx. Then,

• mass, momentum and total energy are conserved, that is

d

d t

[
c0
k

αk

]
(t) = 0, k = 0, 1,

and for the total energy,

ENH ,Nx(t) :=
1

2

1

α2(t)

(√
2 c0

2(t) + c0
0(t)
)

+
1

2

Nx∑
j=−Nx

|Ej(t)|2 = ENH ,Nx(0).

• Furthermore, assuming that ‖fNH ,Nx(0)‖ω(0) < +∞, the approximate distribution function
fNH ,Nx satisfies the following stability estimate:

‖fNH ,Nx(t)‖ω(t) ≤ ‖fNH ,Nx(0)‖ω(0) e
t/4γ .

• Finally, there exists a constant CT > 0 such that for all t ∈ [0, T ],

‖ENH ,Nx(t)‖∞ ≤ CT .

3.2. Discontinuous Galerkin method for the Vlasov equation. In the spirit of [2, 13], we now
consider a discontinuous Galerkin approximation of the Vlasov equation (2.7). This method guarantees
conservation of discrete mass as well as weighted L2 stability. Then, to compute an approximation of
the Poisson equation, several approaches arise:

• we will consider a local discontinuous Galerkin method for the Poisson equation as in [13]. For
this choice, we prove conservation of total energy. However, we do not have control the L∞

norm of the electric field in this case.
• we will also look for a mixed finite element approximation for the Poisson equation. We estab-

lish that the obtained approximate solution satisfies semidiscrete counterpart of Proposition
2.3. However, we cannot obtain conservation of total energy with this choice of approximation.

Let us now define the discontinuous Galerkin (DG) scheme for the Vlasov equation with Hermite

spectral basis in velocity (2.7). We first introduce some notations and start with {xi+ 1
2
}i=Nxi=0 , a

partition of [0, L], with x 1
2

= 0, xNx+ 1
2

= L. Each element is denoted as Ii = [xi− 1
2
, xi+ 1

2
] with its

length hi, and h = maxi hi.
Given any k ∈ N, we define a finite dimensional discrete piecewise polynomial space

(3.3) V k
h =

{
u ∈ L2(0, L) : u|Ii ∈ Pk(Ii),∀i

}
,

where the local space Pk(I) consists of polynomials of degree at most k on the interval I. We further
denote the jump [u]i+ 1

2
and the average {u}i+ 1

2
of u at xi+ 1

2
defined as

[u]i+ 1
2

= u(x+
i+ 1

2

) − u(x−
i+ 1

2

) and {u}i+ 1
2

=
1

2

(
u(x+

i+ 1
2

) + u(x−
i+ 1

2

)

)
, ∀ i ,

where u(x±) = lim∆x→0± u(x+ ∆x). We also denote

ui+ 1
2

= u(xi+ 1
2
) , u±

i+ 1
2

= u(x±
i+ 1

2

) .
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From these notations, we apply a semi-discrete discontinuous Galerkin method for (2.7) as follows.
We look for an approximation Cn,h(t, ·) ∈ V k

h , such that for any ϕn ∈ V k
h , we have

d

d t

∫
Ij

Cn,h ϕn dx− α′

α

∫
Ij

(
nCn,h +

√
(n− 1)nCn−2,h

)
ϕn dx+ ajn(gn, ϕn)

− α
√
n

∫
Ij

ENH ,hCn−1,h ϕn dx = 0, 0 ≤ n ≤ NH − 1,(3.4)

where ajn is defined by

(3.5)


ajn(gn, ϕn) = −

∫
Ij

gn ϕ
′
n dx + ĝn,j+ 1

2
ϕ−
n,j+ 1

2

− ĝn,j− 1
2
ϕ+
n,j− 1

2

,

gn =
1

α

(√
n+ 1Cn+1,h +

√
nCn−1,h

)
.

The numerical flux ĝn in (3.5) is given by

(3.6) ĝn =
1

2

[
g−n + g+

n − δn
(
C+
n,h − C−n,h

)]
,

with the numerical viscosity coefficient defined as δ0 = 0, corresponding to a centered flux, and for
1 ≤ n ≤ NH − 1, we consider the global Lax-Friedrichs flux with δn = δ =

√
NH/α. The choice of the

centered flux in the case n = 0 is made to recover the conservation of the semi-discrete total energy
(see Proposition 3.4). Once again, due to the definition of δn, it appears crucial to have a positive
lower bound for α. This property is discussed in what follows, according to the discretization chosen
for the Poisson equation.

The approximate solution of (2.1) obtained using Hermite polynomials in velocity variable and
discontinuous Galerkin discretization in space is then defined by

(3.7) fNH ,Nx(t, x, v) =

NH−1∑
n=0

Cn,h(t, x)Ψn(t, v) ,

where Cn,h satisfy (3.4) and Ψn are the basis functions defined by (2.4). The weighted L2 norm of
fNH ,Nx is then given by

(3.8) ‖fNH ,Nx(t)‖2ω(t) =

NH−1∑
n=0

α(t)

∫ L

0
C2
n,h(t, x) dx.

Throughout this section, the function α is defined by

(3.9) α(t) = α0

(
1 + γ

∫ t

0
‖ENH ,h(s)‖2∞ d s

)−1/2

,

where ENH ,h is the chosen spatial approximation of the electric field ENH .
Similarly as in the continuous case, we establish the following stability result.

Proposition 3.2. Consider the semi-discrete approximate solution fNH ,Nx given by the truncated
series (3.4)-(3.7). Then, we have

• Conservation of mass
d

d t

∫ L

0
C0,h dx = 0.

• Furthermore, assuming that ‖fNH ,Nx(0)‖ω(0) < +∞, we have

(3.10)
1

2

d

d t
‖fNH ,Nx(t)‖2ω(t) + α(t)

NH−1∑
n=1

∑
j

δn [Cn,h]2
j− 1

2

≤ 1

2 γ
‖fNH ,Nx(t)‖2ω(t), ∀t ≥ 0,

from which we deduce

(3.11) ‖fNH ,Nx(t)‖ω(t) ≤ ‖fNH ,Nx(0)‖ω(0) e
t/4γ , ∀t ≥ 0.
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Remark 3.3. Note that compared to the results obtained in propositions 1.1 and 2.2, an additional
dissipation term appears in (3.10), arising from the discontinuous Galerkin discretization.

Proof. Throughout this proof, without any confusion, we will drop the indices NH and h to lighten
the notations.

Let us underline that the discontinuous Galerkin method naturally preserves mass. Indeed, since
the equation (3.4) for n = 0 only contains a convective term, we get that

d

d t

∫ L

0
C0 dx = 0.

Then, using (3.8), we have

1

2

d

d t
‖fNH ,Nx(t)‖2ω(t) =

NH−1∑
n=0

∫ L

0

(
αCn ∂tCn +

α′

2
C2
n

)
dx.

Taking ϕn = Cn as test function in (3.4), we get

1

2

d

d t
‖fNH ,Nx(t)‖2ω(t) =

NH−1∑
n=0

α′
∫ L

0

((
n+

1

2

)
Cn +

√
(n− 1)nCn−2

)
Cn dx(3.12)

−
NH−1∑
n=0

∑
j

αajn(gn, Cn) +

NH−1∑
n=0

α2√n
∫ L

0
E Cn−1Cn dx.

Let us first consider the transport term. Indeed, other terms will be treated exactly in the same way

as in the proof of Proposition 2.2. Using the definition (3.5) of ajn, we have

NH−1∑
n=0

∑
j

αajn(gn, Cn) = T1 + T2,

with 
T1 = −

NH−1∑
n=0

∑
j

α

∫
Ij

gn ∂xCn dx,

T2 =

NH−1∑
n=0

∑
j

α

(
ĝn,j+ 1

2
C−
n,j+ 1

2

− ĝn,j− 1
2
C+
n,j− 1

2

)
.

We now consider the first term T1. By definition (3.5) of gn, we get

T1 = −
NH−1∑
n=0

∑
j

∫
Ij

(√
n+ 1Cn+1 +

√
nCn−1

)
∂xCn dx.

Now, reindexing the sum over n and using that C−1 = 0 = CNH , we obtain

T1 = −
NH−1∑
n=0

∑
j

√
n

∫
Ij

∂x(Cn−1Cn) dx

= −
NH−1∑
n=0

∑
j

√
n

(
(Cn−1Cn)−

j+ 1
2

− (Cn−1Cn)+
j− 1

2

)
.

Using the periodic boundary conditions, it finally yields

T1 =

NH−1∑
n=0

∑
j

√
n [Cn−1Cn]j− 1

2
.
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We now deal with the second term T2. By definition (3.5) of gn, we compute

g−
n,j− 1

2

+ g+
n,j− 1

2

=
2

α

(√
n+ 1 {Cn+1}+

√
n {Cn−1}

)
j− 1

2
,

which yields

ĝn,j− 1
2

=
1

α

(√
n+ 1 {Cn+1}+

√
n {Cn−1}

)
j− 1

2
− δn

2
[Cn]j− 1

2
.

Once again, taking advantage of periodic boundary conditions, we have

T2 = −
NH−1∑
n=0

∑
j

α ĝn,j− 1
2

[Cn]j− 1
2

= −
NH−1∑
n=0

∑
j

((√
n+ 1 {Cn+1}+

√
n {Cn−1}

)
j− 1

2
[Cn]j− 1

2
− α δn

2
[Cn]2

j− 1
2

)
.

By rearranging the terms of the sum over n, using once again that C−1 = 0 = CNH , we obtain

T2 = −
NH−1∑
n=0

∑
j

√
n ({Cn}[Cn−1] + {Cn−1}[Cn])j− 1

2
+
α

2

NH−1∑
n=1

∑
j

δn [Cn]2
j− 1

2

.

Since

{Cn}[Cn−1] + {Cn−1}[Cn] = [Cn−1Cn],

we finally have that

NH−1∑
n=0

∑
j

αajn(gn, Cn) = T1 + T2 =
α

2

NH−1∑
n=1

∑
j

δn [Cn]2
j− 1

2

.

Inserting this equality in (3.12), we get

1

2

d

d t
‖fNH ,Nx(t)‖2ω(t) +

α

2

NH−1∑
n=1

∑
j

δn [Cn]2
j− 1

2

=

NH−1∑
n=0

α′
∫ L

0

((
n+

1

2

)
Cn +

√
(n− 1)nCn−2

)
Cn dx

+

NH−1∑
n=0

α2√n
∫ L

0
E Cn−1Cn dx.

Finally, the right hand side can be treated exactly in the same way as in the proof of Proposition 2.2,
leading to (3.10). Nonnegativity of α(t) and direct application of the Grönwall’s lemma provides (3.11).

�

We next deal with the approximation of the electric field ENH . This step is crucial to get energy
conservation and to control the scaling parameter α.

To this end, we need to consider the potential function ΦNH (t, x), such that

(3.13)


ENH = −∂ΦNH

∂x
,

∂ENH
∂x

= C0 − ρ0 .

Hence we get the one dimensional Poisson equation

−∂
2ΦNH

∂x2
= C0 − ρ0 .

We now propose two methods to discretize this problem in space and discuss their properties.
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3.2.1. Discontinuous Galerkin approximation of the Poisson equation. As in [13], we now consider the
DG approximation (3.4)–(3.6) for the Vlasov equation together with a local discontinuous Galerkin
method for the Poisson equation (2.8). We prove conservation of the discrete total energy. However,
in this framework, we are not able to control the L∞ norm of the electric field as in Proposition 2.3,
and conservation of momentum is not achieved (see Remark 3.3).

The Vlasov equation being approximated by (3.4), we now define a DG approximation of the Poisson
equation (3.13). We look for a couple ΦNH ,h(t, ·), ENH ,h(t, ·) ∈ V k

h , such that for any η and ζ ∈ V k
h ,

we have

(3.14)


+

∫
Ij

ΦNH ,h η
′ dx − Φ̂NH ,h,j+

1
2
η−
j+ 1

2

+ Φ̂NH ,h,j− 1
2
η+
j− 1

2

=

∫
Ij

ENH ,h η dx ,

−
∫
Ij

ENH ,h ζ
′ dx + ÊNH ,h,j+ 1

2
ζ−
j+ 1

2

− ÊNH ,h,j− 1
2
ζ+
j− 1

2

=

∫
Ij

(C0,h − ρ0) ζ dx ,

where the numerical fluxes Φ̂NH ,h and ÊNH ,h in (3.14) are taken as

(3.15)

 Φ̂NH ,h = {ΦNH ,h} ,

ÊNH ,h = {ENH ,h} − β [ΦNH ,h] ,

with β either being a positive constant or a constant multiplying by 1/h.
We now focus on the conservation properties of this DG method. As already mentioned, the

conservation of mass is guaranteed, whatever the choice of discretization for the Poisson equation.
Moreover, conservation of the total energy is achieved thanks to the particular choice of the (centered)
numerical flux ĝ0 in the equation (3.4) for n = 0. Unfortunately, the momentum is not conserved
due to the contribution of the source terms in (3.4). In [13], a slight modification of the flux for
the unknown C1,h was proposed to ensure the momentum conservation. However, if we apply this
modification here, we lose the L2 stability established in Proposition 3.2.

Theorem 3.4. For any NH ≥ 3, we consider the solution (Cn,h, ENH ,h,ΦNH ,h) to the system (3.4)–
(3.6) together with (3.14)–(3.15). Then we have

• Conservation of mass.
• Furthermore, assuming that ‖fNH ,Nx(0)‖ω(0) < +∞, we get

‖fNH ,Nx(t)‖ω(t) ≤ ‖fNH ,Nx(0)‖ω(0) e
t/4γ , ∀t ≥ 0.

• The discrete total energy, defined as

(3.16) ENH ,h(t) =
1

2

∫ L

0

(
1

α2
(
√

2C2,h + C0,h) + |ENH ,h|
2

)
dx+

1

2
β
∑
j

[ΦNH ,h]2
j− 1

2

,

is preserved with respect to time.

Proof. First and second items follows from Proposition 3.2. Then, once again, we omit here the indices
NH and h and first compute the time derivative of the kinetic energy, using mass conservation:

1

2

d

d t

(
1

α2

∫ L

0
(
√

2C2 + C0) dx

)
= − α

′

α3

∫ L

0
(
√

2C2 + C0) dx+
1√
2α2

∫ L

0
∂tC2 dx.

Using ϕ2 = 1√
2α2 in (3.4) for n = 2 and summing over j, we have

1√
2α2

∫ L

0
∂tC2 dx− α′

α3

∫ L

0
(
√

2C2 + C0) dx =
1

α

∫ L

0
E C1 dx,

which yields that

(3.17)
1

2

d

d t

(
1

α2

∫ L

0
(
√

2C2 + C0) dx

)
=

1

α

∫ L

0
E C1 dx.
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On the one hand, to compute the right hand side of (3.17), we choose η = C1
α in the first equation

of (3.14):

(3.18)
1

α

∫
Ij

E C1 dx =
1

α

∫
Ij

Φ ∂xC1 dx− 1

α
Φ̂j+ 1

2
C−

1,j+ 1
2

+
1

α
Φ̂j− 1

2
C+

1,j− 1
2

.

On the other hand, we take ϕ0 = Φ in (3.4) for n = 0 and use definition (3.5) to get∫
Ij

∂tC0 Φ dx = −aj0(g0,Φ) = − 1

α
aj0(C1,Φ)

=
1

α

∫
Ij

C1 ∂xΦ dx− 1

α
Ĉ1,j+ 1

2
Φ−
j+ 1

2

+
1

α
Ĉ1,j− 1

2
Φ+
j− 1

2

.(3.19)

Adding (3.18) and (3.19) and summing over j, we obtain

1

α

∫ L

0
E C1 dx+

∫ L

0
∂tC0 Φ dx =

1

α

∑
j

∫
Ij

∂x(C1 Φ) dx+
1

α

∑
j

(
Φ̂[C1] + Ĉ1[Φ]

)
j− 1

2

=
1

α

∑
j

(
−[C1 Φ] + Φ̂[C1] + Ĉ1[Φ]

)
j− 1

2

.

Since [C1 Φ] = [C1]{Φ}+ {C1}[Φ] and {Φ} = Φ̂ by (3.15), we obtain

(3.20)
1

α

∫ L

0
E C1 dx+

∫ L

0
∂tC0 Φ dx =

1

α

∑
j

(
Ĉ1 − {C1}

)
[Φ]j− 1

2
.

By definition (3.6) of ĝ0 with δ0 = 0, we deduce that Ĉ1 = {C1}, which cancels the right hand side
of (3.20). We now have to treat the second term of the left hand side. To this end, let us take the
time derivative of the second equation in (3.14) and choose ζ = Φ as test function. It gives

(3.21)

∫
Ij

∂tC0 Φ dx = −
∫
Ij

∂tE ∂xΦ dx+ ∂̂tEj+ 1
2

Φ−
j+ 1

2

− ∂̂tEj− 1
2

Φ+
j− 1

2

.

Taking η = −∂tE in the first equation of (3.14), we obtain

−
∫
Ij

E ∂tE dx = −
∫
Ij

Φ ∂x∂tE dx+ Φ̂j+ 1
2
(∂tE)−

j+ 1
2

− Φ̂j− 1
2
(∂tE)+

j− 1
2

.

Performing an integration by parts of the first term of the right hand side, it provides

−1

2

d

d t

∫
Ij

E2 dx =

∫
Ij

∂xΦ ∂tE dx− (Φ ∂tE)−
j+ 1

2

+ (Φ ∂tE)+
j− 1

2

+ Φ̂j+ 1
2
(∂tE)−

j+ 1
2

− Φ̂j− 1
2
(∂tE)+

j− 1
2

.

Adding this latter equality and (3.21), and summing over j, we get∫ L

0
∂tC0 Φ dx− 1

2

d

d t

∫ L

0
E2 dx =

∑
j

(
[Φ ∂tE]− ∂̂tE [Φ]− Φ̂ [∂tE]

)
j− 1

2

.

Now, by definition (3.15) of the numerical fluxes, we have

[Φ ∂tE]− ∂̂tE [Φ]− Φ̂ [∂tE] =
(
{∂tE} − ∂̂tE

)
[Φ] +

(
{Φ} − Φ̂

)
[∂tE]

= β[∂tΦ][Φ]

=
β

2

d

d t
[Φ]2,

which gives ∫ L

0
∂tC0 Φ dx =

1

2

d

d t

∫ L

0
E2 dx+ β

∑
j

[Φ]2
j− 1

2

 .
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Using this last identity together with (3.17) and (3.20), we finally obtain:

(3.22)
d

d t
E(t) = 0.

�

Remark 3.5. Concerning momentum, we have

(3.23)
d

d t

∫ L

0

C1

α
dx =

∫ L

0

(
1

α
∂tC1 −

α′

α2
C1

)
dx.

Taking ϕ1 = 1
α as test function in (3.4) for n = 1 and summing over j, we get

(3.24)
1

α

∫ L

0
∂tC1 dx− α′

α2

∫ L

0
C1 dx =

∫ L

0
E C0 dx.

Now, taking ζ = E in the second equation of (3.14), we obtain

(3.25)

∫
Ij

C0E dx = ρ0

∫
Ij

E dx−
∫
Ij

E ∂xE dx+ Êj+ 1
2
E−
j+ 1

2

− Êj− 1
2
E+
j− 1

2

.

To compute the first term of the right hand side, we take η = 1 in the first equation of (3.14):∫
Ij

E dx = −Φ̂j+ 1
2

+ Φ̂j− 1
2
.

Using this in (3.25) and summing over j, it yields∫ L

0
C0E dx = −1

2

∑
j

∫
Ij

∂x(E2) dx−
∑
j

Êj− 1
2
[E]j− 1

2

=
∑
j

(
1

2
[E2]− Ê[E]

)
j− 1

2

.

Since [E2] = 2{E}[E], we have thanks to the definition (3.15) of Ê that

(3.26)

∫ L

0
C0E dx =

∑
j

(
{E} − Ê

)
[E]j− 1

2
= β

∑
j

[Φ]j− 1
2

[E]j− 1
2
.

Putting (3.24) and (3.26) together in (3.23), we finally obtain

(3.27)
d

d t

∫ L

0

C1

α
dx = β

∑
j

[Φ]j− 1
2

[E]j− 1
2
.

3.2.2. Mixed finite element approximation of the Poisson equation. We now consider a mixed finite
element approximation of the Poisson problem (3.13) with the one dimensional version of Raviart-

Thomas elements. More precisely, the mixed finite element spaces in 1D turn out to be (W k+1
h , V k

h )
finite element spaces, where

W k+1
h := {u ∈ C0(0, L) : u|Ii ∈ Pk+1(Ii), ∀i},

and V k
h is defined by (3.3).

For k ≥ 0, we look for a couple (ENH ,h,ΦNH ,h) ∈W k+1
h × V k

h such that for all (η, ζ) ∈W k+1
h × V k

h ,

(3.28)



∫ L

0
ΦNH ,h η

′ dx =

∫ L

0
ENH ,h η dx,

∫ L

0
∂xENH ,h ζ dx =

∫ L

0
(C0,h − ρ0) ζ dx.

With this choice of discretization for the Poisson equation, we are not able to prove the conservation
of total energy. By contrast, it is possible to obtain the control of ‖ENH ,h(t)‖∞ in this case, which
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gives a positive lower bound for α(t) and then allows to deduce a stability result in L2(0, L) for the
coefficients Cn,h, from the stability in weighted L2 norm for fNH ,Nx stated in Proposition 3.2.

Theorem 3.6. For any NH ≥ 3, we consider the solution (Cn,h, ENH ,h,ΦNH ,h) to the system (3.4)–
(3.6) together with (3.28). Then, we have

• Conservation of mass.
• Furthermore, assuming that ‖fNH ,Nx(0)‖ω(0) < +∞, we get

‖fNH ,Nx(t)‖ω(t) ≤ ‖fNH ,Nx(0)‖ω(0) e
t/4γ , ∀t ≥ 0.

• Finally, there exists a constant CT > 0 such that

‖ENH ,h(t)‖∞ ≤ CT , ∀t ∈ [0, T ].

Proof. First and second items follows from Proposition 3.2. Then, we follow the same guidelines as in
the proof of Proposition 2.3. By Sobolev and Poincaré-Wirtinger inequalities, we have

‖E(t)‖2∞ ≤ c ‖E(t)‖2H1 ≤ c′ ‖∂xE(t)‖22.

Since E ∈ W k+1
h , we have that ∂xE ∈ V k

h . Then we take ζ = ∂xE as test function in the second
equation of (3.28) to get

‖∂xE(t)‖22 =

∫ L

0
C0 ∂xE dx ≤ ‖∂xE(t)‖2 ‖C0(t)‖2,

and then

‖E(t)‖2∞ ≤ c′ ‖C0(t)‖22.
Finally we proceed exactly in the same way as in the proof of Proposition 2.3, using the definition
(3.9) of α and the weighted L2 stability result stated in Proposition 3.2. �

Remark 3.7. Note that the same result can be established for a conforming approximation of the
electric potential, corresponding to a direct integration of the discrete Poisson problem (3.13), which
is straightforward in 1D.

4. Time discretization

We apply a second order Runge-Kutta scheme to the discontinuous Galerkin method for the Vlasov
equation (3.4)–(3.6) with local discontinuous Galerkin approximation of the Poisson equation (3.14)–
(3.15), coupled with a discretization of α solution to (1.4).

We denote by C = (C0, . . . , CNH−1) the solution to (3.4)–(3.6) and by (·, ·) the standard L2 inner
product on the space interval (0, L)

(Cn, ϕ) :=

∫ L

0
Cn ϕ dx.

For the computation of the source terms, we introduce bjn defined for n = 0, . . . , NH − 1 and j =
1, . . . , Nx by

bjn(α,C, E, ϕn) = −I(α,E)

α

∫
Ij

(
nCn +

√
(n− 1)nCn−2

)
ϕn dx− α

√
n

∫
Ij

E Cn−1 ϕn dx,

where we use the expression I(α,E) for α′ as defined in (1.4). We set an =
∑

j a
j
n and bn =

∑
j b

j
n.

Equipped with these compact notations, we can write the semi-discrete discontinuous Galerkin
method for the Vlasov equation (3.4) as

(4.1)
d

d t
(Cn, ϕn) + an(gn, ϕn) + bn(α,C, E, ϕn) = 0,

with, according to (1.4), α satisfying

α′ = I(α,E).

Let us underline that b0 = 0, then equation (4.1) for n = 0 does not depend on the electric field E.
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We now define the time discretization. Let ∆t > 0 be the time step. We compute an approximation
Cm = (Cm0 , . . . , C

m
NH−1) of the solution C at time tm = m∆t for m ≥ 0. Assuming known Cm, we

compute Cm+1 using the following procedure.
We first apply a classical explicit Euler scheme with a half-time step ∆t/2.

• We compute C
(1)
0 with

(4.2)
2 (C

(1)
0 − Cm0 , ϕ0)

∆t
+ a0(gm0 , ϕ0) = 0, ∀ ϕ0 ∈ V k

h .

• Using C
(1)
0 , we solve the DG approximation of the Poisson equation (3.14)–(3.15) to obtain

E(1). We can then define

Em+1/4 =
1

2

(
Em + E(1)

)
.

• Finally, we compute C
(1)
n for n = 1, . . . , NH − 1 thanks to

(4.3)
2 (C

(1)
n − Cmn , ϕn)

∆t
+ an(gmn , ϕn) + bn(αm,Cm, Em+1/4, ϕn) = 0, ∀ ϕn ∈ V k

h ,

with
2(α(1) − αm)

∆t
= I(αm, Em+1/4).

Then using the same procedure, we compute a second stage with a time step ∆t.

• We compute Cm+1
0 with

(Cm+1
0 − Cm0 , ϕ0)

∆t
+ a0(g

(1)
0 , ϕ0) = 0, ∀ ϕ0 ∈ V k

h .

• Using Cm+1
0 , we solve the DG approximation of the Poisson equation (3.14)–(3.15) to obtain

Em+1. We can then define

Em+1/2 =
1

2

(
Em + Em+1

)
.

• Finally, we compute Cm+1
n for n = 1, . . . , NH − 1 thanks to

(4.4)
(Cm+1

n − Cmn , ϕn)

∆t
+ an(g(1)

n , ϕn) + bn(α(1),C(1), Em+1/2, ϕn) = 0, ∀ ϕn ∈ V k
h ,

with
αm+1 − αm

∆t
= I(α(1), Em+1/2).

This scheme corresponds to the one proposed in [13] when the scaling function α is constant. In
that case, mass and total energy are preserved. However, in our case since α depends on time, it
produces an additional error on the energy conservation. In the next section, we will observe that the
variations of α are small, hence the variations of total energy are very limited.

5. Numerical examples

In this section, we will verify our proposed DG/Hermite Spectral method for the one-dimensional
Vlasov-Poisson (VP) system. We take NH modes for Hermite spectral basis, and Nx cells in space.
We note that due to the Hermite spectral basis, there is no truncation error for the conservation of
mass, momentum and energy from cut-off along the v-direction. The scaling parameter α is chosen
according to the scaling of the initial distribution and the Hou-Li filter with 2/3 dealiasing rule [17, 7]
will be used, if without specification. In all our numerical experiments, we choose γ = 0.01 in such a
way that the function α slowly decreases.

In the following, we take P2 piecewise polynomial in space and 2nd order scheme in time. We
denote this scheme as “DG-H”. We compute reference solutions using a positivity-preserving PFC
scheme proposed in [12], which is denoted as “PFC”. The PFC uses discrete velocity coordinate, and
the mesh size is Nx ×Nv.
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First of all, we performed numerical simulations on the Landau damping and obtained similar results
as in [13, Section 4.1]. In this case, the quantity ‖E(t)‖∞ v e−κL t, with κL > 0, hence the function α
given by (1.5) decreases slowly. In the following, we present more challenging numerical tests where
the electric field varies with respect to time.

5.1. Two stream instability. In this example, we consider the two stream instability problem with
the initial distribution function

(5.1) f(t = 0, x, v) =
2

7
(1 + 5v2)(1 + κ((cos(2kx) + cos(3kx))/1.2 + cos(kx))

1√
2π
e−v

2/2 ,

where κ = 0.01 and k = 1/2. For this case, we have
C0(t = 0, x) =

12

7
(1 + κ((cos(2kx) + cos(3kx))/1.2 + cos(kx)) ,

C2(t = 0, x) =
10
√

2

7
(1 + κ((cos(2kx) + cos(3kx))/1.2 + cos(kx)) .

Other Cn’s are all zero and α0 = 1. The background density is ρ0 = 12/7. The length of the domain
in the x-direction is L = 4π.

We compute the solution up to time T = 50. For DG-H, we take Nx = 64 and NH = 128. We show
the time evolution of the relative deviations of discrete mass, momentum and total energy in Figure
5.1 (a). We can see these errors are still up to machine precision. Although the total energy varies a
little due to the time discretization, the errors are at the level of 10−9 which is rather small. We also
plot the time evolution of the electric field in L2 norm in Figure 5.1 (b).

Furthermore, we also present in Figure 5.2, the time evolution of weighted L2 norm of the distribu-
tion and the scaling function α given by (1.5) since it plays a crucial role in the stability analysis of
the DG-H method. On the one hand, on the time interval t ∈ (0, 25), the L2 norm of the distribution
increases almost exponentially, then it decreases and oscillates. On the other hand the variations of
the scaling function α remain small even if the electric field strongly varies with respect to time due
to the instability.

Finally, we compare our numerical results with those obtained from the PFC scheme [12] on a
refined mesh 256× 1024. For this case, we show the surface plots of f at t = 20, 30 and 40 in Figure
5.3 for both methods. The results are comparable for short time t ≤ 30, then for larger time, fine
structures of the distribution function localized in the center are removed for the DG-H method due
to the coarser grid.

5.2. Bump-on-tail instability. Then we consider the bump-on-tail instability problem with the
initial distribution as

f(0, x, v) = fb(v)(1 + κ cos(k nx)) ,(5.2)

where the bump-on-tail distribution is

fb(v) =
np√
πvp

e−v
2/v2p +

nb√
πvb

e−(v−vd)2/v2b .(5.3)

We choose a strong perturbation with κ = 0.04, n = 3 and k = 1/10 and the other parameters are set
to be np = 0.9, nb = 0.1, vd = 4.5, vp =

√
2, vb =

√
2/2. The computational domain is [0, 20π]×[−8, 8].

These settings have been used in [27] and [13, Section 4.3]. For this case, we take the initial scaling
function to be α0 = 5/7.

Again, we take Nx ×NH = 64× 128 for DG-H and compare the solutions to PFC with Nx ×Nv =
256 × 1024. We first show the time evolution of the relative deviations of discrete mass, momentum
and total energy in Figure 5.4 (a). Here, the errors on mass and total energy are up to machine
precision whereas the momentum varies with respect to time up to 10−5. We remind that our space
discretization does not ensure conservation of momentum. We also plot the time evolution of the
electric field in L2 norm in Figure 5.4 (b). We compare them to the results obtained by using the PFC
method with mesh size 256 × 1024. We can see these results have the same structure and they are
similar to those in [27]. We also present the time evolution of the weighted L2 norm and the scaling
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(a) (b)

Figure 5.1. Two stream instability: (a) deviation of mass, momentum and energy,
(b) time evolution of the electric field in L2 norm in logarithmic value with DG-H:
Nx×NH = 64×128 and the reference solution is from the PFC scheme with Nx×Nv =
256× 1024.

(a) (b)

Figure 5.2. Two stream instability: (a) time evolution of the weighted L2 norm
of f , (b) time evolution of the scaling function α for DG-H with Nx ×NH = 64× 128
and the reference solution is from the PFC scheme with Nx ×Nv = 256× 1024.

function α in Figure 5.5. The L2 norm first increases almost exponentially fast, hence it stabilizes for
larger time and oscillates, whereas as expected, the scaling function slowly decreases.

Finally we show the surface plots of the distribution function at t = 12.5, 25 and 50 in Figure 5.6.
From the comparison of these two methods, we can find that at the beginning t ≤ 20, the solutions
are very close. But as time evolves, the solutions are moving in different phases. However, the results
from DG-H look relatively well.

5.3. Ion acoustic wave. Finally, we consider a multiscale problem occuring in kinetic plasma physics,
that is, the time evolution of an ion acoustic wave where both electrons and ions dynamics are inter-
acting (see [9]). In this example, the initial distribution of electrons is given by

fe(0, x, v) =
1√
2π

(1 + κ cos(k x)) e−|v−vd|
2/2,(5.4)
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(a) (b)

Figure 5.3. Two stream instability: Surface plot of the distribution function f at
t = 20, 30 and 40 with (a) Nx ×NH = 64× 128 for DG-H; (b) Nx ×Nv = 256× 1024
for PFC.

where vd = 2 is a drift velocity whereas the initial ditribution of ions is at equilibrium

fi(0, x, v) =
1√

2πv2
th,i

e−v
2/2 v2th,i .(5.5)
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(a) (b)

Figure 5.4. Bump-on-tail instability: (a) deviation of mass, momentum and en-
ergy and (b) time evolution of the electric field in L2 norm in logarithmic value for
DG-H: Nx ×NH = 64× 128 whereas the reference solution is obtained from the PFC
scheme with Nx ×Nv = 256× 1024.

(a) (b)

Figure 5.5. Bump-on-tail instability: (a) time evolution of the weighted L2 norm
of f , (b) time evolution of the scaling function α for DG-H with Nx ×NH = 64× 128,
whereas the reference solution is from the PFC scheme with Nx ×Nv = 256× 1024.

We choose a small perturbation with κ = 0.0001 and k = 2π/10 and the other parameters are set
to be vth,i = 1/50. The computational domain is [−5, 5]. We now consider two Vlasov equations for
electrons and ions coupled through the Poisson equation

−∂xxΦ = ni − ne.
As in [9], we choose a reduced mass ratio (me/mi = 1/25). The choice of these parameters has
been made to trigger an ion-acoustic wave instability. Concerning the numerical parameters, we take
Nx ×NH = 128× 128 for DG-H for fe and fi with αe(0) = 1 and αi(0) = 1/vth,i, hence we compare
the solutions to PFC with Nx × Nv = 256 × 1024. We first show the time evolution of the relative
deviations of discrete mass, momentum and total energy in Figure 5.7 (a). The errors on mass and
total energy are of order 10−10 whereas the momentum varies with respect to time up to 10−9. We
also plot the time evolution of the electric field in L2 norm in Figure 5.7 (b). We compare them to the
results by using the PFC method with mesh size 256× 1024. We can see these results have the same
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(a) (b)

Figure 5.6. Bump-on-tail instability: Surface plot of the distribution function f at
t = 12.5, 25 and 50 with (a) Nx×NH = 64×128 for DG-H and (b) Nx×Nv = 256×1024
for PFC.

structure and they are similar to those in [9]. We also present the time evolution of the weighted L2

norm of the distributions fe and fi in Figure 5.8. On the one hand, the behavior of the weighted L2

norms of fe and fi is quite different : the quantity t 7→ ‖fi(t)‖ωi first increases and then it stabilizes
for larger time, whereas t 7→ ‖fe(t)‖ωe decreases. On the other hand, as it is expected αe and αi
decrease slowly.
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(a) (b)

Figure 5.7. Ion acoustic wave: (a) deviation of total mass, momentum and energy
and (b) time evolution of the electric field in L2 norm in logarithmic value for DG-H:
Nx ×NH = 64× 128 whereas the reference solution is obtained from the PFC scheme
with Nx ×Nv = 256× 1024.

Finally we show a zoom of the surface plots of the distribution function fe when the instability
develops at time t = 175, 200 and 250 in Figure 5.9. Of course, we get a lower resolution with DG-H
on the coarse mesh but when t ≤ 200, both solutions have the same behavior. As time evolves t ≥ 200,
the solutions are moving in different phases. However, the results from DG-H look relatively well.

6. Conclusion and perspectives

We propose in this paper a spectral Hermite discretization of the Vlasov-Poisson system with a
time-dependent scaling factor allowing to prove some stability properties of the numerical solution. It
appears that the control of this scaling factor, and more precisely a positive lower bound, is crucial
to ensure completely the stability of the method. This property, as well as conservation features,
is discussed for several spatial discretizations. Briefly speaking, the scaling factor does not affect
the precision of the method compared to the recent work in [13] and guarantees the stability of the
numerical approximation.

The present work is the first stone to investigate the convergence analysis of the proposed sym-
metric Hermite spectral discretization as it has already been done for asymmetric Hermite spectral
discretization in [25]. Furthermore, the time discretization proposed in this paper follows the ideas
of [13], but unfortunately it does not constraint energy conservation and L2-stability. One approach
would be to construct a Crank-Nicolson type scheme for f and α in such a way that stability properties
may be proved rigorously for a full discretized method.
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