
HAL Id: hal-03259681
https://hal.science/hal-03259681

Submitted on 14 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Path Planning Based on Harmonic Functions
under a Proper Generalized Decomposition-Based

Framework
Nicolas Montés, Francisco Chinesta, Marta C. Mora, Antonio Falcó, Lucia

Hilario, Nuria Rosillo, Enrique Nadal

To cite this version:
Nicolas Montés, Francisco Chinesta, Marta C. Mora, Antonio Falcó, Lucia Hilario, et al.. Real-
Time Path Planning Based on Harmonic Functions under a Proper Generalized Decomposition-Based
Framework. Sensors, 2021, 21 (12), pp.3943. �10.3390/s21123943�. �hal-03259681�

https://hal.science/hal-03259681
https://hal.archives-ouvertes.fr


Real-Time Path Planning Based on Harmonic Functions under 
a Proper Generalized Decomposition-Based Framework

Nicolas Montés 1,* , Francisco Chinesta 2, Marta C. Mora 3 , Antonio Falcó 1 , Lucia Hilario 1, Nuria Rosillo 1
and Enrique Nadal 4

1 Department of Mathematics, Physics and Technological Sciences, University CEU Cardenal Herrera,
C/San Bartolome 55, CP Alfara del Patriarca, 46115 Valencia, Spain; afalco@uchceu.es (A.F.);
luciah@uchceu.es (L.H.); nrosillo@uchceu.es (N.R.)

2 PIMM Lab, ESI Group Chair at ENSAM Institute of Technology, 151 Boulevard de L’Hôpital,
75013 Paris, France; francisco.chinesta@ensam.eu

3 Department of Mechanical Engineering and Construction, Universitat Jaume I, 12071 Castellón, Spain;
mmora@uji.es

4 Centro de Investigación en Ingeniería Mecánica, Universitat Politécnica de València, 46022 Valencia, Spain;
ennaso@upvnet.upv.es

* Correspondence: nicolas.montes@uchceu.es

Abstract: This paper presents a real-time global path planning method for mobile robots using
harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition
(PGD) of these functions. The main property of the proposed technique is that the computational
cost is negligible in real-time, even if the robot is disturbed or the goal is changed. The main idea of
the method is the off-line generation, for a given environment, of the whole set of paths from any
start and goal configurations of a mobile robot, namely the computational vademecum, derived from
a harmonic potential field in order to use it on-line for decision-making purposes. Up until now,
the resolution of the Laplace or Poisson equations has been based on traditional numerical techniques
unfeasible for real-time calculation. This drawback has prevented the extensive use of harmonic
functions in autonomous navigation, despite their powerful properties. The numerical technique
that reverses this situation is the Proper Generalized Decomposition. To demonstrate and validate
the properties of the PGD-vademecum in a potential-guided path planning framework, both real
and simulated implementations have been developed. Simulated scenarios, such as an L-Shaped
corridor and a benchmark bug trap, are used, and a real navigation of a LEGO®MINDSTORMS robot
running in static environments with variable start and goal configurations is shown. This device has
been selected due to its computational and memory-restricted capabilities, and it is a good example
of how its properties could help the development of social robots.

Keywords: path planning; potential fields; harmonic functions; Proper Generalized Decomposition;
Poisson equation

1. Introduction

A fundamental robotic task is to plan collision-free motions among a set of static
and known obstacles from a start to a goal position. The geometric construction of this
planning strategy is computationally hard and hence unfeasible for its use in real-time
(RT) applications [1] where the environment changes, as is the case of social robotics. This
motion planning (or the piano mover’s) problem has motivated many works in the field of
robotics, and its complexities are well known in the literature. The problem cannot be solved
in closed form and, therefore, approximations and simplifications have been developed to
partially solve the problem. Some researchers have been devoted to study some sub-classes
of the general problem while other researchers have considered alternative and simplified
planning paradigms such as sampling-based planners, grid-based and interval-based

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0661-3479
https://orcid.org/0000-0003-0627-6764
https://orcid.org/0000-0001-6225-0935
https://orcid.org/0000-0002-8935-1581
https://orcid.org/0000-0002-2808-298X
https://doi.org/10.3390/s21123943
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/article/10.3390/s21123943?type=check_update&version=1


searches, combinatorial methods, and potential-field-based techniques [2,3]—all of them
attempting to find a trade-off between completeness and computational burden.

In the above context, one of the most popular algorithms is the so-called Artificial
Potential Field technique (APF) [1,4,5]. This method introduces an artificial potential field
that produces a set of paths from a start to a goal configuration. It allows the computation of
a unique trajectory from the start to the goal. This technique is very fast for RT applications,
except when the vehicle is trapped in a deadlock (a local minimum of the potential function).
For this reason, this technique is currently being investigated in the fields of mobile
robotics [6], intelligent vehicles [7,8] and social robotics [9–11].

The solution to this problem lies in the use of harmonic functions to generate the po-
tential field [12]. These functions, initially proposed in [13], appear as the solutions of
the Laplace equation on a specific domain. They exhibit very elegant and interesting
properties for path planning, as described in [14]. First, harmonic functions satisfy the min–
max principle and, therefore, the appearance of deadlocks is not possible. Second, under
certain assumptions, a path planning scheme using harmonic functions is complete. Third,
solutions to Laplace’s equation obey the principle of superposition, which can be used to
enhance the vehicle behaviour in certain areas of the workspace (near the obstacles). Fourth,
the gradient of a harmonic function can be used as a velocity reference for the mobile robot
navigation. Finally, harmonic-based navigation allows dealing with errors in the model
and in the mobile robot position, i.e., with uncertainty.

Despite their attractive properties, path planning based on harmonic functions has
not been widely adopted because these functions cannot be computed in closed form
and discrete approximations imply such a computational burden that has prevented their
extensive use, as indicated in [15]. In fact, standard finite difference methods (such as
Jacobi, Gauss–Seidel, SOR) are typically used to solve the Laplace equation [14,16], im-
plying the use of static environments, i.e., static obstacles as well as fixed start and goal
configurations. Any new configuration requires the recalculation of the harmonic function
and the computation of the streamlines over the entire region. Only if everything remains
static, path generation can proceed very quickly since it only involves the evaluation of
the gradient of a precomputed potential function. Additionally, as explained in [17], the so-
lution must be numerically obtained in a discrete mesh, which entails a computational cost
that increases exponentially with the mesh resolution. For instance, in [18], a scanned envi-
ronment composed of 1500 triangles was used that implied a computational cost of 19.2 s
in an Intel Core 2 Processor (64-bit dual-core commercial CPU) for every re-computation
of the streamlines. Although recent techniques have accelerated this calculation [19,20],
the computational time is still high for RT navigation, with 646s for a 512 × 512 node
environment using the EGSOR algorithm in the last work. Thus, its use for RT navigation
applications seems unrealistic.

Recently, a novel approach called the Proper Generalized Decomposition (PGD) has
appeared to approximate the solutions of non-linear convex variational problems [21].
It is a new paradigm for solving classical problems in high-dimensional spaces [22,23].
In the PGD framework, the resulting model is solved once in order to obtain all the solutions
for every possible value of the parameters defined in a specific domain, that is, a sort of
computational vademecum. It could also be seen as a handbook containing all the possible
solutions of a variational equation for any value of the parameters. Many challenging
problems can be efficiently cast into this framework, and it opens new possibilities to solve
problems with strategies not envisioned until now.

In the field of path planning, the goodness of having a precomputed solution when
the obstacles and the goal are fixed was already stated in [16]. In the 1990s, the computa-
tion of the streamline maps for all the possible combinations of start/goal positions was
not feasible with the available tools. Fortunately, this situation has now changed with
the appearance of the PGD.

The goal of the present paper is to experimentally validate the PGD as a new alterna-
tive for RT mobile robot navigation using potential harmonic functions. Previous work



was presented in [24] with local minima still present in the approximate solution due to
the interaction of start and target positions, modelled as Gaussian functions. In the present
work, cell-centred and staggered meshes are used to overcome this problem and a free-of-
deadlocks solution is reached. To demonstrate the capabilities of the proposed approach,
a harmonic potential field based on the flow theory is used in simulated complex envi-
ronments as well as in RT navigation experiments with a LEGO®MINDSTORMS robot
in environments with static obstacles and variable start and goal robot configurations.
A LEGO®MINDSTORMS robot was also selected as the experimental platform because it is
a commonly used device in teaching social robotics interactions [9]. This paper is organized
as follows: Section 2 first details the potential flow theory to obtain harmonic functions by
means of the Poisson equation. Additionally, the PGD-Vademecum solution for the mobile
robot path planning introduced in our previous work [24] is revisited, and the restrictions
required for the matrices to guarantee a free-of-deadlocks solution are defined. Section 3
presents the application of the PGD-Vademecum in simulated complex environments
such as an L-Shaped corridor and a bug trap. Section 4 shows real experiments using
a LEGO®MINDSTORMS robot in a square map with and without static obstacles. In
Section 5, the computational properties of the PGD-based framework are disclosed. Finally,
Section 6 draws conclusions and future works.

2. Previous Knowledge
2.1. Potential Flow Theory

Path planning based on the potential flow theory has been used in the literature over
the last few years [12,14,16–20,25–32], focused mainly on the resolution of the Poisson
equation. First of all, let us introduce the underlying mathematical model that describes
a potential flow, where the velocity υ verifies

5×υ = 0, (1)

and hence it is the gradient of a scalar potential function u, i.e., υ = −∇u. Then, assuming
incompressible flow, i.e.,

∇ · υ = 0, (2)

it results
∆u = 0. (3)

Let us introduce a localized source (respectively, sink) modelled by a Dirac term δS
(respectively,−δT) on the right-hand side of (3). The velocity of the fluid is now the solution
of the Poisson equation with source term f = δS − δT , that is,

∆u = f . (4)

Equation (4) has an infinite number of solutions. In order to solve it, appropriate
boundary conditions must be introduced.

In what follows, Neuman boundary conditions compatible with the incompressibility
constraint are enforced on the boundary Γ

∇u · n = q. (5)

The resolution of the Poisson equation under these conditions produces a potential
field from the starting point S to the target point T, without deadlocks [18]. Unfortunately,
there is no analytical solution for this equation in the general case, and numerical techniques
must be used. In this sense, the PGD technique, introduced in the next section, overcomes
some of the drawbacks of common numerical methods allowing real-time performance.



2.2. Source Term Definition

Consider the functions gS : ΩX ×ΩS → R and gT : ΩX ×ΩT → R as 2D Gaussian
density distributions centred in the start S = (s1, s2) ∈ ΩS and target configurations
T = (t1, t2) ∈ ΩT , respectively. Both functions are assumed to have equal variance
given by parameter r > 0, r ∈ R. More precisely, we can write gS = gS((x, y); (s1, s2), r) =
(2πr)−1e−

1
2r ((x−s1)

2+(y−s2)
2), gT = gT((x, y); (t1, t2), r) = (2πr)−1e−

1
2r ((x−t1)

2+(y−t2)
2)

and hence ΩX = Ωx ×Ωy, ΩS = Ωs×Ωr and ΩT = Ωt×Ωr. Here, ΩX = ΩS = ΩT ⊂ R2.
In the context of path planning, the physical meaning of this model relies on the fact that

uncertainty is always present in the vehicle position computation in the form of measurement
noise and/or process noise. Both types of noise are usually modelled by Gaussian functions.
Geometrically, in 2D, the standard deviations of the Gaussian functions define the radii of
the uncertainty ellipse around the robot position. If the robot is holonomic (equal variance in
X and Y positions), the ellipse turns into a circumference. If spherical bounding volumes are
used to account for the vehicle size, in the case of an omnidirectional vehicle, these volumes
can be transformed into an increase in the variance of these functions and an uncertainty
bounding volume can be defined, as in [33], including the uncertainty area due to noise as well
as the robot volume (radius of the bounding sphere). Additionally, a security radius can also
be considered in this model in the context of minimum distance from walls.

Let us assume that the source term f in Equation (4) is non-uniform, that is, f =
gS − gT when (x, y) ∈ ΩX and zero otherwise. Then, the Poisson equation is now

−∆u = gS − gT

for given functions gS and gT . Once discretized, a separated form of this equation is
obtained in (6) as a function of the map, the start and target configurations:

−∆u(X, S, T) = f (X, S, T) (6)

2.3. A PGD-Vademecum Solution

The PGD-vademecum is generated considering that the solution of the potential field
u solving (4) and (5) can be constructed as a finite sum of terms, each one consisting of
the product of three functions: a function R of the environment X, a function W of the start
configuration S and a function K of the target or goal configuration T:

un−1(X, S, T) =
n−1

∑
i=1

Ri(X) ·Wi(S) · Ki(T) (7)

and where the enrichment step is given by

un = un−1 + R(X) ·W(S) · K(T). (8)

The key point is to find a rank-one function

R(X) ·W(S) · K(T) :=
R(x, y) ·W(s1, s2) · K(t1, t2)

(9)

satisfying ∫
ΩX×ΩS×ΩT

u∗ · (∆un − f ) dΩX,S,T = 0 (10)

for all test functions u∗ in the linear space of functions

R∗(X) ·W(S) · K(T) + R(X) ·W∗(S) · K(T)
+R(X) ·W(S) · K∗(T). (11)



There are some techniques to measure the error in the approximation versus the number of
PGD terms (n). One of the most appropriate error estimators is the L2(ΩX ×ΩS ×ΩT)-residual
R(n) obtained by inserting the PGD-vademecum approximation into the Poisson Equation (6)
and calculating the residual (10), that is

R(n) =
∫

ΩX×ΩS×ΩT

(∆un − f ) · (∆un − f ) dΩX,S,T . (12)

One of the most important properties of the PGD is that the first terms store more
relevant information than the last terms, see [24].

2.4. Meshing Constraints to Guarantee Free-of-Deadlocks Solutions

In our previous work [24], the PGD was first introduced as an approach capable of using
potential fields methods based on harmonic functions for real-time navigation. However, since
the PGD is an approximation method, it did not guarantee that the resulting approximate
solution was free of local minima. In this work, this problem has been solved and the resulting
PGD solution is free of deadlocks as explained in [34] and summarized here:

• The mesh of X must be cell-centred with the S and T meshes. This means that
the physical positions of the nodes S and T must also exist in the X mesh. It is
obvious as all the robot origins and destinations must appear on the map. In addition,
the dimensions of S and T can be much smaller than the dimension of X, since
all the start (and goal) positions could be separated a moderated distance (0.5 m,
for example) while the navigation map must be accurate (with separation between
nodes of a few cm).

• The mesh of S must be staggered with the T mesh.

3. Simulated Validation. Construction of the PGD-Vademecum in Complex
and Real Environments

In this section, the construction of a PGD-vademecum for path planning using the Pois-
son equation is explained for two complex and real environments depicted in Figure 1.
The environment on the left is an L-shaped corridor of a plant with two zones (in pink)
that should be avoided during the robot navigation. The picture on the right represents
a bug trap planning environment used for benchmarking in robot motion planning. In both
cases, the walls have been modelled with Neumann boundary conditions. In the case of
the L-shaped corridor, the dangerous zones have been modelled with stronger Neumann
boundary conditions than those employed for the walls. In the first example, the corridor is
6 m long, the X mesh has Nx = Ny = 60 nodes while the S and T meshes have a dimension
of Nx = Ny = 6 nodes. In the second example, the environment is a 6 × 6 m square where
the X mesh has Nx = Ny = 120 nodes, and the S and T meshes have Nx = Ny = 12
nodes. Figure 2 represents the PGD reconstructions for both cases using two arbitrary
start and goal positions with n = 300 PGD terms. These simulations were developed
in MATLAB using an HP laptop with a CPU Intel CORE i5, 4 GB RAM memory.

Figure 1. Complex and real environments for navigation: (left) L-shaped corridor in a plant;
(right) bug trap planning environment.



Figure 2. PGD reconstruction (potential field mesh) for two arbitrary start and goal locations
in a (left) L-shaped corridor and (right) a bug trap planning environment.

4. Experimental Validation. PGD-Vademecum in a Lego ®Mindstorms

In order to test the benefits of the PGD framework, the PGD-vademecum must be
programmed in a real mobile robot with restricted computational and memory capabilities.
In this sense, a LEGO®MINDSTORMS Education EV3 Core Set has been selected. The Core
Set includes 541 elements usually employed for teaching science, technology, engineering,
mathematics, and computer science to children. The Core Set comes in a sturdy storage
bin with a sorting tray for easy classroom management and includes three servomotors
and a computer-in-a-brick that makes it possible to control motors and collect data from
sensors. The brick has a LINUX operating system with an ARM controller that runs at
300 MHz with a 64 MB RAM and 16 MB flash memory. These computational and memory
capabilities are far from those of the recent CPUs. An omnidirectional robot has been built
with the EV3 Brick, two servomotors and some common LEGO®MINDSTORMS pieces.
The robot is shown in Figure 3.

Figure 3. Experimental LEGO robot.

The EV3 Brick can be directly programmed in C++ but a Matlab® compiler with
the LEGO®EV3 library for Simulink® is used instead. The wireless communication be-
tween the EV3 Brick and the PC is established by Wi-Fi. The block diagram of the experi-
mental setup is depicted in Figure 4. A webcam with 1280× 720 pixels is used to sense
the 1.5 × 1.5 m map where the vehicle moves. The camera is connected to a desktop PC,
in particular, an HP laptop with Intel CORE i5, 4 GB RAM memory. The PC computes,
on the one hand, the actual pose (x, y, θ) of the LEGO® vehicle from the position of three
blue squares attached to the top of the vehicle and, on the other hand, the target position
(Xg, Yg) indicated by a red plastic disk. This information is sent to the LEGO® brick in real-
time. Detailed explanations about the implementation setup can be found in the authors’
previous work [35].



Figure 4. Block diagram of the Lego® vehicle experimental setup.

The EV3 Brick stores the compiled code that controls the vehicle as well as the PGD-
Vademecum matrices (X, S, T), denoted by (X, S, T) in the RAM memory. Each of the above
matrices has a particular Nx×Ny-size depending on the size of the x and y meshes of X, S and T.

Given the desired wheels velocities, a PID is used to control the vehicle trajectory.
These velocities are computed as explained in the following subsections.

4.1. PGD-Vademecum to Compute the Wheels Velocities

One of the advantages of the PGD-vademecum in contrast to FEM simulation tech-
niques used in [18] is that it allows the reconstruction of single mesh nodes in each algo-
rithm execution k and for any kind of parameter combination. In the case of a robotics
application, this property implies the possibility of computing the mobile robot path
in a small portion of the map for any combination of the start and goal configurations S,
T. The so-called Region Of Interest (ROI) is composed of the four neighbouring nodes
of a particular vehicle position X = (x, y) and can be described by a 2× 2 block matrix
ROI(X) as

ROI(X) =

[
X11 X12
X21 X22

]
(13)

where X11 = (x1, y1), X12 = (x1, y2), X21 = (x2, y1) and X22 = (x2, y2) are the coordinates
of the neighbouring nodes of X, represented as red rhombuses in Figure 5.

Figure 5. Coordinates of neighbour nodes in a particular mobile robot position.



Selecting S = (xS, yS) as the start node position and T = (xT , yT) as the goal node po-
sition, the ROI-Poisson approximate solution at X can be simply computed using the PGD-
vademecum solution u as

uROI(X, S, T) =
[

u(X11, S, T) u(X12, S, T)
u(X21, S, T) u(X22, S, T)

]
. (14)

The ROI velocity field matrix can be computed as indicated in Equation (15), where
VxROI , VyROI are 2× 2 matrices with the velocity field for each node.

VxROI =
∂uROI

∂x (X, S, T) =

[
∂u
∂x (X11, S, T) ∂u

∂x (X12, S, T)
∂u
∂x (X21, S, T) ∂u

∂x (X22, S, T)

]

VyROI =
∂uROI

∂y (X, S, T) =

[
∂u
∂y (X11, S, T) ∂u

∂y (X12, S, T)
∂u
∂y (X21, S, T) ∂u

∂y (X22, S, T)

] (15)

The velocity vector in the mobile robot position (x, y) at step k can be computed by
means of a bi-linear interpolation technique as

υx(X) =
(

1− x∗ x∗
)
VxROI

(
1− y∗

y∗

)
(16)

υy(X) =
(

1− x∗ x∗
)
VyROI

(
1− y∗

y∗

)
(17)

where (x∗, y∗) are the normalized distances:

x∗ =
x2 − x
x2 − x1

, y∗ =
y2 − y
y2 − y1

(18)

The resulting vector must be re-scaled to guarantee that the vehicle follows the stream-
line at constant velocity by taking

φ = arctan
(

υy(X)

υx(X)

)
v = υ0,

(19)

where υ0 represents the constant mobile robot’s velocity. Assuming that X is the vehicle
position at time instant t, i.e., (x(t), y(t)) = X, then its position at t + ∆t (previously fixed
time step ∆t), denoted by (x(t + ∆t), y(t + ∆t)), is given by

x(t + ∆t) = x(t) + υ0 · cos(φ)∆t, (20)

y(t + ∆t) = y(t) + υ0 · sin(φ)∆t, (21)

and hence the displacement on each axis between instants t and t + ∆ is given by:

∆x = υ0 · cos(φ) · ∆t, (22)

∆y = υ0 · sin(φ) · ∆t. (23)

Finally, the angular displacement on the wheels (∆αr, ∆αl) between t and t + ∆ are
computed, as usual, by means of inverse kinematics:

(
∆αr ∆αl

)
=

(
cos(φ)

R
sin(φ)

R
L
R

cos(φ)
R

sin(φ)
R − L

R

)
·

 ∆x
∆y
∆φ

 (24)



where R is the wheel radius, L is the wheel separation and ∆φ = φ− θ. Figure 5 displays
a snapshot of a particular robot pose (x, y, θ). The blue arrow shows the robot orientation
θ, and the red arrow shows the computed reference for the next step, k + 1, by means of
the ROI. Green curves are the continuous streamlines derived from the potential field.

4.2. Experimental Tests

Three tests have been developed with the LEGO® mobile robot in the 1.5 × 1.5 m
square environment and are explained in the following paragraphs. In them, a red plastic
disk is used as a random goal.

Test 1: Point to Point.
This test shows that the PGD-vademecum could cover all the possible start and goal
combinations (Nx × Ny)2 for the vehicle position. The test procedure is as follows:
the red disk is thrown to the scene, falling into an arbitrary position, and the vehicle
must reach the red disk (goal); once the robot reaches the goal, the red disk is
thrown to another arbitrary position.

Test 2: Dynamic Goal.
This test demonstrates that the robot does not need additional computation when
the goal changes before the robot reaches it, unlike in [18] where, if the goal
changes while the robot is following a particular streamline, a new FEM simulation
must be executed and the robot has to wait for the new FEM simulation solution.
The test procedure is the following: the red disk is thrown to the scene falling
into an arbitrary position; the red disk (goal) changes in real-time (due to external
causes) forcing the robot to adjust its target while navigating the environment.

Test 3: Perturbations.
This tests demonstrates the robustness of the potential field approach for each
particular PGD-vademecum solution. For that purpose, the robot is perturbed,
changing its pose before reaching the goal. The procedure of this test is as follows:
the red disk is thrown to the scene falling into an arbitrary position; the robot pose
is manually changed to another arbitrary pose, forcing it to recompute its trajectory
in real-time.

These three tests are performed in two modalities:

Modality A: Without static obstacles.
In this modality, the robot navigates a square environment of 1.5 × 1.5 m dis-
cretized with 20× 20 nodes. The precomputed PGD-Vademecum has the following
parameters: r = 0.7, n = 200 and q = 0.06.

Modality B: With a static obstacle.
In this modality, the robot navigates a 1.5 m × 1.5 m square with a square static
obstacle of 0.3 × 0.3 m located at the centre of the environment. This would be
a common situation for an autonomous robot moving in a house, a parking lot,
a field with trees, etc., where the map contains static obstacles, and the robot has
to skirt them. The environment is also discretized with 20× 20 nodes. The pre-
computed PGD-vademecum has the following parameters: r = 0.7 and n = 200
and q = 1. The generation of static obstacles only involves the assignation of
boundary conditions to the nodes belonging to each static obstacle. It allows
the construction of any configuration map.

Figure 6 shows some snapshots of the experiments carried out for tests 1A, 2A, 3A.
Figure 7 shows some snapshots of the experiments performed for tests 1B, 2B, 3B. The robot
velocity in all the tests was v = 0.1 m/s. In [36], a video with all the tests is shown.



Figure 6. Experimental tests with a LEGO robot. Rows 1, 2, 3 for tests 1A, 2A, 3A.

Figure 7. Experimental tests with a LEGO robot. Rows 1, 2, 3 for tests 1B, 2B, 3B.



5. Time and Memory Complexity of the Method

The method presented in this work consists of two phases: an off-line phase and an on-
line phase, as depicted in the flowchart of Figure 8. In the off-line phase, the aim is to
obtain an approximation of the Poisson equation through the PGD method. This stage
provides a solution in the form of a system of uncoupled matrices. These matrices can be
easily combined in the on-line phase in order to reconstruct the required solution in an
extremely efficient manner, as it only implies the computation of a set of sums and products.
The implementation presented in this paper uses the fixed point iteration method to calculate
the uncoupled matrices X, S and T. In the numerical example presented in Figure 9, the off-
line computational cost of calculating each of the PGD terms is 1.3 s on a Dell Notebook,
with an ®Intel Core i7-8550U processor at 1.80 Ghz and 16 GB RAM. The space occupied
in memory by the resulting matrices using Nx = Ny = 50 for matrix X and Nx = Ny = 5
for matrices S, T is 2.9 MB using simple precision floating-point numbers. An extrapolation
of the results of B type tests can be made for the map of a real small village, such as
1000 × 1000 m. In this case, selecting a resolution of 0.5 m, the entire map would have a size
of 5.8 GB.

Figure 8. Flowchart of the two phases (off-line and on-line) involved in the PGD-based path
planning method.

Figure 9. Numerical examples for two arbitrary S, T locations in two complex environments.



Once the off-line process has finished, the resulting X, S and T matrices are stored
in the robot’s memory for it to navigate the map using the approximate solution obtained
through the PGD. The process is performed as shown in Figure 8: given an initial vehicle
position and any destination within the map, in every algorithm iteration only a portion of
the path around the vehicle location is reconstructed, the ROI, composed by the surround-
ing nodes of the vehicle position (Figure 5). This calculation is modelled in Equation (13),
taking into account the tensor representation of u by (25), and entails the realization of eight
products and n sums. If the number of PGD terms is, for instance, n = 300, it would imply
a total of 2400 floating-point operations. In a modest desktop computer with a Pentium 4
or Athlon 64-type processor, which typically operates faster than 3 GHz and has a computa-
tional performance in the range of a few GFLOPS, this on-line calculation would take 2.3 ms
considering one GFLOPS performance. Furthermore, if an Intel ®Core i7 microprocessor
were used and taking into account that it operates in the range of TFLOPS, the on-line
phase would take a few µs, a negligible processing time. Therefore, the computational
time of the path reconstruction using the PGD solution is really low, nearly constant O(1)
and invariant with respect to the size of the map and the selected map resolution.

u(X, S, T) =
n

∑
i=1

Ri(X)Wi(S)Ki(T) (25)

Regarding the off-line phase, specific details about the method of convergence, com-
putational time, complexity, etc., can be found in the previous authors’ work [37], where
numerical examples are provided in order to describe the relationship between the PGD
(also called the Greedy Rank-One Update algorithm) and the FEM for high-dimensional
partial differential equations based on the tensor product of one-dimensional bases. A com-
parison between the PGD method and the standard linear system solver of Matlab-Octave
A\b for the resolution of the Poisson equation is provided in that paper and is also depicted
in Figure 10, where the evolution of the CPU time in seconds for both algorithms as a func-
tion of the number of nodes used in the discretization of the Poisson equation is shown for
a high-performance computer ®Intel Xeon Gold 6130 CPU at 2.1 GHz and 128 GB RAM
(64-bit 16-core x86 multi-socket high performance server microprocessor). This illustration
helps to understand at a glance the importance of this method as a numerical solver. It is
worth noting that with the traditional method, A\b it is necessary to solve the equation
for the whole map in real-time in every algorithm execution and, therefore, the curse of
dimensionality appears when the number of nodes increases (big maps). Nonetheless, with
the PGD method, each term and node are decoupled, and it is possible to reconstruct only
a simple node or a region of interest as a sum of multiplications, with the computational
time independent of the size and resolution of the map.

Finally, Figure 10 allows the comparison between the proposed method and any
other grid-based planning method for different grid sizes. For instance, in [38], the A*
algorithm is used for real-time motion planning on a 30 × 45 m map discretized using
a high resolution grid of 150 × 225 nodes. The entire path planned by the motion planning
algorithm contains 2–3 s of commands and assumes an 80 ms processing time (although
it can exceed 450 ms if the goal is unachievable). Using the PGD-based framework with
a similar but square environment of 150 × 150 nodes (22,500 nodes) and according to
Figure 10, the off-line phase would take 14 h in a high-performance computer resulting
in the solution of the equation for every start and goal vehicle position. The on-line phase
would take negligible time, as the reconstruction is carried out at every time cycle with
the same ROI size.



Figure 10. Comparison made in [37] in terms of CPU time between the PGD method and the tra-
ditional A\b Matlab-Octave method for the resolution of the Poisson equation as a function of
the number of nodes in the discretization of the equation.

6. Conclusions and Future Work

The present paper validates the applicability of the numerical technique known as PGD-
vademecum to global path planning for mobile robots using harmonic functions. This method
produces, for a predefined map, a vademecum containing all the possible vehicle paths for
any combination of the start and goal configurations within the map. The PGD-vademecum
is computed off-line and reconstructed on-line for any particular combination of the start
and goal configurations. It is really fast as its formulation is a simple sum of products. In fact,
in RT applications, only the surrounding nodes of the vehicle position need to be reconstructed
every execution cycle. As a consequence, the computational costs are nearly negligible, which
allows its implementation even in robots with restricted computational capabilities, such
as a LEGO®EV3 toy. The resulting paths are based on the Laplace/Poisson equation and,
therefore, are free of deadlocks. This property makes it a promising technique to solve the piano
mover’s problem for any type of robots, such as social robots, because many parameters can
be introduced in the PGD-Vademecum as extra coordinates, for instance, parameters related
to different kinematic or dynamic robot models or even dynamic obstacles. In this sense, the
immediate future work is related to the inclusion of mobile obstacles in the environment. There
are various possibilities to take dynamic obstacles into account, such as the one studied in [39],
where the disturbance in conductivity is used to model the presence of a moving obstacle,
and the location of that conductivity disturbance is included as an additional parameter
in the PGD formulation. Other future works imply the consideration of kinematic models
for non-holonomic robots in the PGD framework and its use in solving the motion planning
problem for unmanned aerial vehicles.

Author Contributions: Conceptualization, N.M., F.C., M.C.M.; methodology, N.M., F.C., A.F., E.N.;
software, N.M., N.R., E.N.; validation, N.M., N.R., M.C.M.; formal analysis, N.M., F.C., A.F., L.H.;
investigation, N.M., F.C., L.H., M.C.M., E.N., A.F.; resources, N.M., A.F., F.C.; data curation, L.H.,
M.C.M., N.R.; writing—original draft preparation, N.M., A.F., M.C.M., F.C.; writing—review and edit-
ing, N.Mo., A.F., M.C.M., F.C.; visualization, N.M.; supervision, N.M., A.F., M.C.M., F.C., E.N.; project
administration, L.H.; funding acquisition, A.F., F.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the grant number INDI20/13 from Universidad CEU Cardenal
Herrera.



References
1. Reif, J.H. Complexity of the mover’s problem and generalizations. In Proceedings of the 20th Annual Symposium on Foundations

of Computer Science, San Juan, Puerto Rico, 29–31 October 1976; pp. 421–427.
2. Kavraki, L.E.; LaValle, S. Chapter 5. Motion Planning. In Handbook of Robotics; Siciliano, K., Ed.; Springer: Berlin/Heidelberg,

Germany, 2008.
3. González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans.

Intell. Transp. Syst. 2016, 17, 1135–1145. [CrossRef]
4. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot Res. 1986, 5, 90–98. [CrossRef]
5. Rimon, E.; Koditschek, D. Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 1992, 8, 501–518.

[CrossRef]
6. Lazarowska, A. Discrete Artificial Potential Field Approach to Mobile Robot Path Planning. IFAC-PapersOnLine 2019, 52, 277–282.

[CrossRef]
7. ; Pengwei, W.; Song, W.; Liang, L.; Binbin, S.; Shuo, C. Obstacle Avoidance Path Planning Design for Autonomous Driving

Vehicles Based on an Improved Artificial Potential Field Algorithm. Energeies 2019, 12, 2342.
8. Xinping, G.; Mengxin, H.; Weishuai, Z.; Gang, X.; Guohua, Z.; Yunpeng, H. Intelligent Vehicle Path Planning Based on Improved

Artificial Potential Field Algorithm. In Proceedings of the IEEE International Conference on High Performance Big Data
and Intelligent Systems (HPBD&IS), Shenzhen, China, 9–11 May 2019; pp. 104–109.

9. Kipp, A.; Schneider, S. Applied Social Robotics—Building Interactive Robots with LEGO Mindstorms. In Robotics in Education:
Advances in Intelligent Systems and Computing; Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R., Eds.; Springer:
Cham, Switzerland, 2017; Volume 457, pp. 29–40.

10. Chen, W.; Zhang, T.; Yanbiao, Z. Mobile robot path planning based on social interaction space in social environment. Int. J. Adv.
Robot. Syst. 2018, 15, 1–10. [CrossRef]

11. Calderita, L.V.; Vega, A.; Bustos, P.; Nuñez, P. Social Robot Navigation adapted to Time-dependent Affordance Spaces: A Use Case
for Caregiving Centers. In Proceedings of the IEEE International Workshop on Robot and Human Communication (ROMAN),
Naples, Italy, 31 August–4 September 2020; Volume 15, pp. 944–949.

12. Kim, J.; Khosla, P. Real-time obstacle avoidance using harmonic potencial functions. IEEE Trans. Robot. Autom. 1992, 8, 338–349.
[CrossRef]

13. Zhachmanoglou, E.; Thoe, D.W. Introduction to Partial Differential Equations with Applications; Dover Publications, Inc.: New York,
NY, USA, 1986.

14. Connolly, C.I.; Grupen, R. The Application of Harmonic functions to Robotics. J. Robot. Syst. 1993, 10, 931–946. [CrossRef]
15. Garrido, S.; Moreno, L.; Blanco, D.; Martín Monar, F. Robotic Motion Using Harmonic Functions and Finite Elements. J. Intell.

Robot. Syst. 2010, 59, 57–73. [CrossRef]
16. Connolly, C.I.; Burns, J.B.; Weiss, R. Path planning using Laplace’s equation. In Proceedings of the IEEE International Conference

on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 2102–2106.
17. Waydo, S.; Murray, R.M. Vehicle motion planning using stream functions. In Proceedings of the 2003 IEEE International

Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 2, pp. 2484–2491.
18. Gingras, D.; Dupuis, E.; Payre, G.; Lafontaine, J. Path Planning Based on Fluid mechanics for mobile robots used Unstructured Terrain

models. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010.
19. Saudi, A.; Sulaiman, J. Path Planing for mobile robots using 4EGSOR via Nine-Point Laplacian (4EGSOR9L) Iterative method.

Int. J. Comput. Appl. 2012, 53, 38–42.
20. Saudi, A.; Sulaiman, J.; Ahmad Hijazi, M.H. Robot Path Planing with EGSOR Iterative Method using Laplacian Behaviour-

Based Control (LBBC). In Proceedings of the 5th International Conference on Intelligent Systems, Modelling and Simulation,
Langkawi, Malaysia, 27–29 January 2014; pp. 87–91.

21. Falcó, A.; Nouy, A. Proper Generalized Decomposition for Nonlinear Convex Problems in Tensor Banach Spaces. Numer. Math.
2012, 121, 503–530. [CrossRef]

22. Chinesta, F.; Leygue, A.; Bordeu, F.; Aguado, J.V.; Cueto, E.; Gonzalez, D.; Alfaro, I.; Ammar, A.; Huerta, A. PGD-Based
Computational Vademecum for Efficient Design, Optimization and Control. Arch. Comput. Methods Eng. 2013, 20, 31–49.
[CrossRef]

23. Chinesta, F.; Keunings, R.; Leygue, A. The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer; Springer
Briefs in Applied Science and Technology; Springer: Berlin/Heidelberg, Germany, 2014.

24. Montés, N.; Chinesta, F.; Falco, A.; Mora, M.C.; Hilario, L.; Nadal, E.; Duval, J.L. Towards a PGD-based Computational Vademecum
for robot path planning. In Informatics in Control, Automation and Robotics, Proceedings of the ICINCO 2019, Prague, Czech Republic,
29–31 July 2019; Lecture Notes in Electrical Engineering; Gusikhin, O., Madani, K., Zaytoon, J., Eds.; Springer: Cham, Switzerland,
2020; Volume 720, pp. 1–15.

25. Akishita, S.; Kawamura, S.; Hayashi, K. New navigation function utilizing hydrodynamic potential for mobile robot. In Proceedings of
the IEEE International Workshop on Intelligent Motion Control, Istanbul, Turkey, 20–22 August 1990; Volume 2, pp. 413–417.

http://doi.org/10.1109/TITS.2015.2498841
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1109/70.163777
http://dx.doi.org/10.1016/j.ifacol.2019.08.083
http://dx.doi.org/10.1177/1729881418776183
http://dx.doi.org/10.1109/70.143352
http://dx.doi.org/10.1002/rob.4620100704
http://dx.doi.org/10.1007/s10846-009-9381-3
http://dx.doi.org/10.1007/s00211-011-0437-5
http://dx.doi.org/10.1007/s11831-013-9080-x


26. Akishita, S.; Hisanobu, T.; Kawamura, S. Fast path planning available for moving obstacle avoidance by use of Laplace potential.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, 26–30 July 1993;
Volume 1, pp. 673–678.

27. Guldner, J.; Utkin, V.I.; Hashimoto, H. Robot obstacle avoidance in n-dimensional space using planar harmonic artificial fields.
J. Dyn. Syst. Meas. Control 1997, 119, 160–166. [CrossRef]

28. Keymeulen, D.; Decuyper, J. The fluid dynamics applied to mobile robot motion: The stream field method. In Proceedings of
the IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 378–385.

29. Li, Z.X.; Bui, T.D. Robot path planning using Fluid Model. J. Intell. Robot. Syst. 1998, 21, 29–50. [CrossRef]
30. Rosell, J.; Iniguez, P.A. Hierarchical and dynamic method to compute harmonic functions for constrained motion planning. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4
October 2002; Volume 3, pp. 2335–2340.

31. Sato, K. Deadlock-free motion planning using the Laplace potential field. Adv. Robot. 1993, 7, 449–461. [CrossRef]
32. Sullivan, J.; Waydo, S.; Campbell, M. Using stream functions for complex behavior and path generation. In Proceedings of

the AIAA Guidance, Navigation, and Control Conference, Austin, TX, USA, 11–14 August 2003.
33. Mora, M.C.; Tornero, J. Predictive and Multirate Sensor-Based Planning Under Uncertainty. IEEE Trans. Intell. Transp. Syst. 2015,

16, 1493–1504. [CrossRef]
34. Kashiwa, B.; Lee, W.H. Comparisons between the cell-centered and staggered mesh Lagrangian hydrodynamics. In Advances

in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, Proceedings of
the Next Free-Lagrange Conference Held at Jackson Lake Lodge, Moran, WY, USA, 3–7 June 1990; Lecture Notes in Physics; Trease, H.E.,
Fritts, M.F., Crowley, W.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; Volume 395.

35. Montes, N.; Rosillo, N.; Mora, M.C.; Hilario, L. A Novel Real-Time MATLAB/Simulink/LEGO EV3 Platform for Academic Use
in Robotics and Computer Science. Sensors 2021, 21, 1006. [CrossRef] [PubMed]

36. Montés, N.; Chinesta, F.; Falco, A.; Mora, M.C.; Hilario, L.; Rosillo, N. Embedded PGD-Vademecum Tests in a LEGO Mindstorms
EV3. 2017. Available online: https://www.youtube.com/watch?v=LC_kFZPmOH0 (accessed on 7 June 2021).

37. Ammar, A.; Chinesta, F.; Falco, A. On the convergence of a Greedy Rank-one update algorithm for a class of linear systems.
Arch. Comput. Methods Eng. 2010, 17, 473–486. [CrossRef]

38. Bacha, A.; Bauman, C.; Faruque, R.; Fleming, M.; Terwelp, C.; Reinholtz, C.; Hong, D.; Wicks, A.; Alberi, T.; Anderson, D.; et al.
Odin: Team VictorTango’s entry in the DARPA Urban Challenge. J. Field Robot. 2008, 25, 467–492. [CrossRef]

39. Falco, A.; Hilario, L.; Montes, N.; CMora, M.; Nadal, E. A Path Planning Algorithm for a Dynamic Environment Based on Proper
Generalized Decomposition. Mathematics 2020, 8, 2245. [CrossRef]

http://dx.doi.org/10.1115/1.2801228
http://dx.doi.org/10.1023/A:1007963408438
http://dx.doi.org/10.1163/156855393X00285
http://dx.doi.org/10.1109/TITS.2014.2366974
http://dx.doi.org/10.3390/s21031006
http://www.ncbi.nlm.nih.gov/pubmed/33540864
https://www.youtube.com/watch?v=LC_kFZPmOH0
http://dx.doi.org/10.1007/s11831-010-9048-z
http://dx.doi.org/10.1002/rob.20248
http://dx.doi.org/10.3390/math8122245

	Introduction
	Previous Knowledge
	Potential Flow Theory
	Source Term Definition
	A PGD-Vademecum Solution
	Meshing Constraints to Guarantee Free-of-Deadlocks Solutions

	Simulated Validation. Construction of the PGD-Vademecum in Complex and Real Environments
	Experimental Validation. PGD-Vademecum in a Lego ®Mindstorms
	PGD-Vademecum to Compute the Wheels Velocities
	Experimental Tests

	Time and Memory Complexity of the Method
	Conclusions and Future Work
	References

