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In today’s highly connected cyber-physical environments, users are becoming more and more concerned

about their privacy and ask for more involvement in the control of their data. However, achieving effective

involvement of users requires improving their privacy decision-making. This can be achieved by: (i) raising

their awareness regarding the direct and indirect privacy risks they accept to take when sharing data with con-

sumers; (ii) helping them in optimizing their privacy protection decisions to meet their privacy requirements

while maximizing data utility. In this article, we address the second goal by proposing a user-centric multi-

objective approach for context-aware privacy management in connected environments, denoted δ-Risk . Our

approach features a new privacy risk quantification model to dynamically calculate and select the best pro-

tection strategies for the user based on her preferences and contexts. Computed strategies are optimal in that

they seek to closely satisfy user requirements and preferences while maximizing data utility and minimizing

the cost of protection. We implemented our proposed approach and evaluated its performance and effective-

ness in various scenarios. The results show that δ -Risk delivers scalability and low-complexity in time and

space. Besides, it handles privacy reasoning in real-time, making it able to support the user in various contexts,

including ephemeral ones. It also provides the user with at least one best strategy per context.
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1 INTRODUCTION

Advances in the fields of ubiquitous computing (e.g., Internet of Things), sensing technologies, and
Big Data have allowed the fast evolution of smart connected environments. These environments
are defined as physical infrastructures that host Cyber-Physical Systems (CPS), such as sensor
networks, interconnected using various communication technologies. These systems are capable
of collecting data that could be later processed to provide advanced services. Current CPS-based
applications are impacting numerous application domains including healthcare (e.g., patient and
elderly monitoring), building/housing (e.g., optimizing energy consumption, occupants’ comfort),
environmental (e.g., monitoring air and water pollution levels), and so on.

Sharing data in exchange for goods and services presents an opportunity for users to improve
their quality of life, however, it also exposes them to many privacy risks. In fact, processing and an-
alyzing generated sensor data (e.g., location of individuals, patient’s vital signs), which are spatio-
temporal in nature [1], can lead to disclose many privacy-sensitive information about users [2, 3],
such as health conditions, performed/daily activities, habits, preferences, and so on. This disclo-
sure may be intentional if users are aware of it and have entered into agreements with relevant
providers. However, it can be harmful if the data/information of users is misused by providers,
sold to interested third parties without user consent, or stolen by cybercriminals as providers are
often victims of cyber-attacks that lead to data breaches.

Hence, involving users in the control of their privacy protection is currently receiving extensive
attention on both legal and technical aspects [4–9]. Nonetheless, existing legal frameworks for data
protection (e.g., GDPR [4]) might not necessarily deter data consumers from abusing, intentionally
or unintentionally, the data of users. The Facebook-Cambridge Analytica [10] and Exactis [11]
scandals are only few examples of a long series of data breach scandals that happened despite
the existence of appropriate data protection laws. Moreover, these laws vary among countries,
some providing more protection than others (e.g., GDPR [4] for the European Union, CCPA [5] for
the state of California). This makes it more difficult to manage and preserve the privacy of users,
especially when users, providers, and third parties are located in different countries governed by
different data protection laws. Therefore, all these constraints emphasize the need for user-centric
technical solutions that guarantee the same level of privacy protection in all countries.

Current approaches of user-centric privacy preserving [6, 7, 9] have mostly relied on preference
specification and policy enforcement, where users specify their privacy preferences and accept
policies that enforce these preferences. However, they all share two main limitations:

(1) lack of user awareness. The user may not be completely aware of the direct and indirect
privacy risks associated with sharing her data with providers to correctly specify her pref-
erences in the first place. She may simply not know what sensitive information might be
revealed from her data when data pieces are analyzed in isolation or combined with each
other or/and with other side information acquired from external data sources (e.g., social
networks).

(2) lack of context-based privacy decision making. The data sharing/protection decisions are often
made/accepted by the user in a static way. This means that they remain unchanged regardless
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of the user-context changes. However, the sensitivity of data may vary from a context to
another [2, 12], i.e., new privacy risks may emerge as others may lose their significance.
This makes static decisions over-protective in some contexts, causing an unnecessary loss of
data utility, which may downgrade the accuracy of associated services; or under-protective,
leading consequently to privacy breaches. Therefore, the user must be able to make dynamic
adjustments to her privacy decisions according to the evolution of her context.

The objectives of our research work are to design suitable solutions that address the aforemen-
tioned two limitations, and to provide a complete context-aware privacy framework that meets
the guidelines of the Privacy by Design (PbD) standard. Specifically, the framework needs to cope
with: (i) raising user awareness of the privacy risks associated with sharing her data with con-
sumers; (ii) assisting the user in optimizing her privacy decisions according to her contexts and
preferences; and (iii) ensuring appropriate data protection in accordance with user decisions before
transmitting it to data consumers. To overcome the first limitation, we proposed in previous work
[2] a context-aware privacy risk inference approach that provides users with a dynamic overview
of the privacy risks they take as their context evolves. The computed risk overview is intuitive
enough to allow users to understand the implicit, direct and indirect implications of sharing their
data with consumers. This paves the way for users to make informed adaptations of their privacy
decisions. However, users might not always know the appropriate data protection measures to ap-
ply in their contexts. That is, over-protective measures limit the utility of shared data to eliminate
the risks, but could also downgrade the accuracy of services. Likewise, under-protective measures
may improve the accuracy of services, but might also lead to privacy breaches. Hence, determin-
ing the optimal protection measure that answers the requirements of the user while maximizing
the utility of shared data remains challenging. In addition, what makes it even more challenging
is that user-decisions must sometimes be fast (i.e., in real-time). Therefore, the solution must be:
(i) user-friendly (i.e., not complex for the user); (ii) adaptive to the context and expressive in rep-
resenting various contexts; (iii) scalable, to handle reasoning over an increasing number of risks
and attributes. It must also maintain (iv) computational and storage efficiency, which makes it
operational on various types of devices, including those with limited resources.

To cope with these challenges, this article proposes a new user-centric, context-aware and multi-
objective privacy management approach, denoted δ-Risk . The proposed approach assists the user
in optimizing her privacy decisions, by providing her with dynamic, fast, and optimal protection
strategies that could be adopted in her context. Each of these strategies minimizes the risks in-
ferred in the user context to meet her privacy requirements while maximizing the utility of data
and minimizing the cost of protection. The strategy delivered consists of the best combination of
protection levels to be assigned to shared attributes, i.e., the combination that best satisfies user
preferences and context. To validate our proposal, we developed a Java-based prototype that per-
forms real-time reasoning and generates dynamic/contextual protection strategies. We evaluated
the performance of the δ -Risk prototype in various scenarios, including worst-case ones. Then,
we formally studied its effectiveness. The results show that δ -Risk delivers scalability and com-
putational/storage efficiency. It handles reasoning in real-time, which makes it able to support
the user in various contexts, including ephemeral ones (i.e., contexts with short time periods). It
is always capable of: (i) identifying all possible appropriate strategies that answer the data util-
ity/privacy ‘protection’ can be removed trade-off; (ii) delivering the best strategies to the user; and
(iii) providing the user with at least one best strategy per context.

The remainder of this article is organized as follows. Section 2 introduces a scenario that moti-
vates our proposal and identifies the challenges to tackle. Section 3 presents our CaPMan frame-
work, and provides formal definitions of the key terms used in the article. Section 4 details the
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Fig. 1. Motivating Scenario.

δ -Risk approach. Section 5 outlines the experiments and tests performed. Section 6 highlights the
Privacy by Design standard and reviews existing context-aware privacy preserving approaches
in connected environments. Finally, Section 7 concludes the article and discusses future research
directions.

2 MOTIVATING SCENARIO

To motivate our proposal, we investigate a real-life scenario that showcases some of the privacy
risks entailed from sharing data with consumers, and highlights the need for dynamic/contextual
adaptations of user-privacy decisions. Figure 1 illustrates the proposed scenario. Assume that Alice
is a Chronic Obstructive Pulmonary Disease (COPD) patient. She pursues her medical treat-
ment remotely using a NIV (Non-Invasive Ventilation) device deployed at home. Consider that
Alice shares fine-grained data with the following service providers:

• Electricity provider: Alice shares the energy consumption of her home through a deployed
smart energy meter. In return, the provider offers Alice personalized recommendations to
reduce her energy consumption and bills.

• Healthcare provider: Alice shares her real-time location through a mobile application to
benefit from an emergency care system. This system provides smart healthcare services,
such as a smart ambulance service, that she would use in case of respiratory distress.

The trust relationship between Alice and the providers is not static. It varies due to many factors
such as the sensitivity of her context, or the third parties with whom the provider communicates
her data. Assume that both providers have signed contracts with third parties interested in exploit-
ing the data of customers (e.g., Alice) for different purposes, including marketing companies and
government agencies. Marketing companies could be interested in exploiting consumption data
to analyze the lifestyle of customers to send them targeted advertisements (e.g., advertisements
about appliances that customers own or do not own). Government agencies could be interested in
identifying customers involved in wrongdoing (e.g., fraud, crimes, etc.).

Even though Alice is notified, through agreed policies, of consumers who have access to her
data, she may not necessarily be aware of the privacy risks involved with this sharing. The risks
can be of two types: mono-source and multi-source risks. Mono-source risks arise from sharing
data with a single data consumer. For instance, analyzing the energy consumption data (see the
signature in Figure 2) can entail various mono-source risks for Alice, such as the risks of disclos-
ing her presence/absence hours at home, waking/sleeping cycles, some of her habits and activities
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Fig. 2. Energy consumption signature. Fig. 3. Location data pattern.

(e.g., cooking, TV watching, sports activity using a treadmill) [13]. Moreover, existing works (e.g.,
[3]) show that consumption signatures can be mined to identify the use of specific appliances
(e.g., medical devices). This would reveal the health condition of Alice if the use of her NIV ma-
chine was identified. The analysis of location data patterns (cf. Figure 3) can also entail significant
mono-source risks for Alice such as the risks of disclosing her habits and routines, behaviors, po-
litical/religious affiliations, identity based on her locations in personal environments (e.g., home,
office), and her health conditions based on frequent visits to hospitals. For example, if Alice is
located twice per week in a pulmonary rehabilitation center for COPD patients, then she is very
likely to be a COPD patient.

Multi-source risks are more complex risks that arise when customer data are communicated
between data consumers (cf. Figure 1). For example, assume that Alice has unlawfully certified
that she is living alone to be eligible for a welfare program when submitting her application. A
marketing company having access to both location and consumption data can infer this fraud (it is
enough to identify the use of particular devices, such as microwave and TV, while Alice is outside
her home).

Once Alice is alerted of the risks involved in her current situation, adapting her privacy protec-
tion measures becomes essential. Nonetheless, such an adaptation can be difficult for her, especially
as it may impact the utility of shared data and thus the accuracy of associated services, including
important ones for Alice. Assume that the services offered by the healthcare provider are important
to Alice. She may want to minimize her risks when being located in the pulmonary rehabilitation
center, but without completely losing health services. In this case, Alice may not know the appro-
priate amount of protection to assign to her shared attributes, as she may not know the impact of
this protection on associated risk values. This raises the need for a system that can assist Alice in
optimizing her privacy decisions while keeping the process simple to her. However, building this
dynamic context-dependent system requires to address the following scientific challenges:

• Challenge 1. Coping with user expertise: People may have different levels of expertise to
properly express their requirements/preferences and interact with the system. The proposed
solution must therefore be user-friendly, allowing the guided assistance to be tailored to the
user’s expertise in order to maintain good quality of human-machine interactions.

• Challenge 2. Making optimal context-based privacy decisions: The user-privacy deci-
sions depend on her situation (e.g., risks inferred) and preferences. Therefore, the proposed
solution should always be able to provide the user with optimal and adaptive protection
strategies to cope with the dynamicity of her contexts and preferences.

• Challenge 3. Delivering scalability and efficiency: The solution must be scalable, i.e.,
handles reasoning over an increasing number of sensed attributes and privacy risks. It should
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Fig. 4. CaPMan Framework.

also maintain computational and storage efficiency in order to support the user in various
contexts and be operational on different types of devices, including resource-constrained
ones.

3 CaPMan: FRAMEWORK FOR CONTEXT-AWARE PRIVACY MANAGEMENT IN

CONNECTED ENVIRONMENTS

To stress the usage of theδ-Risk approach, we present in this section an overview of our Privacy by
Design framework for Context-aware Privacy Management in connected environments, denoted
CaPMan. We start by explaining the functioning of the framework, and formally defining the key
terms used in the article. Then, we briefly describe the framework modules.

The aim of CaPMan is to provide a user-centric reasoning system that assists the user in manag-
ing her privacy protection (cf. Figure 4). This system can be embedded on user devices (e.g., mobile
phone, computer, tablet) as middleware between the user and the connected consumers, so that
it manages the user’s data before being released to consumers. We consider in this study that all
data consumers are not trusted by the user. Hence, the user starts by specifying the inputs: (1) the
list of sensed attributes that are currently shared with data consumers; and (2) her preferences
(detailed in Section 4). The system, on its side, collects the data values of sensed attributes, and
collects additional background data describing the user and her surrounding environment from
other external data nodes (e.g., social media platforms, public databases).
Let u denotes the user of interest.

Definition 1 (Data Node). Let DN be the set of input/output data nodes
{
dn1, . . . ,dnn

}
. Input

data nodes are data sources from which the data is collected (e.g., sensors, social networks). Output
data nodes are data consumers with whom the data is shared (i.e., service providers and third
parties). dn ∈ DN is formalized as follows:

dn : 〈desc ; id〉, where:

• desc is the textual description of dn (e.g., gps-sensor, facebook, healthcare-provider)

• id denotes the identity of dn, expressed as a uniform resource identifier (URI). All the defi-
nitions must end with a “black square”: �

Definition 2 (Physical Environment). Let Eu be the set of physical environments

{env1, . . . , envn } where the user u is/was located. env ∈ Eu can be of two types: connected
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(i.e., hosts smart systems) or unconnected environment.

env : 〈desc ; sz; Sys〉, where:

• desc denotes the textual description of env (e.g., home, office, mall)

• sz expresses the spatial zone of env (cf. Definition 3)

• Sys � DN is the set of systems (data nodes) deployed in env (e.g., sensors, actuators). For
unconnected environments, Sys = ∅. �

Definition 3 (Spatial Zone). A spatial zone, sz, is defined as a geographical surface bounded by
a set of locations, such that

sz : 〈loc1; loc2; . . . ; locn〉, where:

• loc is a location instance defined as 3-tuple loc : 〈lonд; lat ; alt〉, where
lonд, lat , and alt denote, respectively, the longitude, latitude, and altitude of loc . �

Example 1. The home of Alice is a physical environment, home ∈ Eu . It can be defined as follows:

home :
- desc : home of Alice
- sz : homeZone : 〈loc1; loc2; loc3; loc4〉
loc1 : loc2 : loc3 : loc4 :
- lonд : -1.52308 - lonд : -1.52222 - lonд : -1.51503 - lonд : -1.51534
- lat : 33.0585 - lat : 33.0884 - lat : 34.1381 - lat : 34.1431
- alt : 200.03 - alt : 205.14 - alt : 216.57 - alt : 218.13

- Sys =
{
sensor1 : 〈desc : energy-consump-sensor; id : 46.193.0.164〉}

Physical environments may be dependent (e.g., spatial inclusion), making the associated infor-
mation dependent. For instance, CaPMan may receive information describing the home and the
city of the user, where home is inside the city, making the information collected on both environ-
ments dependent. However, in this study, we do not consider the dependency of environments,
and the system reasons on each environment in isolation.

Definition 4 (Attribute). LetA be the set of attributes {a1, a2, . . . , an } that include data describ-
ing u and her physical environments. a ∈ A is formalized as follows:

a : 〈desc ; access ; source ; Dconsumer ; ent ; Loд〉, where:

• desc denotes the textual description of a (e.g., location, energy-consump, age)

• access ∈ {r ; r/w
}

represents the access rights of the CaPMan system to the data ofa, which
can be read or read/write.

• source ∈ DN is a data node expressing the data source from which a is captured. source
can derive from Connected environments (e.g., sensor, device) or Web environments (e.g.,
social network, public database)

• Dconsumer represents the set of data consumers with which a is shared, such that:

Dconsumer =
{
dc1; dc2; . . . ; dcn

} ∪ {⊥} , where:

—dci ∈ DN is a data node expressing a data consumer (i.e., service provider or third party)
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—Dconsumer = ∅ indicates that data consumers are unknown

—Dconsumer = {⊥} denotes that a is a public attribute (i.e., shared with everyone)

• ent ∈ {u , env} denotes the entity described by a, which can be u or an environment
env ∈ Eu

• Loд = {〈rv ; M〉} is the set of data values of a. Loд can be seen as the log file of a, where:
—rv denotes the raw data value

—M is the set of metadata characterizing rv (e.g., time/location of capture, data-type).

Definition 4.1 (Sensed Attribute). Let SA � A be the set of sensed attributes , i.e., attributes
that characterize sensed data by deployed/wearable sensors, and on which the CaPMan system
has access to control and manage, such that:

∀ a ∈ SA : a.access = r/w . �

Definition 4.2 (Background-oriented Attribute). Let BA � A be the set of backдround-
oriented attributes , i.e., attributes that characterize background data about the user and/or her
environments, and on which the CaPMan system has read-only access, such that:

∀ a ∈ BA : a.access = r . �

Example 2. Alice has two sensed attributes that can be represented as follows:

a1 : a2 :
- desc : energy consumption - desc : location
- access : r/w - access : r/w
- source : sensor1 - source : sensor2 : 〈desc : GPS; id : 46.89.1.47〉
- Dconsumer =

{
prov-1

}
- Dconsumer =

{
prov-2

}
prov-1: 〈desc : elect-prov; id : 58.17.37.23〉 prov-2: 〈desc : health-prov; id : 64.31.3.12〉
- ent : home - ent : u
- Loд : - Loд :

〈89;
{
tcaptur e : 21 :05 :00; dunit : kWH

}
〉 〈(−33.0534, 16.3103);

{
tcaptur e : 11 :00 :00

}
〉

〈115;
{
tcaptur e : 21 :15 :00; dunit : kWH

}
〉 〈(−36.0534, 17.4401);

{
tcaptur e :: 11 :01 :00

}
〉

Example 3. Assume that the system has captured background data describing the marital status
of Alice, which is publicly shared on her Facebook profile:

a3 :
- desc : marital-status
- access : r
- source : socialAccount1: 〈desc : facebook; id : https://www.facebook.com/Alice〉
- Dconsumer = {⊥}
- ent : u

- Loд : 〈single;
{
tcaptur e : 12 :00 :00; dtype :Strinд

}
〉

The CaPMan system models acquired contextual data and launches the risk reasoner that per-
forms rule-based reasoning over context data, while relying on imported privacy rules (cf. Def-
inition 6) to infer the privacy risks (cf. Definition 8) involved. If no risk is inferred, the system
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continues to generate data values for consumers as received (i.e., without applying additional pro-
tection). Otherwise, it alerts the user about the risks involved in this data sharing, and recommends
a list of best protection strategies that could be adopted in this situation. Meanwhile the system
stops communicating data to consumers and waits for the user’s response. When the user selects
the strategy to implement, the system accordingly protects the pending data values of attributes
and releases the protected version of data to consumers. The system continues to apply the same
protection strategy to the received data values until a new context emerges, where the entire
reasoning process is relaunched to consider the changes in context and their impact on the risk
overview and strategies. By default, the system stores only consecutive contexts, which makes it
low-complex in storage (cf. Theorem 1), and operational on various types of devices, including
those with limited resources (cf. Challenge 3). Knowing that the number of historical contexts to
be kept in the cache can be increased according to the storage capacity of the integrating device
(this will be further discussed in future work). Therefore, the global process (i.e., risk inference and
strategy identification process) is by default executed once per context.

Definition 5 (User Context). A user context, c , is a spatio-temporal context during which the
system has a fixed set of attributes describing u and her environment. c is formalized as follows:

c : 〈t ; s ; A〉, where:

• t denotes the time period of c , which can be a time instant or a time interval. A time interval,
ti , is defined as 2-tuple ti : 〈tst ar t ; tend 〉 , where tst ar t and tend are two time instants

• s expresses the spatial zone of c (cf. Definition 3)

• A represents the set of attributes characterizing c (A = SA ∪ BI ). It contains at least one
sensed attribute, i.e., ∃ a ∈ c .A : a.access = r/w

A context-change takes place if at least one of the context parameters varies. �

Performing rule-based reasoning to infer the risks involved in the user context requires relying
on a reference schema composed of a list of privacy rules.

Definition 6 (Privacy Rule). Let PR be the set of privacy rules
{
pr1,pr2, . . . , prn

}
that define

the risks to be inferred by the system (i.e., mono-source and multi-source risks). pr ∈ PR is a
reasoning rule indicating which attribute or combination of attributes, if processed, leads to reveal
which privacy-sensitive information about u. pr includes at least one shared attribute, such that

pr : A′ → psi , where:

• A′ = 〈a1 ∧ . . . ∧ an〉 | ai ∈ A ∀i ∈ [1;n] denotes the sequence of attributes combined
using the logical AND operator (i.e., ∧), where ∃ a ∈ A′ : a.access = r/w

• psi expresses the privacy-sensitive information to be disclosed by A′ (cf. Definition 7). �

Definition 7 (Privacy-Sensitive Information). A privacy-sensitive information, psi ∈ PSI , is a
piece of information that, if disclosed, can be harmfully used againstu.psi might be revealed when
processing/analyzing the knowledge acquired about u and her environment. psi has a primitive
data type of String and belongs to a controlled set PSI , such that

PSI =
{
psi1; psi2; . . . ; psin

}
.

The National Institute of Standards and Technology (NIST) guidelines for smart grid cybersecurity
[13] has identified several psi instances, including: user-profile information (e.g., disease, salary),
habits (e.g., daily activities), behaviors, preferences, presence/absence, sleep/wake cycles, appli-
ances and medical devices used, and fraud. �
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Example 4. A privacy rule pr1 states that processing the energy consumption of the user’s home
can lead to reveal the presence/absence of the user at home. pr1 can be represented as follows:

Let psi1= “presence/absence at home”; pr1 : a1 → psi1.

Definition 8 (Privacy Risk). A privacy risk, r , is defined as the probability of satisfying the
privacy rule pr ∈ PR in the user context c . r can be seen as the probability of disclosing the
privacy-sensitive information (psi)pr through the combination (A′)pr . It is generated when the
relevant pr is satisfied in c , and remains valid for the entire time period of c . r is probabilistic
with a value between [0, 1], where 0 indicates that r is eliminated and 1 the highest risk level. The
default value of r when inferred is 1. r can be represented as follows:

r = P (pr ) | pr ∈ PR and r ∈ [0, 1]. �

The number of risks to infer in a single process iteration is fixed, it depends on the number of
privacy rules imported in this iteration. It is possible to have several risks ri mapped to the same
psi ∈ PSI in case the psi is disclosed through various combinations of attributes defined by
different privacy rules.

Example 5. Assume that when launching the process, the rule pr1 is satisfied in the context of
Alice. Therefore, a risk r1 is inferred for Alice, such that: r1 = P (pr1) = 1.

3.1 CaPMan Framework Modules

As illustrated in Figure 4, CaPMan is a modular framework composed of three modules: informa-
tion management module, privacy risk inference module, and privacy risk management module.
These modules are detailed in what follows.

3.1.1 Information Management Module. Inferring context-aware risks requires first to build up
a global view of the user context. This is done by gathering attributes describing the user and her
surrounding physical environment. Hence, this module is responsible for managing (i.e., capturing
and modeling) user attributes and preferences. It includes the following components: (i) context ac-
quisition, in charge of capturing attributes from the user and her Connected/Web environments;
(ii) user preferences, responsible for managing the preferences of the user; and (iii) context modeling,
liable for modeling acquired attributes and the relationships that exit among them, which helps in
better understanding the user context. We explored the context modeling component in previous
work [2], where we proposed a generic and modular ontology for Semantic User Environment
Modeling, entitled SUEM. This is motivated by the fact that adopting a semantic data model that
maintains a flexible data structure becomes a fundamental requirement, especially as: (1) collected
information can be heterogeneous (i.e., they have different data types and formats); (2) informa-
tion can be captured from different types of data sources that could derive from both Connected
environments (e.g., IoT sensor networks), and Web environments such as social networks, or any
other public data source (e.g., public voting records, medical records); (3) gathered information
may have different levels of granularity; and (4) performing in a dynamic environment that cannot
be controlled in advance makes the system unable to control or predict the knowledge to receive,
nonetheless, it must be always capable of modeling it. The SUEM ontology introduces concepts and
properties to represent information received about the user, domains of interest, and environments.
SUEM is extensible and can be adapted to various domain particularities. Full documentation of
the SUEM ontology can be found at: http://spider.sigappfr.org/SUEMdoc/index-en.html.
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3.1.2 Privacy Risk Inference Module. Responsible for inferring the risks involved in the user
context. To achieve this, this module includes two components. First, the privacy rules component,
which handles the definition/import of privacy rules that specify the risks to be detected by the
system. The rules are defined according to the given syntax in Definition 6, and they are used as
a reference schema for the reasoning process. This schema is regularly updated by the privacy
community, and the rule updates are imported by the system when relaunching the risk inference
process. It is important to state that the accuracy of the risk inference process depends on the
quality of the defined rules. We assume in this study that the privacy rules, defined by experts
from the privacy community, are pre-validated (this validation is out of scope of this study). Sec-
ond, the privacy risk reasoner component, which provides a semantic rule-based reasoning engine
proposed in Reference [2]. This engine reasons on modeled information to dynamically infer the
risks involved in the user context.

3.1.3 Privacy Risk Management Module. Responsible for assisting the user in the management
of her privacy by: (i) assessing and minimizing the risks inferred based on the privacy requirements
and interests of the user; (ii) delivering optimized and meaningful strategies; and (iii) protecting
sensor data streams according to the context-dependent protection strategy selected by the user. In
order to do so, the module consists of three components. First, the protection strategies component,
in charge of managing user risks and identifying the best protection strategies to be suggested to
the user. Computed strategies are optimal in that they seek to closely satisfy user requirements
and preferences while maximizing data utility and minimizing the cost of protection. The risk
manager continuously adjusts the strategies provided to cope with the dynamic nature of the user
context and preferences. In fact, the user might change progressively her preferences due to the
sensitivity of the risks entailed, or the sensitivity of the context (e.g., private meeting, located in a
hospital). Second, the protection functions component, which includes the list of available protec-
tion functions (e.g., random-noise function, generalization function) that the protection strategies
and privacy protection service components can rely on during their computing processes. Finally,
the data protection component, responsible for: (1) selecting the most appropriate protection func-
tions, in terms of compatibility and computational cost, to be executed on sensor data streams to
achieve required protection levels (i.e., the protection levels stated in the strategy chosen by the
user); and (2) executing selected functions on data pieces in order to communicate protected data
to consumers. This component provides therefore contextual data protection according to user
decisions (i.e., in active mode).

4 δ-Risk: TOWARD CONTEXT-AWARE MULTI-OBJECTIVE PRIVACY MANAGEMENT

IN CONNECTED ENVIRONMENTS

Empowering the user to make quick, effective, and meaningful adaptation of her privacy decisions
to cope with the evolution of her context remains challenging. In that regard, we propose in the fol-
lowing a new user-centric, context-aware, and multi-objective privacy risk management approach,
denoted δ-Risk . δ is a privacy parameter specified by the user to express the maximum level of
risk that she accepts to take in her context. The aim of this approach is to assist the user in opti-
mizing her privacy decisions, so that to meet her requirements and preferences while maximizing
data utility and minimizing the cost of protection. To do so, δ -Risk provides the user with at least
one best protection strategy to adopt in her context. In addition to her privacy preferences, the
approach considers also the interests of the user (e.g., what services are important to her), thereby
making the strategies provided not only optimal but also meaningful.

Figure 5 illustrates an overview of the solution. δ -Risk receives as input the preferences of the
user and the context features (step 1), and outputs the best strategies that might be adopted in these
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Fig. 5. Overview of the δ -Risk Approach.

circumstances (step 2). The user selects accordingly one protection strategy to be implemented
on her shared attributes (step 3), and this strategy remains valid as long as there is no change
in the entries. The δ-Risk principle is defined as follows: the global risk level to maintain in a
context should not bypass the threshold δ specified by the user. We detail in what follows the
input parameters of the approach.

Context Features:

(1) The set of attributes shared by u in c , i.e., c .SA = {a1, a2, . . . , am } (cf. Definition 4.1).

(2) The overview of privacy risks in c , represented by Rc = {�r ; v}, where:
—�r = [r1 r2 . . . rn] is a risk vector composed of the privacy risks inferred in c , where

n denotes the number of risks inferred.

—v expresses the global risk level in c , that is used to interact with u (i.e., δ ). How to
measure the global risk level is addressed in the following subsection.

(3) The set of costs of protection functions (cf. Definition 9) selected by the system, cPF , to
be executed on attributes of c .SA.

(4) The impact matrix of shared attributes on the risks inferred,Wc (cf. Definition 10).

Definition 9 (Protection Function). A protection function, f ∈ PF , is a protection method that
can be executed on the data values of an attribute a ∈ c .SA before being released to consumers. f
is a local function stored in the system, such that:

f : 〈name ; type ; cost ; Param〉, where:

• name denotes the name of f (e.g., random noise, differential privacy)

• type represents the protection type to which f belongs, such that:

type ∈ {noiseAddition; anonymization; accessControl ; encryption
}

• cost expresses the cost of f in terms of processing time and memory overhead

• Param represents the set of input parameters of f , including at least the following ones:
—SA′ � c .SA, denotes the set of attributes on which f will be executed

—p, expresses the desired protection level to reach for the data values of all a ∈ SA′. �

Definition 10 (Impact Matrix). Let Wc be the impact matrix of attributes {a1, a2, . . . , am } of
c .SA on risks {r1, r2, . . . , rn } of Rc .�r . Wc is automatically calculated by the privacy risk reasoner
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component during the risk inference process, such that

Wc =

⎡⎢⎢⎢⎢⎢⎢⎣

ω11 ω12 ... ω1m

... ... ... ...

ωn1 ωn2 ... ωnm

⎤⎥⎥⎥⎥⎥⎥⎦
, where ωi j =

⎧⎪⎨⎪⎩
0 if ri = P (pr ) and aj � A′pr

1 if ri = P (pr ) and aj ∈ A′
pr

.

The impact ωi j of an attribute aj on a risk ri is equal to 1 only if aj is included in the set of
combined attributes (i.e., A′) when defining the privacy rule pr to which ri is linked. �

Example 6. Assume that the following Rc .�r andWc describe, respectively, the risk vector inferred
for Alice in her current context, and the corresponding impact matrix:

– Rc .�r = [r1 r2 r3 r4] is the risk vector inferred for Alice in c .

– Wc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0
1 1
1 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where a1 impacts all risks, and a2 impacts only r2 and r3.

User Preferences:

(1) Privacy preferences:

(i) The risk threshold δ , with a value between 0 and 1, where 0 indicates that u does not
accept to take any risk, and 1 means that u wants to share fine-grained data to preserve
the full accuracy of related services. The system recommends possible values for δ to u
according to her profile and context (see in Figure 7).

(ii) The set of enforced protection levels for specific attributes, eP . These levels are ex-
tracted from pre-signed agreements with service providers. Only advanced users have the
possibility to manually enforce protection levels to their attributes as shown in Figure 6.

(2) Service preferences: u has the possibility to state which services are important to her based
on her profile (cf. Figure 6). Accordingly, the system calculates the weights to assign to at-
tributes as follows:
• Let �wA = [w1 . . . wm] be the vector of weights assigned to attributes {a1, . . . , am }

of c .SA.

• Let S be the set of available services s1, s2, . . . , sn offered by the providers tou in exchange
of her data, such that: ∀ s ∈ S, s : 〈SA; li〉, where:

—SA′′ represents the set of sensed attributes associated to s , such that SA′′ � c .SA

—li denotes the level of importance of s tou. li is Boolean where 1 states that s is important

Therefore, the weight of an attribute ai , wi of �wA, is equal to the number of important
services to which ai is associated. This can be represented as follows:

∀ ai ∈ c .SA : wi =

n∑
l=1

sl .li | ai ∈ sl .SA
′′. (1)

Users might have different levels of expertise to manage their privacy and express correctly
their requirements and preferences (cf. Challenge 1). As our objective is to keep the privacy man-
agement user-centric, the provided solution must be user-friendly, i.e., it assists u and facilitates
the interaction with her according to her expertise. On this basis, we define three user profiles:
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Fig. 6. User profiles.

• Beginner: u is not familiar with her privacy. She does not know how to interpret her risks
and manage her privacy (e.g., specify her preferences, select protection strategies).

• Intermediate: u knows how to interpret her risks and use the system, i.e., she knows how
to specify her preferences and understands the privacy measures to take. However, she does
not know how to assess the implications of these measures.

• Advanced: u is expert in interpreting/analyzing her risks, and managing her privacy. She
knows how to assess the direct and indirect implications of her privacy decisions.

Figure 6 details the defined profiles and their characteristics. The aim here is to limit the level of
interaction withu according to her profile. This level is expressed in Figure 6 by min-max number
of interactions for each profile. For beginner, the system: provides a summarized overview of the
main risks involved in her context; recommends one value for δ based on her situation, which is
adopted by default, while giving u the possibility to manually specify δ ; considers only enforced
protection levels (i.e., eP ) from pre-signed agreements if exist; and adopts automatically one of the
best strategies without requiring user intervention. Hence, the level of interaction with a beginner
is limited to specifying the list of sensed data, with the option of specifying δ . For intermediate,
the system provides all beginner options plus: the possibility to personalize sensitivepsi instances,
and the importance of the services received (i.e., choose whichpsi are sensitive and which services
are important to her); a detailed overview of sensitive risks only (i.e., according to the personalized
list of psi). Instead of recommending one value for δ , the system suggests a range of values, and
assigns a timeout period for the user to specify the desired value. As well, the system provides
K-best strategies to select one of them, and assigns a timeout period for this task. If the user fails
to respond for both cases before the timeout expires, then the system selects by default the lower
boundary of the recommended range for δ , and selects one of the best strategies provided. For
advanced, the system provides all intermediate options plus: an optional overview of non-sensitive
risks; the possibility to manually enforce protection levels to certain shared attributes (considered
in eP ); longer time periods to choose δ and to select a strategy; and an additional recommendation
of three values for δ if the first timeout expires (min/max/median values of the first recommended
range). Therefore, the system is able to perform autonomously without requiring any mandatory
interaction with u except specifying her sensed attributes.

Specifying δ might be challenging for the user as it may depend on her level of expertise. Ac-
cordingly, the system assists the user in this task based on her profile. Figure 7 details the process
followed to recommend δ values. The choice of δ depends on the number of risks inferred in the
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Fig. 7. Recommended δ values.

relevant user situation. If no risk is inferred, then the recommended δ is 1 (i.e., keep sharing fine-
grained data). Otherwise, the system recommends one value for beginner, a range of values for
intermediate with an amplitude of 0.2, and a larger range for advanced with an amplitude of 0.4
(cf. Figure 7). The recommended values/ranges can be updated by the system administrator based
on user interactions.

Onceδ is specified, calculating optimal and adaptive protection strategies becomes a challenging
endeavor (cf. Challenge 2). To address this challenge, the δ -Risk process consists of two operations,
namely, protection strategy identification and best strategy selection. Before detailing the process, we
start by defining what constitutes a protection strategy, and a best strategy.

Definition 11 (Protection Strategy). A protection strategy, �p ∈ Pc , is a vector composed
of an appropriate combination of protection levels p1,p2, . . . ,pm to be assigned to attributes
{a1,a2, . . . ,am } ∈ c .SA. Appropriate means a combination that meets the privacy preferences
of u (i.e., δ and eP ) while maximizing the utility of attribute values. A protection strategy can be
represented as follows:

�p =
[
p1 p2 ... pm

]
| pj ∈ [0, 1] ∀ j ∈ [1,m].

A protection level, pj of �p, is probabilistic with a value between [0, 1], where 0 indicates that aj

is shared without any protection (default value), and 1 means stop sharing aj . A value between 0
and 1 expresses the level of protection that must be reached when executing a protection function
f ∈ PF on aj . Knowing that the way to achieve this level depends on the selected protection
function. �

Definition 12 (Best Protection Strategy). A best protection strategy, �bp ∈ BPc , is an appropriate

strategy �p ∈ Pc , that most satisfies the service preferences of u (i.e., �wA), and has the lowest
cost of protection (i.e., based on the corresponding combination of protection functions). These
constraints are expressed by the ranking score assigned to �p, which is computed as follows:

score (�p) = Rank (�p, �wA, cPF ) → N , where:

• Rank () expresses the ranking function. It takes as input a protection strategy �p ∈ Pc , the

vector of weights ( �wA), and the set of costs of selected protection functions (cPF ). It outputs

the ranking score of �p that is calculated according to the distance between �p and �wA, and the
costs of the combined protection functions. Algorithm 2 details the Rank () function.

Therefore, �p is said to be one of the best protection strategies, �bp ∈ BPc , only if it has the highest
ranking score. This can be formalized as follows:

∀ �pi ∈ Pc : �pi only i f �bp only i f ∀�pj ∈ Pc , score ( �pj ) ≤ score (�pi ). �

Figure 8 details the δ -Risk process. The first δ -Risk operation consists of identifying all possi-
ble appropriate protection strategies (i.e., Pc ). If no strategies result from this operation, then the
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Fig. 8. δ -Risk process.

combination of the privacy preferences (i.e., δ and eP ) is inconsistent (cf. Definition 13). In this
case, the system asks u to change one of these preferences and assigns a timeout period for this
query: (1) ifu fails to respond before the timeout expires, the system sets the value of δ to 0, which
leads to stop sharing all attributes and thus eliminates all risks (i.e., full protection of the user’s
privacy); (2) elsewhere, the system receives the changes and the strategy identification process is
re-launched. If the first operation generates several protection strategies, then the second δ -Risk
operation focuses on ranking the resulting strategies to select the K-best strategies to be proposed

to u. The ranking function, Rank (), considers the service preferences of u (i.e., �wA) and the costs
of selected protection functions (i.e., cPF ).

The δ -Risk process is by default executed once per context. However, when being in one of these
contexts, u can change her service preferences or the system can select new protection functions,
which requires recalculating new best strategies. To handle this, the system locally stores the pro-
tection strategies identified by the first operation (i.e., Pc ) as long as the newly emerged contexts

are similar. Therefore, if �wA or cPF has been changed within these contexts, only the second oper-
ation (i.e., Rank ()) is re-executed to select new best strategies that meet these changes. Otherwise,
the entire δ -Risk process is re-launched.

Example 7. Assume that the first operation has generated the following 2 appropriate strategies:

P =

[
�p1

�p2

]
=

[
0 0.6

0.6 0

]
.

Assume that the dependent attributesa1 anda2 have the same weight, and the cost of the protection
functions to execute on a1 and a2 are, respectively, 2 and 1. Hence, when executing the Rank ()
function (detailed in Section 4.3), �p2 will have a score higher than �p1, and thus will be selected as
the best strategy. �p2 suggests applying 60% protection on a1 and sharing a2 without any protection.

Determining appropriate combinations of protection levels requires first to quantify privacy
risks to study the impact of these levels on risk values. Then, to quantify the global risk level (i.e.,
Rc .v) to ensure that the resulting combinations satisfy the δ -Risk principle. Therefore, we begin
by formally quantifying a privacy risk and the global risk level, and then we detail the two δ -Risk
operations.

4.1 Privacy Risk and Global Risk Level Quantification

A privacy risk is associated to one or more sensed attributes. This means that protecting impacting
attributes will lead to minimize the risk value. Consequently, the risk vector �r depends on the
protection levels assigned to shared attributes, �p, and the impact matrix of attributes on risks (i.e.,
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Wc ). This can be represented as follows:

�r = F (Wc , �p), where: (2)

• F is the risk quantification function that takes as parameters an impact matrix and a pro-
tection vector, and returns a risk vector composed of the calculated risk values.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

rn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= F

�
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω11 ω12 ... ω1m

ω21 ω22 ... ω2m

... ... ... ...
ωn1 ωn2 ... ωnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2
...

pm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

�����
�

.

Before exploring the risk quantification function (F ), we define the assumptions to consider:

(1) A privacy risk has at least one impacting sensed attribute aj ∈ c .SA. This means that

∀ �wi ∈Wc ,
m∑

j=1

ωi j � 0.

(2) If no protection assigned to attributes impacting ri , then the risk value is 1 (i.e., highest
level).

(3) If the full protection is assigned to attributes impacting ri , then ri is eliminated.

(4) The higher the protection level pj impacting ri , the lower the value of ri .

Let W̃c denotes a normalized version ofWc such that

W̃c =

⎡⎢⎢⎢⎢⎢⎢⎣

ω̃11 ω̃12 ... ω̃1m

... ... ... ...

ω̃n1 ω̃n2 ... �ωnm

⎤⎥⎥⎥⎥⎥⎥⎦
, where ω̃i j =

ωi j∑m
j=1

ωi j

∀i ∈ [1,n], j ∈ [1;m]. (3)

A privacy risk is therefore quantified as follows:

�r = F (Wc , �p),

�r = 1 − (W̃c × �p), (4)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

rn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1 −

�
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω̃11 ω̃12 ... ω̃1m

ω̃21 ω̃22 ... ω̃2m

... ... ... ...

ω̃n1 ω̃n2 ... �ωnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2

...

pm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

�����
�

.

Example 8. According to Examples 6 and 7, the best strategy delivered to Alice in her context is
�bp = [0.6 0]. Once selected by Alice, the risk values will therefore be minimized to⎡⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 1 −

������
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1/2 1/2
1/2 1/2
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×
[
0.6
0

]������
,

r1 = 1 − 0.6 = 0.4 ; r2 = 1 − 0.3 = 0.7 ; r3 = 1 − 0.3 = 0.7 ; r4 = 1 − 0.6 = 0.4.
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After quantifying the privacy risks, we now focus on how to measure the global risk level in the
user context (i.e., Rc .v). This level is used to interact with u (i.e., δ ). Once u assigns a value for δ ,
this means she does not accept taking any risk above the specified threshold. In that respect, the
global risk level will be equal to the maximal risk value in the relevant context. Rc .v is therefore
quantified as follows:

Rc .v = max

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

rn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
| Rc .v ∈ [0, 1]. (5)

4.2 Protection Strategy Identification

This section discusses the first δ -Risk operation, which consists of identifying appropriate protec-
tion strategies. To achieve this, we rely on the proposed risk quantification model and the δ -Risk
principle, such that

Rc .v � δ ,

⇒ max

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

rn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
� δ ⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

rn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
� δ .

Nonetheless, maximizing the utility of attributes’ data requires assigning the lowest appropriate
protection levels to these data. These levels are obtained when minimizing risks to the highest
acceptable values, i.e., when Rc .�r = δ . Therefore, the best-case scenario for data utility/privacy
protection is to identify appropriate combinations of protection levels that satisfy Rc .�r = δ . This
gives rise to the following linear system of n equations withm unknowns:

Rc .�r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

rn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= δ ⇒ 1 −

�
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω̃11 ω̃12 ... ω̃1m

ω̃21 ω̃22 ... ω̃2m

... ... ... ...

ω̃n1 ω̃n2 ... �ωnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2

...

pm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

�����
�
= δ ,

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ω̃11.p1 + ω̃12.p2 + ... + ω̃1m .pm = 1 − δ
ω̃21.p1 + ω̃22.p2 + ... + ω̃2m .pm = 1 − δ

... ... ... ... ...

ω̃n1.p1 + ω̃n2.p2 + ... + �ωnm .pm = 1 − δ

. (6)

To solve the resulted system, we use the Gauss-Jordan Elimination (GJE) method, an implicit
pivoting strategy that performs row operations to convert a matrix into a reduced row echelon
form [14]. This method has been widely used in various domains such as traffic control manage-
ment [15], image change and climate prediction [16, 17], cluster and grid computing [18, 19], and
location privacy [20]. Solving the system using the GJE method can result in three possible cases:
(1) system is inconsistent, resulted when the δ/eP combination is inconsistent, which does not
generate any solution; (2) system independent, resulted when attributes are independent, which
generates exactly one solution; and (3) system dependent, resulted when attributes are dependent,
which generates an infinite number of solutions.
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In fact, the inconsistency problem presented in case (1) is resulted when the system contains at
least one equation that includes only enforced protection levels. This leads to limiting the options
for δ to one possible value, and will therefore entail an inconsistency if the user-specified value
does not match the acceptable one. Definition 13 discusses this constraint.

Definition 13 (δ/eP Inconsistency). Let p1, p2 be the protection levels to be assigned to attributes
{a1, a2} � c .SA. Assume that risk ri of �r is impacted only by {a1, a2}. The linear system will
therefore include the following equation: ω̃11.p1 + ω̃12.p2 = 1 − δ , and the δ/eP combination is
said to be inconsistent only if

{
p1, p2

} � eP and δ � 1 − (ω̃11.p1 + ω̃12.p2). �

In what follows, we detail the proposed reasoning algorithm for the first δ -Risk operation.

ALGORITHM 1: Protection Strategy Identification

Input:Wc[][], δ , eP[]; // impact matrix, risk threshold, and the enforced protection levels;

Output: Pc[][]; // protection strategies;

1 Variables: System[][], M[][], inconsistency, dependency;

2 begin

3 if (δ = 0) then
4 // user requests the full protection, i.e., stop sharing data;

5 Pc ← createFullProtStrateдy (1);

6 else if (δ = 1) then
7 // user accepts to share fine-grained data;

8 Pc ← createDe f aultStrateдy (0, eP[]); // strategy created with default values of protection levels;

9 else

10 System ← buildSystem(Wc[][],δ , eP[]); // build the linear system;

11 M ← solveSystemGJE (System); // solves the system using the GJE method;

12 inconsistency ← checkInconsistency (M ); // returns true if δ /eP combination is inconsistent;

13 if (inconsistency = f alse) then

14 dependency ← checkDependency (M[][]); // returns true if system is dependent;

15 if (dependency = f alse) then
16 // attributes are independent (unique solution);

17 Pc ← createIndependentStrateдy (M[][], eP[]);

18 else
19 // attributes are dependent (infinite number of solutions) ;

20 Pc ← createDependentStrateдies (M[][], eP[]);

21 else

22 noti f yUserO f Inconsistency (); // user has to change either δ or the relevant p ∈ eP ;

23 return Pc[][]

Algorithm 1 presents the protection strategy identification algorithm that takes as input the im-
pact matrix Wc[][], the δ value, and the set of enforced protection levels eP[]. It outputs the set
of identified strategies Pc . The process starts first by checking the value of δ . If equal to 0 (line 3),
then the user does not accept to take any risk and the protection levels must be at their highest
levels. Hence, the process calls the createFullProtStrateдy function that creates the full protec-
tion strategy �p = [1 1 ... 1] (line 5). If δ is 1 (line 6), then the user wants to share fine-grained
data and the protection levels must be at their default values. The process calls consequently the
createDe f aultStrateдy function that assigns the enforced value to pj if pj ∈ eP , or a value of 0
if not (line 8). If δ is between 0 and 1, then the user wants to preserve the utility of the data but
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without taking any risk above the threshold δ . Hence, the process builds the linear system by call-
ing the buildSystem function, and solves it using the GJE method by calling the solveSystemGJE
function (lines 10,11). This function returns a reduced row echelon form stored in M[][]. To check
for inconsistency (i.e., δ/eP constraint), the process calls the checkInconsistency function, which
returns a Boolean value stored in inconsistency (line 12).
If inconsistency is false (i.e., system is consistent), then the process checks attribute dependency
in M[][] by calling the checkDependency function, which returns a Boolean value stored in
dependency (line 14). If dependency is f alse (i.e., attributes are independent), then the system
has a unique solution that leads to create one protection strategy. This procedure is done by the
createIndependentStrateдy function (line 17), and the process is ended. If dependency is true , then
attributes are dependent, and the system has an infinite number of possible solutions. The process
calls accordingly the createDependentStrateдies function (line 20), which starts by identifying
existing dependencies among the unknown pj items. Then, it performs two operations on each
dependent pj item. The first operation prioritizes the attribute of the selected pj , by assigning a 0
value to pj , which means that no protection is applied on aj . The second operation assigns a value
of 1 to pj (i.e., stop sharing aj ), which gives priority to the associated dependent attributes. Next,
both operations calculate the remaining p items that are dependent from pj . This function conse-
quently identifies several appropriate strategies, where each emphasizes at least one dependent
attribute, and the process is ended.
If inconsistency is true (i.e., δ/eP combination is inconsistent), then the system notifies the user
and asks her to either assign the acceptable value of δ , or to release one of the impacting p ∈ eP .
The process is consequently re-launched either with updated δ/eP , or with δ = 0 (if the assigned
time period expires without user response).

It is important to note that this article only describes the pseudo-code of the main process due
to space limitations. Nonetheless, the pseudo-codes of the aforementioned functions are detailed
in the prototype source code provided in Section 5.1.

4.3 Best Strategy Selection

In case the number of strategies identified by the first operation is greater than 1 (i.e., |Pc | >
1), ranking these strategies and selecting the K-best ones to be proposed to the user becomes
a need. K expresses the number of best strategies, i.e., the ones with the highest ranking score
(cf. Definition 12). Nonetheless, fixing the maximal value of K remains challenging, especially as
many factors may contribute to the perceived choice overload, including number of options, time
constraints, and user expertise [21]. In this study, user decisions need sometimes to be fast (i.e.,
in real-time), and the user’s expertise is expressed by the selected profile (cf. Figure 6). Therefore,
we assign the following default values to max (K) in accordance with the defined profiles: 1 for
beginner, 3 for intermediate, and 5 for advanced. The value ofmax (K) can be manually changed by
u, and the default values could be updated by the system administrator based on user interactions.

The best strategies must best meet the preferences and interests ofu. To achieve this, the second
δ -Risk operation consists of ranking the resulting strategies (i.e., Pc ) according to the service pref-

erences (i.e., �wA) and the costs of selected protection functions (i.e., cPF ). This process is provided
through the Rank () function, which operates on the basis of the following principle: The highest

ranking score corresponds to the strategy with the shortest distance to �wA and the lowest cost of
protection. In what follows, we detail the reasoning algorithm of the Rank () function.

Algorithm 2 outlines the ranking function, Rank (), takes as input the set of identified strate-
gies (Pc[][]), the vector of weights assigned to attributes (wA[]), and the set of costs of selected
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protection functions (cPF []). It outputs the set of K-best protection strategies, BPc[][]. The func-
tion starts first by identifying the strategies with the shortest distance to wA[] (lines 3–14). To
do so, the first step is to identify the number of different weight values and sort them in a de-
scending sequence (i.e., from the most to the least important). This number will constitute the
default number of iterations for this step. This step is done by calling the sortAndFilter function
(line 3). Then, for each distinct weight value, we check the number of attributes having this weight
through the attributesW ithSimilarWeiдht function (line 5). In fact, having several attributes with
the same weight requires considering strategies that prioritize each of them separately. Therefore,
for each of these attributes, we check which strategy includes the corresponding minimal pro-
tection value, and we add the weight of the attribute to the score of the strategy (lines 9 and 10).
Thereafter, we filter the resulting set of strategies to consider only strategies with the highest score
(lines 11–14). This will ultimately lead to strategies that include the minimum possible protection
levels assigned to attributes based on their level of importance. These strategies have therefore
the shortest distance to wA[]. After, the function calculates the cost of protection of the result-
ing strategies (lines 15–18). The cost of a strategy is equal to the sum of costs of the protection
functions that are only linked to the attributes protected by this strategy (i.e., attributes with pro-
tection levels higher than 0). The calculated costs are added consequently to the scores of relevant
strategies (line 19). Only strategies with the highest ranking score are selected and added to the set
BPc[][] (line 20), which will therefore constitute the best strategies to be proposed to the user in her
context.

ALGORITHM 2: Best Strategy Selection - Rank () function

Input: Pc[][], wA[], cPF []; // protection strategies, vector of weights, and the costs of protection functions;

Output: BPc[][]; // best protection strategies;

1 Variables: sortedWA[], A[], minP, Score[][], maxScore, CostPc[][];

2 begin

3 sortedWA← sortAndFilter (wA[]); // sorts wA in a descending sequence and removes redundant values;

4 for i ← 0 to |sortedWA| do

5 A← attributesW ithSimilarWeiдht (wA[], sortedWA[i]);

6 // the set A will include the indexes of attributes with same weight sor tedW A[i];

7 for j ← 0 to |A| do

8 // for each attribute having the weight sor tedW A[i];

9 minP ← дetMinP (Pc[][],A[j]); // the minimal protection level to be assigned to attribute aj ;

10 Score ← addScore (Pc[][],minP ,A[j],wA[]); // updates the score of strategies having minP

11 maxScore ← дetMaxScore (Score[][]); // returns the maximal scor e assigned to strategies

12 for k ← 0 to |Score | do

13 if (Score[k][1] !=maxScore) then

14 Pc ← deleteStrateдy (k ); // keeps only strategies with the highest score

15 for i ← 0 to |Pc | do

16 for j ← 0 to |Pc[0]| do

17 if (Pc[i][j] != 0) then

18 CostPc[i][1] = CostPc[i][1] + cPF [j]; // calculate the cost of protection of each strategy

19 Score ← addCostToScore (Score[][],CostPc[][]); // adds the calculated cost to the scor e of strategies ;

20 maxScore ← дetMaxScore (Score[][]);

21 BPc ← selectBestStrateдies (Pc[][],Score[][],maxScore ); // BPc includes then the best strategies

22 return BPc[][]
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Fig. 9. δ -Risk implementation.

Fig. 10. Risks inferred for Alice. Fig. 11. Best strategy proposed to Alice.

5 EXPERIMENTAL VALIDATION AND EVALUATION

In this section, we illustrate the functioning of the proposed prototype, we evaluate the perfor-
mance of the approach, and we formally study its effectiveness.

5.1 Approach Validation: Java-based Prototype

To implement and validate the δ -Risk solution, we developed a Java-based prototype, and we
embed it on the user device as middleware between the user and the connected providers (cf.
Figure 9). This prototype performs real-time reasoning on the user context and generates dy-
namic strategies according to the user’s preferences and the context particularities. The source
code of the proposed δ -Risk system is accessible on the following link: http://spider.sigappfr.org/
research-projects/delta-risk/.

The goal here is to illustrate the functioning of the solution. We consider the scenario provided
in Section 2 as the actual situation of Alice (cf. Figure 9). We execute the privacy risk inference
prototype1 proposed in our previous work [2] to infer the risks involved in this situation. Figure 10
describes the overview of risks provided to Alice, and Figure 11 illustrates the impact of energy-
consump and Location attributes on these risks. Once alerted, assume that Alice has specified a
value of 0.6 for δ . The δ -Risk process is consequently executed, and generates the following best
strategy that suggests applying 40% protection on Energy-consump and 40% protection on Location
(cf. Figure 11).

5.2 Experimental Protocol

The objective of our experimental protocol is to prove that δ -Risk : (1) is scalable; (2) main-
tains low-complexity in space (i.e., in memory overhead and storage) and time (cf. Challenge 3);

1The source code of the risk inference prototype is available here: http://spider.sigappfr.org/research-projects/

privacy-oracle/.
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Fig. 12. Execution time. Fig. 13. Memory usage.

(3) handles reasoning in real-time; (4) always identifies all possible appropriate strategies that an-
swer the data utility/privacy protection trade-off; (5) always delivers the best strategies to the user;
and (6) provides the user with at least one best strategy per context. To achieve this, we evaluate
the performance of the proposed solution, and we formally study its effectiveness.

5.2.1 Performance Evaluation. To evaluate the performance of the δ -Risk solution, we consider
four use cases to study the impact of the following five metrics on the system’s performance:
(i) number of risks inferred (Rc .�r ); (ii) number of attributes sensed (c .SA); (iii) the dependency

level of attributes (Wc ); and (iv) the variation of the user’s service preferences ( �wA) and the costs
of protection functions (cPF ). To test the performance in more real scenarios, we consider having
both dependent and independent attributes (with a maximum dependency level of 4) in cases i,
ii and iv. The system’s performance is evaluated by considering two evaluation criteria: (1) total
execution time of one iteration; and (2) memory overhead. The tests were conducted on a machine
equipped with an Intel i7 2.80 GHz processor and 16 GB of RAM. The chosen execution value for
each scenario is an average of 10 sequenced values.

Case 1: We vary the number of privacy risks inferred in a user context. We fix the number of sensed
attributes at 4 (we consider that the four attributes are dependent in the impact matrixWc ), the δ

value at 0.6, the vector of weights �wA = [1 2 1 2], and the costs of four selected protection
functions cPF = {1, 3, 1, 1}. We execute the process ten times, taking into account the following
number of risks for each iteration: 1; 10; 50; 100; 500; 1,000; 2,000; 3,000; 4,000; and 5,000. Figure 12
shows the impact of the risk number on the algorithm’s execution time. We notice that the total
execution time is quasi-linear. The system can handle real-time reasoning with an execution time
of less than 2 s up to 1,000 risks, and less than 7 s up to 5,000 risks. When considering RAM usage
(Figure 13), it follows a linear evolution up to 5,000 risks, with an average of less than 200 MB up
to 1,000 risks. It is important to note that, in real scenarios, the number of risks inferred in a given
context will not practically exceed 1,000 for the user. This highlights the importance of using the
GJE method to solve the linear system.

Case 2: We vary the number of attributes shared by the user. We fix the number of risks at 100,

the δ value at 0.6, the vector of weights �wA = [1 2 1 2 0 ... 0], and the costs of the four
selected protection functions cPF = {1, 3, 1, 1}. We execute the reasoning process twelve times,
taking into account the following number of sensed attributes for each iteration: 1, 5, 10, 20, 30,
40, 50, 60, 70, 80, 90, and 100. We consider four dependent attributes in Wc when the number of
shared attributes is 5, and three different dependency levels for the other iterations (2, 3, and 4).
According to Figure 14, the evolution of the execution time is quasi-linear up to 100 attributes
with an average of less than 4s. The evolution is also similar for the memory usage (cf. Figure 15)

ACM Transactions on Internet Technology, Vol. 21, No. 2, Article 51. Publication date: May 2021.



51:24 K. Bou-Chaaya et al.

Fig. 14. Execution time. Fig. 15. Memory usage.

Fig. 16. Execution time. Fig. 17. Memory usage.

with an average of less than 2,000 MB. It is important to note that, in real scenarios, the number
of attributes shared by the user in her context will not practically exceed 50.

Case 3: We vary the dependency level of attributes shared by the user (i.e.,Wc ). We fix the number

of risks at 100, the number of attributes at 50, the vector �wA = [1 2 1 2 0 ... 0], the δ
value at 0.6, and the costs of the four selected protection functions cPF = {1, 3, 1, 1}. We execute the
reasoning process six times, taking into account the following dependency level for each iteration:
1 (i.e., attributes are independent), 2 (i.e., two attributes of the 50 are dependent), 4, 6, 8, and 10.
According to Figure 16, the execution time remains quasi-constant with an average value of 1s until
the dependency level exceeds 6, where the execution time tends to be exponential (e.g., reaches a
value of 1,227 s for a dependency level of 10). Same evolution for RAM usage as shown in Figure 17.
However, it is important to note that combining more than six shared attributes to reveal specific
privacy-sensitive information about the user that cannot be revealed otherwise is quasi-impossible.

Case 4: We focus on varying the vector of weights �wA and the selection of protection functions
(i.e., varying the corresponding set of costs cPF ). The aim here is to highlight the importance of
storing the appropriate strategies identified by the first δ -Risk operation (i.e., Pc ) while being in
consecutive similar contexts. We illustrate the variation of both metrics in the same use case as
they both produced the same performance results. Hence, we fix the number of risks at 100, the
number of attributes at 50, and the δ value at 0.6. We consider three different dependency levels
for the attributes (2, 3, and 4). We execute only the second δ -Risk operation (i.e., Rank () function)
while considering several changes in the weights and costs. As shown in Figure 18, the execution
time remains quasi-constant with an average execution time of less than 500 ms. Similar for the
RAM usage (cf. Figure 19). Therefore, if within consecutive similar contexts the user changes her
service preferences or the system varies the selection of protection functions, then the solution
will be able to select new best strategies in less than 500 ms.
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Fig. 18. Execution time. Fig. 19. Memory usage.

Discussion. The experiments conducted show that δ -Risk is scalable, i.e., it handles an increas-
ing number of risks and attributes with good performance. In fact, if we consider the worst case
scenario of 1,000 privacy risks, 50 shared attributes, and simultaneous dependency levels of 2, 4,
and 6, then the solution is able to respond and provide strategies within an average time of 3s
and an average RAM space of 1,200 MB. If we consider a more quasi-real case scenario of 20
risks, 5 attributes, and a dependency level of 3, then the solution responds within an average
time of 550 ms and an average RAM space of 180 MB. Accordingly, δ -Risk is capable of handling
real-time reasoning. It also maintains low computational complexity in execution time and mem-
ory overhead, which makes it operational even on devices with limited computational resources
(cf. Challenge 3).

5.2.2 Approach Effectiveness. We present in this section a formal study to prove the effective-
ness of the proposed approach.

Theorem 1. The δ -Risk solution maintains low storage complexity.

Proof. Letn denotes the maximum number of attributes that could be collected by the CaPMan
system aboutu and her environment in a context. As previously mentioned in Section 3, the system
stores only consecutive contexts by default, resulting in a linear storage complexity of O (2n).
However, the number of attributes stored for a single context (i.e., c .A) will not practically exceed
100, which makes the storage complexity of the solution low. �

Theorem 2. The δ -Risk process is always able to identify all possible appropriate strategies �p that
meet the best-case scenario for data utility/privacy protection (i.e., Rc .�r = δ).

Proof. The proof consists of two cases, namely, a simple and a generic case.

SIMPLE CASE. We consider that u shares only one attribute, such that c .SA = {a1}. According
to Assumption 1 stated in Section 4.1, all risks are inevitably associated to the attribute a1, i.e.,Wc

is composed of a single vector with values equal to 1. Consequently, the resulting linear system
consists of a single equation p1 = 1 − δ (cf. Equation (6)), generating therefore one protection

strategy �p =
[
p1
]
= [1 − δ], which will constitute the best strategy to be delivered, �bp = �p =

[1 − δ].

GENERIC CASE. Assume that u shares m attributes in her context c , i.e., c .SA = {a1, . . . ,am },
and the number of risks inferred is n (Rc .�r = [r1 ... rn]).Wc will therefore be a n ×m matrix
of {0,1} values expressing the impact of attributes aj ∈ c .SA on risks ri of Rc .�r . According to Equa-
tion (6), this leads to build a linear system of n equations withm unknowns (i.e., [p1 ... pm]):
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• If δ = 0, thenu does not accept to take any risk, i.e., all risks inferred in c must be eliminated,
such that Rc .�r = [r1 ... rn] = [0 ... 0]. Hence, the protection levels [p1 ... pm] to
assign to attributes must be at their highest level, i.e., leading, according to Equation (4), to

the full protection strategy �bp = �p = [1 ... 1].

• If δ = 1, then no protection is to be applied on shared attributes and that u wants to share
fine-grained data to preserve the full accuracy of the services she receives in return. Con-
sequently, no additional protection is needed, and the protection levels must be left at their
default values. The output will therefore consist of the following strategy:

�bp = �p = [ p1 ... pm ] | pj =

{
0 if pj � eP
v if pj ∈ eP , wherev is the enforced value

.

• If δ ∈ ]0; 1[, thenu wants to use specific services but without taking any privacy risk above
the threshold δ . Consequently, the solution identifies all possible appropriate strategies that
satisfy the best-case scenario Rc .�r = δ using the Gauss Jordan Elimination method to solve
the linear system, such that:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω̃11 ω̃12 ... ω̃1m 1 − δ
ω̃21 ω̃21 ... ω̃2m 1 − δ

... ... ... ... ...

ω̃n1 ω̃n1 ... ω̃nm 1 − δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
α11 α12 ... α1m v1

α21 α22 ... α2m v2

... ... ... ... ...

αn1 αn2 ... αnm vm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The process results in three possible cases:
(1) System is inconsistent, i.e., the δ/eP combination is inconsistent (cf. Definition 13). There-

fore, u is requested either to choose the acceptable value of δ or to release one of the
impacting p ∈ eP . The process is consequently re-launched with updated δ/eP or with
δ = 0 (if the assigned time period expires without user response).

(2) Attributes are independent, and the system has a unique solution:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 ... 0 v1

0 1 ... 0 v2

... ... ... ... ...

0 0 ... 1 vm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This leads to identify only one strategy that satisfies the best-case scenario, which will

therefore constitute the best strategy to deliver, �bp = �p = [v1,v2, . . . ,vm].

(3) Attributes are dependent, and the system has an infinite number of solutions:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
α11 α12 ... α1m v1

α21 α22 ... α2m v2

... ... ... ... ...

αn1 αn2 ... αnm vm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
| ∃ �αl ∈ M , {j,k } ∈ [1,m] : αl j × αlk � 0.

Nonetheless, as our goal is to address the data utility/privacy protection trade-off, we only
focus on assigning the minimum acceptable protection to dependent attributes (i.e.,aj/ak ).
Hence, the process performs a double iteration on each dependent pj/pk item. The first
iteration gives priority to the selected pj/pk item by giving it a value of 0, which means
that no protection will be applied on attribute aj/ak . The second iteration assigns a value
of 1 to pj/pk (i.e., highest protection level), which gives priority to the other dependent p
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items. Then, both iterations calculate the remaining dependentp items based on the matrix
of dependencies M . When completed, the process identifies several appropriate strategies
�p ∈ Pc that meet the trade-off, where each emphasizes at least one dependent attribute.

Therefore, for all δ values, the process is always capable of calculating all possible appropriate
strategies that satisfy the best-case scenario for data utility/privacy protection. �

Theorem 3. The δ -Risk process always delivers the best strategies to the user.

Proof. After identifying all possible appropriate strategies, the process executes the ranking
function,Rank (), to select only the best strategies to deliver tou. This function ranks the strategies

according to the service preferences of u (i.e., �wA) and the costs of selected protection functions

(i.e., cPF ). It assigns the highest ranking score to the strategy with the shortest distance to �wA
and the lowest cost of protection. Therefore, for every δ value, if |Pc | = 1, the identified strategy
is automatically selected as the best one. If |Pc | � 1, then the process ranks the strategies and
always selects the K-best ones to deliver to u. �

Theorem 4. δ -Risk provides the user with at least one best strategy per context.

Proof. It is easy to see that in all circumstances, the process is able to provide at least one best
strategy per context to u. �

6 LITERATURE

6.1 Privacy by Design

Privacy by Design (PbD) has brought a new vision for privacy protection to cope with the in-
creasing complexity and interconnectedness of information technologies. Instead of reactively ad-
dressing privacy breaches after-the-fact, PbD approaches privacy proactively and tends to prevent
privacy-invasive events before they happen by making privacy the default setting [22]. In 2010,
PbD has been unanimously adopted as an international privacy standard in the 32nd International
Conference of Data Protection and Privacy [23]. Nowadays, PbD is incorporated as a legal re-
quirement in the General Data Protection Regulation (GDPR) [4], and globally recognized as an
ISO standard, being developed by ISO/PC 317 Committee for Consumer Protection [24]. Since our
global objective is to ensure effective and meaningful involvement of the user in the management
of her privacy, we adopt the foundational PbD principles as criteria to compare the referenced
works:

(1) Proactive not Reactive; Preventative not Remedial. The approach includes proactive measures
to anticipate and prevent privacy violations, i.e., to prevent privacy risks from materializing.

(2) Privacy as the Default Setting. The approach protects the user’s privacy by default without
requiring user intervention.

(3) Privacy Embedded into Design. Privacy is an essential component of the approach. This prin-
ciple is not selected as a criterion as it is by default satisfied in all privacy approaches.

(4) Full Functionality: Positive-Sum, not Zero-Sum. The approach seeks to accommodate all in-
terests and objectives in a positive-sum (i.e., win-win manner). We focus here on two sub-
criteria:

(a) Privacy Protection vs . Data Utility. The approach manages this trade-off in a positive-sum.

(b) Hybrid Protection. The approach handles combination of several protection functions.

(5) End-to-End Security. The approach guarantees a full life-cycle protection. We focus here on
three sub-criteria, namely, real-time protection, context-aware protection, and scalability.
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Table 1. Comparative Study of Existing Context-aware Privacy Preserving Works

PbD
Principles

Proactive
and

Preventative

Privacy as
Default
Setting

Full Functionality
Full Life-cycle

Protection
Visibility

and
Transparency

User-centric Privacy Management

Privacy
vs. Utility

Hybrid
Protection

Scalability
Context-aware

Protection
Real-time
Protection

User
Awareness

User-
Friendly

Privacy
Preferences

User
Interests

Nesse et al. [25] Yes Yes Yes No Yes Yes No Yes No No No No

Matos et al. [26] Yes Y/N Y/N No Y/N Yes Yes No No No No No

Gheisari et al. [27] Yes Yes Yes No Yes Yes Y/N Y/N No No No No

Sylla et al. [28] Yes Y/N Y/N No Yes Yes Yes Y/N Yes Y/N Yes No

Alagar et al. [29] Yes Yes Yes No Y/N Yes Yes Y/N No Y/N Yes No

CaPMan Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

1 Y/N means that the referenced work did not approach this concept.

(6) Visibility and Transparency: Keep it Open. The approach aims to ensure that the data/service
exchange is operating according to the stated promises and objectives.

(7) Respect for User Privacy: Keep it User-Centric. The approach empowers user-friendly options.
We divide this criterion into five sub-criteria to cover all user-centric privacy dimensions:

(a) User Awareness: Informed Decision-making. The approach empowers the user to make in-
formed decisions by sensitizing her to the risks taken through appropriate notifications.

(b) User-friendly. The approach is user-friendly, i.e., assists the user to correctly manage her
privacy according to her level of expertise.

(c) Privacy Preferences. The approach considers the privacy preferences of the user.

(d) User Interests. The approach considers the interests of the user (e.g., important services).

6.2 Related Work

6.2.1 Context-aware Privacy Preserving in Connected Environments. Several works were pro-
posed in the literature to address the challenges of security and privacy in connected environ-
ments and secure context awareness. Neisse et al. [25] introduced a context-aware security and
privacy approach for smart city applications. This approach defines the context by relying on four
parameters, namely, time, location, network, and speed. It provides a context-based security pol-
icy management to control access to the data of users based on a set of Event-Condition-Action

(ECA) rules. It also provides a privacy mechanism based on pseudonymization and delayed mes-
sage delivery. Hence, the access to data could be accepted, denied, modified (using pseudonymiza-
tion), or delayed. Matos et al. [26] presented an overview of their context-aware security approach,
that provides authentication, authorization, access control, and privacy-preserving to fog and edge
computing environments. However, the authors did not detail the components of their architec-
ture, as they did not explain how privacy is approached in their work. Gheisari et al. [27] proposed
a context-aware privacy-preserving approach for IoT-based smart city using Software Defined Net-
working. The authors showed that the privacy is preserved through splitting sensitive data and
sending split parts via a secure route. The decision made by the SDN controller is based on data
sensitivity (context) and routes credits. Sylla et al. [28] presented a global vision of their context-
aware security and privacy as a service architecture by briefly discussing the role of each module.
They mentioned that the privacy module will be able to continuously analyze the user context
and inform the user if there is a proven risk to her privacy. However, they have not yet explored
any of the architecture modules. Alagar et al. [29] introduced a Context-Sensitive Role-based

Access Control (CRBAC) scheme for healthcare application. This approach defines two types of
access control: open access, for authenticated clients/medical devices; and closed Access, for non-
member clients/devices. CRBAC is user-centric, where the privacy requirements are included as
context-sensitive rules to be enforced whenever patient health information are shared by things.
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Discussion. Table 1 summarizes the evaluation of existing context-aware privacy preserving
approaches based on the aforementioned criteria. The majority of these works, i.e., References
[25, 26, 28, 29], have only presented an overview of their proposed frameworks and briefly ex-
plained how they work. Besides, none of the existing works covers all aforementioned criteria, and
they are also tailored to specific application domains. Therefore, we introduce in this article CaP-
Man, a new Privacy by Design framework for context-aware privacy management in connected
environments. Our framework is generic and can be re-usable in different application domains.
CaPMan answers the defined criteria as follows: (1) it implements proactive reasoning process to
infer the risks before being materialized, and assists the user in adapting her privacy decisions be-
fore releasing her data to consumers; (2) once shared attributes are specified, the CaPMan system
can work autonomously without requiring any mandatory user intervention; (3) CaPMan is fully
functional, i.e., it treats the privacy protection/data utility trade-off in a positive-sum, and sup-
ports the combination of multiple protection functions in the delivered strategies to minimize the
cost of protection; (4) User data is protected before being released to data consumers. This makes
the user’s privacy protected for the entire data lifecycle. The solution is scalable, and supports
real-time and context-aware protection; (5) CaPMan performs continuous adaptation of privacy
policies according to the adopted protection strategies; (6) CaPMan raises user awareness regard-
ing her context-dependent risks, and provides her with fast, optimal, and adaptive strategies that
consider her privacy preferences and interests.

6.2.2 Privacy Risk Inference and Quantification. Alerting users about their privacy risks consti-
tutes a key step toward improving their privacy decision-making. Hence, the privacy risk inference
and quantification fields have received extensive attention over the last decade. Christin et al. [30]
investigated mechanisms to warn users about potential privacy risks of sharing personal informa-
tion. Their results show that more than 70% of the participants would change their settings after
experiencing picture-based warnings. Important to underline that this approach did not incorpo-
rate any privacy risk inference system. Hatamian et al. [31] proposed an informed decision-making
supporter, called beacon alarming, to inform users of the data accessed by different smartphone ap-
plications. They also suggested expanding the functionality of the alarming system by employing
fuzzy logic to assess the privacy risk scores of installed applications. Zhang et al. [32] provided a
formal privacy quantification model for location-based services (LBS) that uses the Bayes condi-
tional risk as a privacy metric. This model focuses on conditional privacy regarding the adversary
estimation error to compare the LBS privacy metrics. Banerjee et al. [33] studied the privacy risks
that may arise from the deviations of data collectors’ practices from what they promise in their
policies, as opposed to the user’s needs.

7 CONCLUSION

This article presents a user-centric multi-objective approach for context-aware privacy manage-
ment in connected environments, denotedδ-Risk . This approach features a new privacy risk quan-
tification model to dynamically calculate and select the best protection strategies for the user based
on her preferences and contexts (e.g., involved risks). Computed strategies are optimal in that they
seek to closely satisfy user requirements and preferences while maximizing data utility and mini-
mizing the cost of protection. We implemented our approach and evaluated its performance and
effectiveness based on several use cases. Results show that δ -Risk delivers scalability and low-
complexity in time and space. Besides, it handles privacy reasoning in real-time, making it able to
support the user in various contexts, including ephemeral ones. It also provides the user with at
least one best strategy per context.

ACM Transactions on Internet Technology, Vol. 21, No. 2, Article 51. Publication date: May 2021.



51:30 K. Bou-Chaaya et al.

As future work, we would like to study the dependencies between contexts. In fact, at this stage,
the CaPMan system reasons on each context apart without considering historical contexts/risks.
Nonetheless, contexts can be connected, which may have impact on the levels of protection to be
assigned to sensed attributes in the present context to avoid privacy breaches. Therefore, we want
to tackle the challenges of cross-context dependencies while considering both logical and spatio-
temporal aspects. We also want to address the challenge of measuring the impact of attributes on
risks. In fact, this impact is probabilistic and attributes may have different impact values on risks.
Finally, we aim to explore the privacy protection service component of our framework and study
related research problems, including: how to select the most appropriate protection functions to
be executed on attributes, and how to measure system vulnerabilities accordingly.
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