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ARTICLE

Wavefront dislocations reveal the topology of
quasi-1D photonic insulators
Clément Dutreix 1✉, Matthieu Bellec2, Pierre Delplace 3 & Fabrice Mortessagne 2✉

Phase singularities appear ubiquitously in wavefields, regardless of the wave equation. Such

topological defects can lead to wavefront dislocations, as observed in a humongous number

of classical wave experiments. Phase singularities of wave functions are also at the heart of

the topological classification of the gapped phases of matter. Despite identical singular

features, topological insulators and topological defects in waves remain two distinct fields.

Realising 1D microwave insulators, we experimentally observe a wavefront dislocation – a 2D

phase singularity – in the local density of states when the systems undergo a topological

phase transition. We show theoretically that the change in the number of interference fringes

at the transition reveals the topological index that characterises the band topology in the

insulator.

https://doi.org/10.1038/s41467-021-23790-w OPEN

1 Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France. 2 Université Côte d’Azur, CNRS, Institut de Physique de Nice, Nice, France. 3 Univ
Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France. ✉email: clement.dutreix@u-bordeaux.fr; fabrice.mortessagne@univ-
cotedazur.fr

NATURE COMMUNICATIONS |         (2021) 12:3571 | https://doi.org/10.1038/s41467-021-23790-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23790-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23790-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23790-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-23790-w&domain=pdf
http://orcid.org/0000-0002-7557-7838
http://orcid.org/0000-0002-7557-7838
http://orcid.org/0000-0002-7557-7838
http://orcid.org/0000-0002-7557-7838
http://orcid.org/0000-0002-7557-7838
http://orcid.org/0000-0002-7474-1798
http://orcid.org/0000-0002-7474-1798
http://orcid.org/0000-0002-7474-1798
http://orcid.org/0000-0002-7474-1798
http://orcid.org/0000-0002-7474-1798
http://orcid.org/0000-0002-4457-057X
http://orcid.org/0000-0002-4457-057X
http://orcid.org/0000-0002-4457-057X
http://orcid.org/0000-0002-4457-057X
http://orcid.org/0000-0002-4457-057X
mailto:clement.dutreix@u-bordeaux.fr
mailto:fabrice.mortessagne@univ-cotedazur.fr
mailto:fabrice.mortessagne@univ-cotedazur.fr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Wavefront dislocations are a fundamental and ubiqui-
tous wave phenomenon that originates from an
indetermination of the phase of a wavefield, where the

amplitude of the wave vanishes. Since the seminal work of John
Nye and Michael Berry in 19741, it was realised that such topo-
logical defects could emerge in any wavefield irrespectively of its
physical nature or its dispersion relation. Wavefront dislocations
have been observed from the physics of fluids, sound, electro-
magnetism to oceanic tides and astronomy, and even led to the
birth of a whole research field known as singular optics2–7. In
quantum mechanics, wavefront dislocations have been predicted
in connection to the Aharonov–Bohm effect8,9, and they have
been observed recently in the electron density of graphene as a
manifestation of the wave-function Berry phase10,11. In parallel,
topology also spread in condensed matter physics, giving rise to
the field of topological phases of matter12,13 and its various
classical analogues such as topological photonics14. In this con-
text, topological properties are defined from singularities of the
wave functions delocalised in the bulk of the material. Still, apart
from the pioneering example of the quantised electric con-
ductivity in the quantum Hall phase, their experimental mani-
festations are mainly indirect, through the existence of gapless
excitations localised at the boundaries of the system. Despite this
common underlying key role of phase singularities, topological
phases and singular waves have remained two distinct fields15.
Here we reconcile them by showing a wavefront dislocation as a
direct evidence of the phase singularity of the delocalised wave
functions and observe it through standing-wave interference in
1D microwave photonic insulators. By bridging the bulk topology
of insulators to a ubiquitous wave phenomenon, we open a
promising route to investigate quantum and classical topological
systems through real-space interference patterns.

Topological insulating systems are associated with integer-
valued numbers (topological indices) that characterise the phase
singularities of the bulk wave functions. A change of the topo-
logical index requires the spectral gap to close. Such a topological
transition is also associated with a phase singularity of the
eigenmodes. By including the parameter that controls the spectral
gap, a topological transition of a D dimensional system is then
described by a singular point in a D+ 1 dimensional parameter
space. The 1D case is particularly interesting as it allows us to
describe topological transitions with vortices appearing in 2D
parameter space. Vortices in real space are known to induce
wavefront dislocations onto an incident propagating wave8.
Similarly, we reveal here that the vortex of the topological tran-
sition involves a quite analogue phenomenon in parameter space.
When a defect or an edge is included to a topological insulator, a
defect-induced interference pattern of bulk wave functions
emerges and abruptly changes at the singular band crossing point,
then giving rise to a wavefront dislocation in the D+ 1 parameter
space. We find that this wavefront dislocation is accessible
experimentally through the local density of states (LDOS) and
demonstrate its existence in 1D microwave photonic insulators.
Moreover, we show that the quantised charge of the vortex, which
corresponds to the variation of the number of interference fringes
at the transition, consistently coincides with the variation in the
number of topologically-protected boundary modes inside the
spectral gap. This leads us to the experimental demonstration of
the pillar of the topological phases of matter, the bulk-boundary
correspondence.

Results
Realisation of the 1D photonic insulator. In 1D, the band
topology of insulators may become nontrivial in the presence of
chiral symmetry. For lattices with translational invariance, this

concerns a class of Bloch Hamiltonians that are bipartite

HðkÞ ¼ 0 hðkÞ
hyðkÞ 0

� �
; ð1Þ

where k is the dimensionless 1D quasi-momentum. An illumi-
nating illustration of Hamiltonian (1) is found in the celebrated
Su–Schrieffer–Heeger (SSH) model16. First introduced to describe
conducting electrons in polyacetylene, it is involved in the physics
of various chiral systems17–22. Here, we focus on an experimental
realisation in a microwave photonic insulator. The system con-
sists of a dimerised lattice of dielectric resonators in a microwave
cavity (see Fig. 1a, b). Each cylindrical resonator is made of
ZrSnTiO ceramics (radius r= 3 mm, height h= 5 mm, with an
index of refraction nr ≈ 6) and supports a fundamental
transverse-electric (TE1) mode of bare frequency of 7.435 GHz.
This mode spreads out evanescently, so that the coupling strength
can be controlled by adjusting the separation distance between
the resonators23. The lattice consists in two coupled sublattices A
and B with staggered coupling strengths t1 and t2, so that h(k)=
t1+ t2e−ik for the choice of unit cell in Fig. 1b. The corresponding
resonator separations are denoted d1 and d2. In our experiments,
the coupling strengths t1,2 can be typically adjusted from 10 to
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Fig. 1 1D microwave photonic insulator. a Lattice of dielectric resonators
inside the microwave cavity made of two metallic plates. The top plate,
which is partially shown, is movable in the plane (white arrows), so that an
antenna going through and connected to a vector network analyser (VNA)
enables the generation and resolution of the microwave signal both
spectrally and spatially (LDOS). b Illustration of the SSH lattice (top) and
picture of its realisation with dielectric resonators (bottom). The
corresponding resonator separations are denoted d1 and d2. c DOS of a 44-
resonator SSH lattice for t1/t2= 1.2 (w>= 0) showing two bands separated
by a frequency gap (top), and for t1/t2= 0.8 (w<=−1), revealing two
midgap modes A and B (bottom). The resolution of their LDOS is shown in
the inset for the resonators of sublattices A and B, respectively. The LDOS
is in arbitrary units—red (blue) colour means 1 (0). The LDOS on sublattice
A (B) is maximal on the leftmost (rightmost) site and vanishes when
moving rightward (leftward). It confirms that the midgap modes A and B
are localised at the two ends of the lattice and fully sublattice polarised.
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115MHz which corresponds to separations d1,2 of 16 mm and
7mm, respectively.

The SSH model is known to display a transition between two
topologically distinct insulators when varying the coupling ratio
t1/t2. Its spectrum exhibits two bands given by f±(k)= ±∣h(k)∣ and
whose topology relies on the quantisation of the geometrical Zak
phase of the Bloch wave function in the 1D Brillouin zone (BZ)24.
This quantisation is characterised by the winding number
w ¼ H

BZ∇kArg½hðkÞ�dk=2π, which leads to w>= 0 and w<=−1
in the two insulating regimes t1≷ t2.

Topology from localised boundary modes. Before shedding new
light on the topological transition, let us recall that in experi-
ments, the band topology is mainly evidenced through the
appearance/disappearance of midgap modes localised at the lat-
tice boundaries, by virtue of the famous bulk-boundary
correspondence25. Here, the bulk-boundary correspondence
predicts the existence of N A ¼ �w_ (N B ¼ �w_) bound states
with sublattice polarisation A (B) at the leftmost (rightmost) edge
of the crystal in Fig. 1b (see Supplementary Note 3). We report
the observation of these midgap boundary modes in Fig. 1c, d. It
shows the measured density of states (DOS) of the TE1 waves in a
lattice of 44 microwave resonators (see Supplementary Note 1).
For t1/t2= 1.2, where the bulk winding number is w>= 0, the
sublattice structure produces two frequency bands of 22 modes
each. In contrast, when t1/t2= 0.8, the 1D winding number
switches to w<=−1 and we observe two modes pinned in the
gap. We then confirm that they are sublattice polarised and
spatially localised at the two ends of the crystal by resolving their
LDOS (inset of Fig. 1d).

The observation of midgap modes localised at boundaries is
commonly considered as the hallmark of topological transitions,
as reported in mechanical, acoustic, photonic, microwave, cold-
atomic and electronic systems26–33. Nevertheless, the band
topology is defined from the delocalised waves beyond the
excitation gap. Now we present direct evidence of the topological
transition through LDOS measurements of the delocalised waves.

LDOS interferences of delocalised waves. The delocalised waves
correspond to resonance frequencies in the two bands f±.
Figures 2a–d represents the sublattice-resolved LDOS ρA,B of the
delocalised waves of the lower band f− probed in the two topo-
logical regimes. Only the leftmost half of the photonic crystal is
shown, for the second half is inversion symmetric (see Supple-
mentary Note 2). The LDOS maps consist of standing-wave
interference patterns due to the lattice boundaries. We focus in
particular on the number NA(B) of constructive-interference
fringes in the LDOS of sublattice A(B). For the sublattice A in
Fig. 2a, b, we observe that NA changes identically on each site m
through the topological transition. For instance, there are six
constructive-interference fringes on-site m= 6 when t1/t2= 1.2,
whereas there are five of them when reducing the coupling ratio
to t1/t2= 0.8. More generally, it shows that NA=m for t1/t2= 1.2
and NA=m− 1 for t1/t2= 0.8. In contrast, we do not observe
such a change on sublattice B, where there are always NB=m
constructive-interference fringes per site, regardless of the topo-
logical phase (Fig. 2c, d).

To explain this striking feature in the LDOS maps near the
edge, we focus on a semi-infinite SSH chain and model the edge
as an infinite potential barrier. Backscattering of the delocalised
waves on the edge then leads to the LDOS34

ρAðm; kÞ / 1þ cos ð2kmþ δAðkÞ þ πÞ ð2Þ

ρBðm; kÞ / 1þ cos ð2kmþ πÞ; ð3Þ

which reproduces very well the experimental LDOS maps in
Fig. 2 (see Supplementary Note 3). The oscillating terms in the
right-hand sides describe the LDOS fluctuations induced by the
edge. The wavelength of the oscillations on both sublattices
relates to the backscattering wavevector 2k. Such 2k-wavevector
oscillations are often referred to as (frequency-resolved) Friedel
oscillations, with reference to the charge density oscillations that
screen charged impurities in metals35. It varies with the frequency
at which we probe the cavity through the dispersion relation
f−(k). The wavelength of the oscillations is then a spectral
measurement and does not imply the topology of the frequency
band. For instance, the oscillations in ρB only depend on the
backscattering wave-vector and give rise to similar interference
patterns in the two topological regimes, as observed experimen-
tally in Fig. 2c, d. In contrast, the oscillations in ρA imply the
additional phase shift δAðkÞ ¼ 2Arg½hðkÞ� (see ref. 34).

The phase shift δA further leads to dramatic modifications in
the LDOS interference patterns. In particular, the number of
constructive-interference fringes NA is given by the variation of
the phase φA= 2km+ δA+ π in Eq. (2) over the lower frequency
band. It reads

NA ¼ 1
2π

Z fmax

fmin

∂φA

∂f �
df � ¼

Z π

0

dk
2π

2mþ ∂δA
∂k

� �
¼ mþ w : ð4Þ

This sum rule shows that the scattering phase shift δA relates an
observable quantity of the delocalised waves, NA, to their
topological winding w. In particular, the number of interference
fringes depends on the site index m, but the topological invariant
shifts the interference fringes identically on all sites. Remarkably,
if the winding number w depends on the choice of unit cell36,37,
this arbitrary choice is however included in the labelling of the
dimers m, such that their sum yields the observable quantity NA.
The sum rule then explains the uniform change of NA observed in
the LDOS maps in Fig. 2a, b for the winding numbers w>= 0 and
w<=−1. Therefore, the LDOS maps reveal direct evidence of the

Fig. 2 Experimental LDOS maps. Resolution of the lower band between
frequencies fmin ¼ 7:23 GHz and fmax ¼ 7:45 GHz (see Fig. 1c). a LDOS ρA
of sublattice A for t1/t2= 1.2. b LDOS ρA of sublattice A for t1/t2= 0.8. The
number NA of LDOS interference fringes changes identically on each dimer
from NA=m in a to NA=m− 1 in b (see e.g. the in white dashed box at
dimer index m= 6). c LDOS ρB of sublattice B for t1/t2= 1.2. d LDOS ρB of
sublattice B for t1/t2= 0.8. The number NB of LDOS interference fringes
remains identical in c and d (see e.g. in the white dashed box at dimer index
m= 6).
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band topology of the delocalised waves in the 1D microwave
insulator.

The phase shifts of wave functions also play a central role in
scattering physics, because they relate to the number of (virtual)
bound states at a potential barrier. Fundamental theorems, such as
Levinson theorem or Friedel sum rule, show that, for given wave
functions, the number of (virtual) bound states change with the
depth of the barrier35,38,39. Similarly here, the bulk-boundary
correspondence can be rephrased as a relation between the
scattering phase shift δA and the number N A of bound states
localised at the potential barrier of the edge. Since δA(π)− δA(0)=
2πw (see Eq. (4)), we readily find

δAð0Þ � δAðπÞ ¼ 2πN A: ð5Þ
We stress that the number of bound states here changes with the
topological transition, whereas the strength of the potential barrier
remains the same, in sharp contrast with usual defects bound
states. This change results from an intrinsic property of the
delocalised waves and the potential barrier at the edge only acts as
a natural interferometer that reveals their topology through the
scattering phase shift. If the phase shift variation has been
measured through NA in the LDOS maps of sublattice A (Fig. 2a,
b), we have also resolved the N A midgap bound states localised at
the edge (inset of Fig. 1d). Thus, both sides of Eq. (5) are
observable independently, and our measurements also bring
evidence of the bulk-boundary correspondence. This demonstrates
an efficient method to test this key concept of gapped topological
systems through the LDOS in the experiments.

Wavefront dislocations in the LDOS. Now we show that the
change of NA observed in the LDOS maps arises as a ubiquitous
wave phenomenon and is the signature of a wavefront dislocation
in the LDOS. Topological defects in waves rely on generic
assumptions that do not involve the wave equation, and so they
are ubiquitously involved in branches of physics as various as
electromagnetism, optics, acoustics, fluid physics, astrophysics,
and condensed matter physics2–8,10,11,40,41. The wavefront dis-
locations are associated with the topological phase singularities of
wavefields in a space of at least dimension 2.

Here, the microwave photonic insulator is 1D and its
topological transition relies on a spectral band crossing in the
1D BZ (Fig. 3a). Nevertheless, the topological transition is driven
by the coupling ratio t1/t2. Thus, it is fully characterised in a 2D
space associated with the parameter s= (t1/t2, k). In this
parameter space, the spectral bands are f±(s)= ±∣h(s)∣ and
the eigenstates can be chosen as u± ðsÞ

�� � / Aj i± eiθðsÞ Bj i, where
θðsÞ ¼ Arg½hðsÞ�. The zeroes of h(s) are points where i) the
spectral band gap closes and ii) the eigenstate phase θ(s) becomes
ill-defined. This phase singularity in 2D is nothing but a vortex
that constrains the surrounding phase texture to wind. The vortex
winding is then quantified by a topological index Ws, such that
∮C∇sθ ⋅ ds= 2πWs along a closed circuit C enclosing the phase
singularity. In the SSH model, s0= (1, π) is the only point where
h(s) vanishes (Fig. 3b). This leads to the singularity chargeWs= 1
for the counter-clockwise circuit C in Fig. 3c.

The phase singularity in the 2D parameter space is the source
of a wavefront dislocation of strength 2Ws in the LDOS. We can
evidence the dislocation by following the evolution of the LDOS
interference patterns through the topological transition. Figure 4a
shows the predicted LDOS evolution on a given site of sublattice
A (m= 2). It exhibits an edge dislocation with two constructive-
interference fringes emerging from the core in s0. Wavefront
dislocations are known to occur as the phase singularity of a
complex scalar field whose real (or imaginary) part represents a
physical quantity1. Here, the physical quantity is the LDOS

fluctuations defined as ΔρA ¼ �ImΔGA=π (oscillating term in Eq.
(2)), so that the complex scalar field is the scattering Green
function ΔGA that describes the delocalised waves backscattering
on the edge of the microwave insulator

ΔGAðm; sÞ / �ieiφAðsÞ ; ð6Þ
where φA(s)= 2km+ δA(s)+ π (see Supplementary Note 3). The
scattering phase shift δAðsÞ ¼ 2Arg½hðsÞ� maps the phase
singularity of the eigenstates into the phase of the scattering
Green function. The latter effectively describes a plane wave
(ei2km) passing through a vortex (eiδAðsÞ) in the 2D parameter
space. This effective vortex perturbs the surrounding phase of the
wave in such a way that, for the counter-clockwise Burgers circuit
C in Fig. 4a, the phase accumulated by the scattering Green
function satisfies

2πWd �
I
C
∇sφAðsÞ � ds ¼ 4πWs ð7Þ

The phase variation is 2π-quantised because ΔGA must be single
valued to describe observable LDOS fluctuations along the circuit
C. Thus, the number of additional interference fringes required to
fulfil the phase variation along the Burgers circuit C is Wd. In
analogy with Burgers’ vectors whose length provides the
dislocation strength for atomic planes in solids, Wd is the
strength of the wavefront dislocation. Since Ws= 1 in the SSH
model, there are Wd= 2 additional interference fringes emerging
from the dislocation core, as shown in Fig. 4a. It is worth stressing
that although the expression of the phase φA depends on the
choice of the unit cell, its variation over C does not and is
observable.

To confirm this prediction, we measure the LDOS on the site
m= 2 of sublattice A for 20 values of the coupling ratio t1/t2
between 0.2 and 2.0. Since the LDOS is resolved as a function of
the frequency f−(k) instead of the wave vector k in our
experiments, we do not expect Wd but Wd/2 interference fringes
emerging from the dislocation core (Fig. 4b). Figure 4c

Fig. 3 Band degeneracy and phase singularity. a Spectral bands f±(k)=
±∣h(k)∣ in the 1D BZ for various values of the parameter t1/t2. The band
crossing for t1/t2= 1 marks the topological transition between the two
insulating regimes. b Energy band f−(s)=−∣h(s)∣ represented in the 2D
parameter space. The spectral degeneracy occurs at point s0= (1, π). The
coloured vertical dashed lines correspond to the 1D spectral bands in a.
c Eigenstate phase θðsÞ ¼ Arg½hðsÞ� in the 2D parameter space. It is singular
at the spectral degeneracy point s0. The winding of the phase along the
counter-clockwise circuit C leads to the singularity charge Ws= 1.
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experimentally confirms that the number NA of constructive-
interference fringes changes from one to two at the dislocation
core. This is also in agreement with the LDOS change on site
m= 2 shown in Fig. 2a, b. This observation reveals the wavefront
dislocation at the topological transition that causes the uniform
change in the number of fringes NA in the LDOS interference
pattern.

The number of interference fringes in the LDOS can also reveal
the bulk topology of 1D insulators with winding numbers larger
than ∣w∣= 1. To demonstrate this beyond the SSH insulator, we
consider the (quasi-)1D microwave lattice depicted in Fig. 5a. By
varying the coupling ratio t1/t2, one can experience two distinct
topological regimes associated with the winding numbers w= 0
and w=−2 (see Supplementary Note 4). Remarkably, we
show theoretically that the scattering phase shift in the LDOS
also leads to the sum rule (4) on sublattice A1 for m ≥ 2, where

NA1
¼ mþ w (see Supplementary Note 4). It is further confirmed

experimentally by our LDOS measurements reported in Figs. 5b,c,
where we observe that NA1

shifts by two units between w= 0 and
w=−2. This change in the wavefronts of the interference field is
direct evidence of a dislocation of charge Wd= 4 associated with
the topological transition (see Supplementary Note 4). Moreover,
the simultaneous resolution of the corresponding number of
midgap edge modes on sublattice A1 allows us to demonstrate
experimentally the bulk-edge correspondence in that microwave
insulator (inset in Fig. 5d).

Discussion
We have probed the band topology of 1D photonic insulators
through the standing-wave interference pattern in the LDOS
resulting from backscattering on a boundary. We have shown that
the uniform change in the number of interference fringes at the
topological transition is a measurement of the dislocation
strength and then of the eigenstate phase singularity. This 2D
phase singularity constrains the 1D winding numbers of the two
nonequivalent insulators as Ws=w>− w< (see Fig. 3). Although
there is a gauge choice in the definition of the 1D winding
numbers, their difference is gauge invariant and the uniform
change in the number of interference fringes characterises
unambiguously the change of band topology at the transition.
Thus, the wavefront dislocation in the LDOS is an observable
phenomenon that reveals the topological transition in 1D insu-
lators. We also emphasise that this direct characterisation of the
band-structure topology in real space relies here on the mono-
tonic feature of the dispersion relation—see e.g. Eq. (4). For non-
monotonic dispersion relations, there exist several scattering
wave-vectors at same energy. However, these are usually well
resolved from the LDOS in Fourier space, where the topological
scattering phase can be resolved too34,40. Such a Fourier analysis
is what enabled recent experiments to extract real-space wave-
front dislocations as manifestation of topological semimetals with
non-monotonic dispersion relations10,11.

The band topology of 1D insulators is also known to affect the
electron response to external force fields through phenomena
such as the electric polarisation and Bloch oscillations42–44.
Nevertheless, these phenomena are observable in very specific
systems. Bloch oscillations, for instance, are hardly observable
with electrons in solids, where impurities are usually detrimental
to phase coherence, and so they lead to band topology mea-
surements in cold atoms19 or coupled electronic circuits45. The
concept of mean chiral displacement has been also used in
photonic or cold atoms experiments to extract topological
invariants from the bulk46–48. Our approach lies on an universal
observable, the LDOS, which is routinely resolved in various
kinds of systems26–33. Thus, we expect that topological defects in
real-space LDOS interference can reveal the band topology in

Fig. 4 Wavefront dislocation in the LDOS. a Theoretical LDOS ρA in the 2D parameter space on site m= 2. The phase singularity in s0= (1, π) yields a
wavefront dislocation of strengthWd= 2 in the counter-clockwise Burgers circuit C. b Theoretical LDOS ρA on site m= 2 in the 2D space (t1/t2, f−(k)), where
f�ð0Þ ¼ fmin and f�ðπÞ ¼ fmax. Only one interference fringe emerges from the dislocation core in this frequency representation of the LDOS. c Experimental
LDOS ρA resolved on site m= 2 for the lower frequency band. The black dashed lines mark the theoretical wavefronts expected for ΔρA= 0.5 expected from
b. It shows that one constructive-interference fringe emerges in the LDOS nearby s0.

Fig. 5 Experimental LDOS of a four-band 1D microwave insulator. a
Illustration of a 1D insulator made of two coupled SSH chains and allowing
larger winding numbers. The unit cell m involves four sublattices A1, B1, A2,
and B2. They are connected through three coupling strengths t1, t2 and t⊥.
b LDOS ρA1

of the delocalised waves resolved on leftmost edge of sublattice
A1 for t1= 0.8 t⊥, t2= 0.2 t⊥ and t⊥= 117MHz where w= 0. We have
resolved the third band, located above the central gap and centred at
7.5 GHz. The microwave crystal made of 11 unit cells of 4 resonators. There
are m interference fringes on each unit cell. The number of fringes confirms
the sum rule validity for m ≥ 2 (see Supplementary Note 4). c Same as panel
b for t1= 0.2 t⊥ and t2= 0.8 t⊥ where w=− 2. The number of interference
fringes has homogeneously shifted by−w= 2 units (see e.g. unit cell m= 3
in the white dashed box), thus revealing a wavefront dislocation of strength
−w= 2 between the two topological regimes. The red dashed box shows
the LDOS ρA1

of the −w= 2 midgap modes polarised on sublattice A1. The
LDOS is in arbitrary units—red (blue) colour means 1 (0). It confirms that
the two midgap modes are localised at the leftmost edge on sublattice A1,
thus demonstrating the bulk-edge correspondence.
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experiments involving propagating waves of very different
natures.

In addition to the band topology through wavefront disloca-
tions, the LDOS also leads to the resolution of midgap modes
localised at boundaries. This enabled us to test of the bulk-
boundary correspondence through a single observable and, thus,
a single experiment. This efficient approach could then shed light
into breakdowns of the bulk-boundary correspondence, as
recently reported in systems where the number of bound states
may no longer be provided by the bulk topological invariant22,49.

Methods
Experimental realisation of the quasi-1D photonic insulators: Each dielectric
microwave resonator (see Fig. 1a, b) is made of ZrSnTiO ceramics (radius r= 3
mm, height h= 5 mm, with an index of refraction nr ≈ 6) and supports a funda-
mental transverse-electric mode TE1 of bare frequency ν0= 7.435 GHz. This mode
spreads out evanescently, so that the coupling strength can be controlled by
adjusting the separation distance between the resonators23. As shown in Fig. 1b,
the lattice consists of two coupled sublattices A and B with staggered coupling
strengths t1 and t2. The corresponding resonator separations are denoted d1 and d2.
In our experiments, the coupling strengths t1,2 can be typically adjusted from 10 to
115 MHz which corresponds to separations d1,2 of 16 mm and 7 mm, respectively.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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