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ABSTRACT
We report our survey of γ Dor stars from the 4-yr Kepler mission. These stars pulsate mainly
in g modes and r modes, showing period-spacing patterns in the amplitude spectra. The
period-spacing patterns are sensitive to the chemical composition gradients and the near-core
rotation, hence they are essential for understanding the stellar interior. We identified period-
spacing patterns in 611 γ Dor stars. Almost every star pulsates in dipole g modes, while about
30 per cent of stars also show clear patterns for quadrupole g modes and 16 per cent of stars
present r-mode patterns. We measure periods, period spacings, and the gradient of the period
spacings. These three observables guide the mode identifications and can be used to estimate
the near-core rotation rate. We find many stars are hotter and show longer period-spacing
patterns than theory. Using the traditional approximation of rotation (TAR), we inferred the
asymptotic spacings, the near-core rotation rates, and the radial orders of the g and r modes.
Most stars have a near-core rotation rate around 1 d−1 and an asymptotic spacing around 4000 s.
We also find that many stars rotate more slowly than predicted by theory for unclear reasons.
11 stars show rotational splittings with fast rotation rates. We compared the observed slope–
rotation relation with the theory and find a large spread. We detected rotational modulations in
58 stars and used them to derive the core-to-surface rotation ratios. The interiors rotate faster
than the cores in most stars, but by no more than 5 per cent.

Key words: stars: oscillations – stars: rotation.

1 IN T RO D U C T I O N

Rotation affects the transport of chemical elements and angular
momentum in stars, so it changes stellar structure and evolution
(e.g. Maeder 2009; Mathis et al. 2013). However, the theoretical
description of rotation is still a matter of debate. For example, the
observed core-to-surface rotation rate ratios in red giants are smaller
than predicted by theory (see e.g. Eggenberger, Montalbán & Miglio
2012; Mosser et al. 2012; Ceillier et al. 2013; Fuller, Piro & Jermyn
2019). For A- and F-type main-sequence stars, the typical value of
the projected surface rotation velocity is around 100 km s−1 and
increases with effective temperature (e.g. Fukuda 1982; Abt &
Morrell 1995; Groot, Piters & van Paradijs 1996; Royer, Zorec &

� E-mail: gali8292@uni.sydney.edu.au (GL); tim.bedding@sydney.edu.au
(TRB)

Gómez 2007). Hence, the effect of rapid rotation must be treated
properly.

Stellar oscillations are a powerful tool to investigate the stellar
interior. We focus on γ Doradus stars, which are A- to F-type main-
sequence stars with typical masses from 1.4 to 2.0 M� (e.g. Kaye
et al. 1999; Van Reeth, Tkachenko & Aerts 2016). The pulsations
of γ Dor stars are gravity modes with high radial order (20 �
n � 100) low degree (l � 4) with typical pulsation period from
0.3 to 3 d (Balona, Krisciunas & Cousins 1994; Kaye et al. 1999;
Saio et al. 2018b; Van Reeth et al. 2018; Li et al. 2019b). Gravity
modes have their highest mode energy in the near-core regions (e.g.
Triana et al. 2015; Van Reeth et al. 2016). Therefore, γ Dor stars
allow us to investigate the stellar interior. The excitation mechanism
of γ Dor stars is still in debate. Guzik et al. (2000) and Dupret
et al. (2005) reported that the g-mode pulsations are excited by the
convective flux blocking mechanism that operates at the base of
the envelope convection zone. Xiong et al. (2016) found that the
radiative κ mechanism plays a major role in warm γ Dor stars while
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the coupling between convection and oscillations is dominant in
cool stars. Turbulent thermal convection is a damping mechanism
that gives rise to the red edge of the instability strip. Grassitelli
et al. (2015) pointed out that turbulent pressure fluctuations may
contribute to the γ Dor phenomenon. The instability strip of γ Dor
stars is located between the solar-like stars and the δ Scuti stars,
overlapping with the red edge of the δ Scuti instability strip (Dupret
et al. 2005; Bouabid et al. 2009, 2013). Hence some γ Dor stars
show both g- and p-mode oscillations and are called δ Sct–γ Dor
hybrids. Pressure modes probe the outer stellar layers, therefore
the overall structure along the radial direction can be deduced (e.g.
Kurtz et al. 2014; Saio et al. 2015).

Due to the daily aliasing and small amplitudes, the pulsations
of γ Dor stars were hard to detect with ground-based observations,
hence their near-core rotations were unclear for a long time. Due
to the Kepler space telescope (Borucki et al. 2010; Koch et al.
2010), 4-yr light curves of many stars have been collected. Kurtz
et al. (2014) measured the rotational splittings of the γ Dor star
KIC 11145123, which was the first robust determination of the
rotation of the deep core and surface of a main-sequence star. The
rotational splittings of g modes in slowly pulsating B (SPB) stars
were also reported (e.g. Pápics et al. 2015). For fast rotators, as in the
majority of γ Dor stars, the period spacings change quasi-linearly
with period and can be used to fit the near-core rotation rate (e.g. Van
Reeth et al. 2016; Christophe et al. 2018). Now, splittings or period
spacings of g modes from tens of γ Dor stars were found, both in
single stars and binaries, whose rotation profiles are almost uniform
(e.g. Keen et al. 2015; Saio et al. 2015; Triana et al. 2015; Van
Reeth et al. 2015; Guo, Gies & Matson 2017; Kallinger et al. 2017
; Li et al. 2019a, b).

In this paper, we report 960 period-spacing patterns from 611
Kepler γ Dor stars, which form the largest sample of identified
period-spacing patterns. The period spacing �P is defined as
the period difference between two consecutive overtones �Pn ≡
Pn + 1 − Pn and is a constant in the non-rotating homogeneous
stars (according to the asymptotic relation, Shibahashi 1979). The
rapid rotation changes stellar structure and frequency values, and
the traditional approximation of rotation (TAR), or the complete
calculation including the full effect of rotation is necessary to
describe the oscillation frequencies more accurately (e.g. Eckart
1960; Lee & Saio 1987; Townsend 2005; Saio et al. 2018b). Under
the TAR, the period spacing decreases with period quasi-linearly
for the prograde and zonal g modes. Overall, the retrograde g modes
have increasing period spacing (Bouabid et al. 2013; Ouazzani et al.
2017) and they are seen in slow rotators but are hard to see in fast
rotators (Saio et al. 2018b; Li et al. 2019a).

In addition to g modes and sometimes p modes, γ Dor stars
also show Rossby modes (r modes), whose restoring force is
the Coriolis force (Papaloizou & Pringle 1978). Rossby modes
propagate retrograde to the rotation direction and have discrete
frequencies smaller than the rotation frequency in the corotating
reference frame (Provost, Berthomieu & Rocca 1981; Saio 1982;
Lee & Saio 1997). Rossby modes can also be described by the TAR
and they also show a quasi-linear period-spacing pattern, in which
the period spacing increases with period. Using the period-spacing
patterns from g and r modes, the near-core rotation of tens of γ Dor
stars were measured to be around 1 d−1 (e.g. Saio et al. 2018a; Van
Reeth et al. 2018; Li et al. 2019b). Many of the stars in our sample
also show r modes.

We describe our data reduction and TAR fitting in Section 2.
Section 3 gives the observation results, including the observed
relative occurrence rates of different types of modes, the typical

structure of the periodogram, the slope–mean period relation of
γ Dor stars. Section 4 shows the TAR fit results, including the
distributions of the asymptotic spacings and the near-core rotation
rates, as well as the comparison with the theoretical predictions.
Section 5 reveals that the slope–period relation can be used on
estimating the near-core rotation rate. Section 6 reports 11 fast-
rotating stars with rotational splittings and Section 7 displays 58
stars with surface rotation modulations. Finally, we conclude our
works in Section 8.

2 DATA A NA LY SIS

We examined 2085 stars with effective temperature between 6000
and 10 000 K, where we used the input temperatures from the Kepler
DR25 data release (Mathur et al. 2017). We found 960 clear period-
spacing patterns in 611 stars, including 50 stars by Van Reeth et al.
(2015), 22 stars with splittings by Li et al. (2019a), 82 stars with
r-mode patterns by Li et al. (2019b), 30 stars by Chowdhury et al.
(2018), 44 stars by Murphy et al. (2018), 344 stars found by Barbara
et al. (in preparation), and the rest we found by visually inspecting
light curves and their Fourier transforms (the samples overlap).
Barbara et al. (in preparation) applied a Gaussian mixture model
in a reduced 5D space to classify 12 066 stars in the Kepler field.
The method involves using a greedy algorithm to select defining
features from the HCTSA feature library (Fulcher, Little & Jones
2013; Fulcher & Jones 2017).

We used 4-yr Kepler long-cadence light curves (29.45-min
sampling) from the multiscale MAP data pipeline (Stumpe et al.
2014). The 4-yr long-cadence data are suitable for γ Dor stars since
the typical pulsation periods of these stars are around 1 d with
period spacings around 1000 s, which require a long observation
span to resolve the modes. However, 97 of our stars also have short-
cadence data. These data can be used to readily investigate the
pressure modes if they are γ Dor–δ Sct hybrids, though due to the
super-Nyquist asteroseismology technique (Murphy, Shibahashi &
Kurtz 2013) the Kepler LC data are also sufficient for this purpose.

In each quarter, the light curve was divided by a second-order
polynomial fit to remove any slow trend. We computed the Fourier
transform and extracted the frequencies until the signal-to-noise
ratio (S/N) was smaller than 3.

The period-spacing patterns were identified by the cross-
correlation algorithm described by Li et al. (2019a) and inspected
visually. We present the period-spacing patterns of KIC 7694191 as
an example in Fig. 1. Fig. 1(a) shows the periodogram, where the
locations of peaks for each pattern are shown with dashed vertical
lines. We found two period-spacing patterns around 0.20 and 0.38 d.
The right pattern in Fig. 1(a) comprises the dipole (l = 1) sectoral
(m = l = 1) g modes while the left one comprises the quadrupole
(l = 2) sectoral (m = l = 2) g modes. The mode identifications
were based on the TAR fit and Saio et al. (2018b), as described
below.

Fig. 1(b) presents the period spacing versus period. The period
spacing for the dipole g modes decreases from 400 to 100 s with
increasing period. For the quadrupole g-mode pattern, the period
spacing drops from 150 to 50 s with increasing period. Both patterns
show deviations from the linear model, such as the dip at 0.39 d in
the dipole g-mode pattern. In a rapidly rotating star, the dip is
more likely to form because of the mode coupling between sectoral
and tesseral modes (Saio et al. 2018b). The linear fits and their
uncertainties with the dips removed are shown by the black and
grey dashed lines. Hence the linear fits are not affected by the
dips.
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3588 G. Li et al.

Figure 1. The g-mode patterns of KIC 7694191. Panel (a): the amplitude spectrum with x-axis of period. The y-axis is the amplitude in ppm. The solid red
circles present the detected independent frequencies while the open red circles show the combination frequencies. The vertical dashed lines are the linear fits
for each pattern. We found two independent frequency groups around 0.20 and 0.38 d. There are two period-spacing patterns. The blue one on the right is
the l = 1, m = 1 g modes while the cyan one on the left is the l = 2, m = 2 g modes, whose periods are marked by the vertical dashed lines. Panel (b):
the period-spacing patterns of KIC 7694191. The linear fits and uncertainties are shown by the black and grey dashed lines with dips removed. The blue plus
symbols are the dipole g modes and the cyan triangle symbols are the quadrupole g modes. Panels (c) and (d): the detail of the spectrum and period-spacing
pattern of quadrupole g modes. Panel (e): the sideways Échelle diagram of the quadrupole g-mode pattern. The cyan triangles are the periods belonging to the
pattern while the black stars are the noisy peaks. Panel (f): the normalized sideways Échelle diagram of the quadrupole g-mode pattern. Panels (g)–(j): same
as (c)–(f) but for the dipole g-mode patterns.

After obtaining the initial estimates for the parameters from
the cross-correlation algorithm, the sideways Échelle diagram was
made based on the formula

Pi = �P0
(1 + �)i − 1

�
+ P0 = �P0

(
n′ + ε

)
, (1)

with the assumption that the period spacing changes linearly
with period. Here, Pi is the ith pulsation period, P0 is the first
pulsation period, �P0 is the first period spacing, � is the slope

in the linear assumption, n′ ≡ (1+�)i−1
�

is the normalized index,
and ε is the ratio P0/�P0 (Li et al. 2019a). The x-axis of the
sideways Échelle diagram is the observed period and the y-axis
is the difference between the observed and fitted periods from
equation (1).

Panels (c) and (d) zoom in on the quadrupole g modes from
panels (a) and (b), while panels (g) and (h) do the same for the
dipole g modes. In panels (e) and (i), the Échelle diagrams are
plotted sideways. The x-axis is the pulsation period while the y-axis
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is the term Pobs − n
′
�P from the fit of equation (1). During this

fit, we did not exclude any dips. For the peaks that do not belong
to the pattern, we plotted them at the location that minimized the
value Pobs − n

′
�P. Therefore, the y-axis reflects the deviation from

the linear fit, similar to the curvature in the Échelle diagram of
solar-like oscillators (e.g. Mazumdar et al. 2014). In panel (e), the
curve is smooth and is dominated by the slightly changing slope in
the quadrupole sectoral g modes. In panel (i), there is a rapid drop
at 0.39 d, which is caused by the dip here. Panels (f) and (j) show
the normalized sideways Échelle diagram. The x-axis is the index
of peaks, counting the first peak as 0 and the y-axis is the deviation
over the local period spacing (Pobs − n

′
�P)/�P expressed as a

percentage.
For each period-spacing pattern, consisting of a series of pulsation

periods {Pi}, we measured three observables: the mean period, the
mean period spacing, and the slope. The mean period 〈P〉 is the
average of the pulsation periods. The mean period spacing 〈�P〉 is
the slope of the linear fit between the periods Pi and the index i.
The slope � is the changing rate between the period spacing and
the period with dips removed.

After identifying a period-spacing pattern, the asymptotic formu-
lation of the TAR was used to fit the pattern assuming rigid rotation
(e.g. Eckart 1960; Lee & Saio 1997; Townsend 2003a; Van Reeth
et al. 2016). The pulsation periods in the corotating reference frame
were computed by

P TAR
nlm,co = 	0√

λl,m,s

(
n + εg

)
, (2)

where 	0 is the asymptotic period spacing, n is the radial order,
the phase term εg is set as 0.5, and λl, m, s is the eigenvalue of the
Laplace tidal equation, which is specified by the angular degree l
for g modes or the value k for r modes, the azimuthal order m, and
the spin parameter s. The value k is used since the angular degree l
is not defined for r modes (Lee & Saio 1997). The spin parameter
is defined as

s ≡ 2frot

fco
, (3)

where frot is the rotation frequency and fco is the pulsation frequency
in the corotating frame. The TAR periods in the inertial reference
frame are given by

P TAR
nlm,in = 1

1/P TAR
nlm,co + mfrot

. (4)

Hence the near-core rotation rate, the asymptotic spacing, and the
radial orders can be obtained by fitting these pulsation periods to
the observed pattern using a Markov Chain Monte Carlo (MCMC)
optimizing code described by Li et al. (2019b). Fig. 2 presents the
TAR fitting result of KIC 7694191. The near-core rotation rate is
2.083 ± 0.009 d−1and the asymptotic spacing is 4400 ± 200 s. The
best-fitting curves (dashed lines) follow the observed pattern and
show slowly changing slopes with period.

3 R ESULTS

The parameters of the stars, the period-spacing patterns and the
TAR fit results are listed in the online only table, while Table 1
shows part of the table for guidance on style and content. We also
indicate which of the 97 stars have short-cadence data and we
indicated which of the 124 stars show significant pressure modes
oscillations. 10 have both. These give the possibility to investigate
core-to-surface physics by using g and p modes together. All the

Figure 2. The TAR fitting of KIC 7694191. The dashed lines are the best-
fitting result and the dotted lines show the uncertainty.

period-spacing patterns are shown in Appendix A, which is also
online only.

3.1 Mode identification

The periodogram of a γ Dor star generally shows peak groups
which overlap with the harmonics of fundamental frequencies. We
accepted the explanation by Saio et al. (2018b) that the peak groups
are prograde sectoral g-mode oscillations of increasing angular
degree. Many quadrupole modes are seen in our sample. Fig. 3
shows the correlation between the mean periods of l = 2, m = 2 and
l = 1, m = 1 g modes. We find that the mean periods of quadrupole
sectoral g modes are typically half those of dipole sectoral g modes,
since the quadrupole sectoral g modes generally coincide with the
second harmonics of dipole modes.

Fig. 4 shows the slope relation between dipole and quadrupole g
modes. We find that the slopes of l = 2, m = 2 g modes are similar
but slightly smaller than those of l = 1, m = 1 g modes. We therefore
conclude two features of the quadrupole sectoral g modes in γ Dor
stars:

(i) the mean period of the quadrupole modes is half that of the
dipole sectoral g modes.

(ii) the slopes of quadrupole and dipole sectoral (l = m) g modes
are almost equal.

These features are common in most of the stars and help identify
the modes. If not, several conditions should be considered: if the
power spectrum is contaminated by a binary, or if they are m = 1
and m = 0 modes showing large splittings (see the example and
discussion in Section 6).

We plot the periodograms of all the γ Dor stars in Fig. 5 Each row
displays the normalized periodogram of one star, sorted vertically
by the mean period of the dipole modes. Three ridges are seen:
the dominant one is l = 1, m = 1 g modes; the ridge of l =
2, m = 2 g modes appears on the left, as these modes overlap
with the second harmonics of the dipole modes; the third ridge
is the k = −2, m = −1 r modes. We see that the l = 1, m =
1 g modes in γ Dor stars generally show the largest amplitudes.
Assuming the dipole sectoral g modes appear around period of
P, the quadrupole g modes are expected to appear around 0.5P
and the r modes are more likely to appear around 2P (Li et al.
2019b). This structure of γ Dor periodograms helps guide the mode
identification.

We find that four stars (KIC5876187, KIC9344493,
KIC10091792, KIC10803371) show l ≥ 3 g modes. These high-l g
modes have smaller amplitudes and generally have periods below
the lower boundary of our detection region (0.2–2 d), hence they
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Period spacings of 611 γ Dor stars 3591

Figure 3. The observed period relation between l = 2, m = 2 and l =
1, m = 1 g modes. The error bars show the pulsation period spans, not the
uncertainties. The dashed line shows the relation that the mean period of l =
2, m = 2 g modes is half that of l = 1, m = 1 g modes.

Figure 4. The slope relation between the observed l = 2, m = 2 and l =
1, m = 1 g modes. We only plot the points with slope error smaller than
0.005. The dashed line shows the place where the slopes are equal.

are hard to detect. However, for dipole and quadrupole g modes, we
confirm that the results listed in Table 1 are complete.

3.2 Occurrence rate of modes

Fig. 6 shows the observed relative occurrence rates of different
modes. Among all the 960 patterns, 62.0 per cent are l = 1, m = 1 g
modes. The second most common modes are l = 2, m = 2 g modes,
which constitute 18.9 per cent of the total detection. Rossby modes
are the third most common modes (11.5 per cent). Apart from these
three modes, we also see l = 1, m = 0 and l = 1, m = −1 modes
with percentages of 3.0 per cent and 2.3 per cent, respectively, which
were mainly found in the slow rotators reported by Li et al. (2019a).
11 fast rotators with splittings are detected in this work, which will
be described in Section 6.

There are a few patterns that cannot be classified into those five
types of modes above. They might be the sectoral g modes with
higher angular degree (l = 3, m = 3 for example, see KIC 9344493),
or the only k = −1, m = −1 r mode reported by Li et al. (2019b),

Figure 5. The periodograms of all the γ Dor stars with identified period-
spacing patterns in our sample. Each row shows the periodogram for one
star. The colour stands for the normalized amplitudes to the power of 0.25
for the best visibility. The trends of l = 1, m = 1 g modes, l = 2, m = 2 g
modes, and k = −2, m = −1 r modes are seen and marked by the texts.

Figure 6. The percentages of different oscillation modes among 960
patterns.

or l = 2, m = 1 g modes in two newly discovered fast rotators
(KIC 5092681 and KIC 5544996), or some patterns that cannot be
fitted with the TAR. All of these occupy 2.3 per cent of the total
detected period-spacing patterns.

Fig. 7 shows the numbers of stars which show different oscillation
modes. We classify the modes into three main types: l = 1 g modes,
l = 2 g modes, and k = −2, m = −1 r modes. There are 339
stars that only show l = 1 g modes (red area) and 145 stars that
show both l = 1 and l = 2 g modes (yellow area). Almost all the
stars have l = 1 g-mode period-spacing patterns. However, there
are power excesses over l = 1 g-mode regions in 16 stars without
period-spacing patterns identified. For these stars only l = 2 g-mode
patterns are reported. We notice that KIC 5491390 is the only star
that does not show any l = 1 g-mode power excess. In total, there
are 17 stars with only l = 2 g modes (green area). Zhang et al.
(2018) reported that KIC 10486425 also oscillates only in l = 2 g
modes. The reason for the absence of l = 1 g modes needs further
investigation.

We do not find any star that only shows r modes. The reason is
that the TAR cannot converge well if g-mode patterns are absent,
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3592 G. Li et al.

Figure 7. The numbers of stars with observed period-spacing patterns.

hence we cannot ensure that the observed pattern is a real r-mode
pattern, or we are misled by missing peaks in the observed pulsation
spectra. Hence, all the r modes co-exist with g modes in our sample.
There are 83 stars with l = 1 g modes and r modes, and there are 27
stars with l = 1, l = 2 g modes, and r modes. The co-existence of g
mode and r modes decreases the uncertainties of near-core rotation
rates significantly. The typical uncertainty is 0.0009 d−1 for the stars
with both g and r modes, while it is 0.008 d−1 for the stars with only
g modes.

3.3 Slope–period diagram

In Section 2, we introduced three observables for each pattern, the
mean period, the mean period spacing, and the slope. Fig. 8 shows
the relation between the slopes and the mean periods from all the
patterns in our sample, hence we call this diagram the Slope–Period
(S–P) diagram. The mean period and the slope are correlated. We
find that the data points of l = 1, m = 1 g modes, l = 2, m = 2 g
modes, slowly rotating g modes, and k = −2, m = −1 r modes
form four different groups which have diverse trends and clear
boundaries.

(i) l = 1, m = 1 g modes: these points are the majority, which
are shown by the blue triangles. Most patterns have mean periods
between 0.4 and 0.8 d and slopes around ∼−0.04. They show a
positive correlation between the slopes and the mean periods.

(ii) l = 2, m = 2 g modes: those points are presented by the
green stars. These modes have shorter periods than dipole modes
(between 0.2 and 0.4 d) but have similar slopes (∼−0.04) as pointed
out in Section 3.1.

(iii) l = 1, m = 0 and l = 1, m = −1 g modes: they are marked
by the yellow circles and the red rectangles. These two modes are
rare (for m = 0) or absent (for m = −1) in rapid rotators but are
seen in the slow rotators reported by Li et al. (2019a). Due to the
slow rotation rate, the rotational effect is not strong so the period
spacings in those modes remain nearly identical. Hence we see most
m = 0 and m = −1 modes around the horizontal line with slope of
zero.

(iv) k = −2, m = −1 r modes: they are the red circles. As
discussed by Li et al. (2019b), r modes have positive slopes and
show an inverse correlation between the mean period and the slope.

Fig. 8 displays the typical locations of different modes on the
S–P diagram. It can be used for mode identification. When a new
pattern is found, its location on the S–P diagram reveals its mode
identification. If the point is an outlier, several possibilities should be
considered: the period spacings are misidentified since some peaks
in the amplitude spectra are too weak to be detected; the slope is
strongly affected by the partially observed dips caused by chemical
composition gradients (e.g. KIC 4919344 in Li et al. 2019a); or the
star is an SPB star, which has a larger asymptotic spacing (	0)
because it has a higher mass than a γ Dor star (e.g. Pápics et al.
2017). Consequently, a pattern of an SPB star has a steeper slope
than a pattern of a γ Dor star with a similar mean period.

4 A SYMPTOTIC SPAC ING AND ROTATION

We used the TAR to fit the period-spacing patterns and measured
the near-core rotation rates frot, the asymptotic spacings 	0 (also
called buoyancy radii), and the radial orders n.

4.1 Distribution of �0

Fig. 9 gives the observed distributions of the asymptotic spacing
	0. The stars show a symmetric distribution centred around 	0 =
4000 s. We find that 68 per cent of stars have 	0 between 3700 and
4800 s. Stars with large 	0 are likely to be SPB stars (with 	0 from
5600 to 16000 s; Pápics et al. 2017). They show g-mode patterns
with larger period-spacing values and steeper slopes than γ Dor
stars but the pulsation periods are similar. However, the effective
temperatures of those possible SPB stars are located in the typical
ranges of A- and F-type stars. This may indicate that the effective
temperatures are wrong, or there are pulsation periods missing in
the detected patterns, or the stars are very young. The stars with
	0 � 3000 s are probably close to the terminal age main sequence.

Van Reeth et al. (2016) reported the theoretical distribution of
	0, which was calculated based on a grid of theoretical stellar
models that includes the γ Dor instability strip. The relative duration
of the different evolutionary stages was also considered in the
calculation. It shows that the most likely value of 	0 is 4400 s,
which is higher than the observed one. The theoretical histogram
also has a slightly asymmetric shape. The discrepancy between the
observed and theoretical distributions are probably caused by the
different parameters, such as metallicity and mixing length, and
it also reveals that a full non-adiabatic computation of the γ Dor
instability strip is needed for the theoretical distribution of 	0.

Fig. 10 shows the S–P diagram coloured by their asymptotic
spacings 	0. We found that the yellow outliers on the lower right are
composed of the stars with large 	0. They generally show steeper
period-spacing patterns, hence they appear below the typical l =
1, m = 1 g-mode group of γ Dor stars. From now, we only present
the results using stars with 	0 < 6000 s to avoid any contamination
from SPB stars or wrong identifications.

We show our theoretical evolutionary tracks in Fig. 11. MESA

v10108 was used to compute the evolutionary tracks (Paxton et al.
2011, 2013, 2015, 2018). The tracks shown in Fig. 11 have: stellar
masses are from 1.0 to 3.0 M� with step of 0.05 M�, a hydrogen
mass fraction X of 0.71, a metallicity Z of 0.014, a mixing length
α of 1.8, an exponential core overshooting fov of 0.015, and an
extra diffusive mixing Dmix of 1 cm2 s−1, we also used the OPAL

capacities and the Asplund et al. (2009) solar abundance mixture.
For each stellar model, the asymptotic spacing 	0 is calculated and
the point is coloured by the observed probability density of 	0 from
Fig. 9. Two solid black lines in Fig. 11 display the boundaries of

MNRAS 491, 3586–3605 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/491/3/3586/5594027 by C
N

R
S user on 07 July 2023



Period spacings of 611 γ Dor stars 3593

Figure 8. Slopes versus the means of the periods of 960 period-spacing patterns from 611 γ Dor stars. The x-axis is the mean period in each pattern. The
y-axis is the slope between the period spacing and the period with dips removed. Different colours and symbols show different modes.

Figure 9. The observed distribution of asymptotic spacing 	0.

the theoretical instability strip of γ Dor stars (Dupret et al. 2005).
We find that the areas with high-	0 densities show a nearly vertical
strip, broad at the zero-age main sequence (ZAMS) and narrow at
the terminal-age main sequence (TAMS). The low-mass stars are
more likely to pulsate near the ZAMS, while for the high-mass
stars, the pulsation may happen close to the TAMS and for a shorter
duration than for low-mass stars. The high-density area of 	0 on
the Hertzsprung-Russell (HR) diagram is generally consistent with
the theoretical instability strip.

Figure 10. The S–P diagram coloured by the asymptotic spacing 	0. The
outliers on the lower right is composed of the stars with large 	0.

Combining the effective temperatures from Kepler DR25
(Mathur et al. 2017) and the luminosities from Murphy et al. (2019)
using Gaia DR2 parallax (Gaia Collaboration 2016), we place our
stars on the HR diagram, as shown in Fig. 12. Fig. 12 displays that
most γ Dor stars are located on the lower right area, with lower
effective temperature and luminosity than δ Sct stars. The low-
temperature boundary of our γ Dor sample follows the theoretical
instability strip (solid black lines). This may prove that the theory
predicted the red boundary correctly. However, many γ Dor stars
are located beyond the blue boundary of the instability strip. This
could be caused by systematic offsets in the photometric Teff values.
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3594 G. Li et al.

Figure 11. The probability density of 	0 on the HR diagram. The colour
stands for the probability density of 	0 from Fig. 9. The black lines show
the theoretical instability strip of γ Dor stars (Dupret et al. 2005).

Figure 12. Stars on the HR diagram. The blue points are the γ Dor stars
with clear g-mode patterns. The red points are the stars with both g- and
r-mode patterns. The grey points are the stars we inspected but do not show
clear period-spacing patterns. The black lines show the theoretical instability
strip (IS) of γ Dor star while the purple lines depict the observed IS of δ Sct
star by Murphy et al. (2019).

Typical uncertainties on these values are on the order of 250 K. More
accurate Teff values from high-resolution spectroscopy are needed
to evaluate this possibility. If the Teff values are found to be accurate,
the presence of hot γ Dor stars could reflect the limit of the current
theory, which was mentioned by Dupret et al. (2005). For example,
a proper mixing length should be used in these stars rather than the
solar value.

As mentioned before, we inspected 2085 stars and found 611
stars with clear period-spacing patterns. The grey circles in Fig. 12
are the stars without identified period-spacing patterns. They may
be the γ Dor stars with unresolved g-mode patterns, or the phase-
modulation binaries from Murphy et al. (2018). We included the
phase-modulation binaries since they show similar Teff, but they
may not necessarily be γ Dor stars. We do not find any special
distributions of the stars without pulsation patterns on the HR
diagram. There is no explanation about why some γ Dor stars do
not show any clear period-spacing pattern. The reasons might be:

Figure 13. The distribution of observed near-core rotation rate frot. Many
stars rotate around 1 d−1 while there is a slow-rotator excess slower than
0.4 d−1, suggesting two classes of γ Dor stars.

dense, overlapping patterns that would be hard to disentangle; there
are only a few excited modes, hence the pattern is incomplete.

4.2 Distribution of frot with slow-rotator excess

Fig. 13 displays the distribution of the near-core rotation rates frot.
Most stars have rotation frequencies around 1 d−1. The distribution
increases rapidly after 0.4 d−1 and drops slowly after ∼1 d−1. The
most rapid rotators are KIC 8458690A and KIC 8458690B with
frot ∼ 3.01 d−1, whose two identical period-spacing patterns form
‘splittings’ reported by Li et al. (2019a). However, many stars rotate
less quickly than expected, which forms an excess at frot � 0.4 d−1

in Fig. 13.
The histogram of the near-core rotation rate in Fig. 13 shows a

slow-rotator excess. We suggest defining two classes of γ Dor stars
by their near-core rotation rates: (1) slow rotators with frot � 0.4 d−1;
(2) fast rotators with frot � 0.4 d−1. A similar distribution has been
realized for A- and F-type stars by observing the projected velocity
vsin i (e.g. Ramella et al. 1989; Abt & Morrell 1995; Royer et al.
2007). Abt & Morrell (1995) found that all the rapid rotators have
normal spectra and nearly all slow rotators have abnormal spectra
(Ap or Am). The extremely slow rotation rate may be explained
by magnetic braking for Ap stars or tidal braking for Am stars.
However, after removing Ap and Am stars, Royer et al. (2007) still
found the bimodality. The slow rotators have v sin i < 70 km s−1

and the fast rotators have v sin i ∼ 160 km s−1, whose ratio is
consistent with our near-core rotation rate (0.4 and 1.0 d−1). Due
to the large sample size here, the effect of inclination should
be averaged out, hence we compare vsin i with our inclination-
independent near-core rotation rate in the last sentence directly.
Rotational braking during the main sequence can be explained in
many ways, such as magnetic fields, binarity, interaction with stellar
disc, or the formation of blue stragglers (e.g. Mestel 1968; Hut 1981;
Takada-Hidai et al. 2017). Our sample contains a large number of
slow rotators. Follow-up spectroscopic observations can obtain the
chemical abundances and the surface rotations, hence we can infer
the formation of the slow rotators.

According to Ouazzani et al. (2017), the slope � = d�P/dP
was defined as a diagnostic for rotation. The slope decreases from
zero with increasing rotation for m ≥ 0 g modes and vice versa
for the r-mode pattern. We plot the relation between the fitted near-
core rotation rate and the observed slope in Fig. 14. The points
clustered into two groups, corresponding to l = 1, m − 1 g modes
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Period spacings of 611 γ Dor stars 3595

Figure 14. The relation between slope and near-core rotation rate frot. The triangles are the l = 1, m = 1 g-mode patterns, whose slopes are generally smaller
than zero hence are located on the left. The circles are the k = −2, m = −1 r-mode patterns with positive slopes on the right. The g-mode slopes are correlated
with their mean radial orders, as shown by the colour gradient.

and k = −2, m = −1 r modes. For the g-mode patterns, only
several slow rotators show g-mode slopes slightly larger than 0 and
most points have negative slopes and are located on the left side of
Fig. 14. We find the rotation–slope relation of the g modes has a
large scatter (σ = 0.35 d−1) and shows an obvious gradient with the
mean radial orders. The gradient reveals that the slope for a period-
spacing pattern is not only affected by the rotations and dips, but
also affected by the radial orders. For a given rotation rate (for
example 1 d−1), the slopes are generally flatter (� near zero) for
higher radial orders. The effect of radial orders is clear and can be
used to explain the widths of the trends in Fig. 8. Further discussion
about the radial orders on the S–P diagram will be given in Section 5
and Fig. 21.

For the r modes, the rotation rate has a positive correlation with the
slope. There is less scatter among the r-mode points (σ = 0.24 d−1),
presumably because they show a smaller spread in radial orders, as
we investigate in Section 4.4. The theoretical relation between slope
and near-core rotation rate also depends on the stellar parameters
(such as Teff, [Fe/H]), which should be considered when comparing
with observations.

Bouabid et al. (2013) predicted the relation between the pulsation
period in the corotating frame versus the effective temperature,
shown as the solid lines in Fig. 15. It predicted that γ Dor stars
pulsate between 0.5 and 5 d in the corotating frame with effective
temperature from 6600 to 7400 K. The area is triangular, implying
that the long-period stars are more likely to have lower temperatures.
We count the number of the l = 1, m = 1 g modes and compare
our observations with the theoretical prediction in Fig. 15. The
pulsation period in the inertial frame is converted into the corotating
frame using the near-core rotation rate derived by the TAR fit.
It shows that the corotating periods are generally between 1 and
4 d, following the theoretical prediction. However, many stars
have higher photometric temperatures than the theory, which is
similar to what the H–R diagram shows in Fig. 12. The peak of
the observed contour is located outside the theoretical area and

Figure 15. Pulsation period in the corotating frame versus effective
temperature. One star has one effective temperature but many pulsation
modes, hence the data points (black dots) show vertical fringes. The contour
displays the number of the observed pulsation modes. The solid lines show
the theoretical areas reported by Bouabid et al. (2013), with equatorial
rotation velocities veq = 0 (black), 30 (dark grey), 60 (grey), and 90 km s−1

(light grey).

the pulsation period does not show any relation with effective
temperature.

4.3 Correlation between �0 and frot

Fig. 16 shows the correlation between the near-core rotation rate
and the asymptotic spacing. The uncertainty on 	0 is sometimes
large, due to short patterns, or when only l = 2, m = 2 g modes are
seen. Hence, we only plot the 578 stars with 	0 uncertainty within
±500 s. The asymptotic spacing decreases with stellar evolution
so it is considered an indicator of the stellar age (e.g. Saio et al.
2015; Ouazzani et al. 2018). However, the relation between 	0 and
age is affected by many other issues, for example, the shape of the
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3596 G. Li et al.

Figure 16. The correlation between asymptotic spacing 	0 and the near-core rotation rate frot. With stellar evolution, the star moves from right to left. We
only plot the points with 	0 uncertainty smaller than 500 s. The colour stands for the effective temperature. The theoretical predictions (solid lines) are made
by Zahn (1992) and Ouazzani et al. (2018), where νh means the enhanced horizontal viscosity, νv,add means the additional vertical viscosity.

instability strip (Fig. 11) or the initial mass. A detailed relation was
reported by Mombarg et al. (2019). With stellar evolution, angular
momentum is transferred and the near-core rotation also decreases.
Hence, in Fig. 16, the stars evolve from upper right to lower
left.

The solid lines show the theoretical boundaries calculated by
the angular momentum transfer model of Zahn (1992), which
considered the effects of meridional circulation and shear-induced
turbulence and were calibrated by the observations of three clusters
(Ouazzani et al. 2018). We plot the theoretical boundaries with
different conditions, such as the original model by Zahn (1992)
(purple lines), the model assuming stars are solid bodies (blue lines),
the Zahn (1992) model with enhanced horizontal viscosity νh ×
100 (green lines), or with additional vertical viscosity νv,add (yellow
lines), or with overshooting αov = 0.15 (red lines) (see details in
Ouazzani et al. 2018).

Our observational points are generally located between the
theoretical lines. The upper boundaries of the models from Ouazzani
et al. (2018) fit the observations very well, which were calibrated by
three clusters to include 80 per cent of the stars. Our observations
do not have any star above these upper boundaries, implying that
there is a lack of fast rotators. We also notice that there are still
many slow rotators below the lower boundaries of these models,
confirming the ‘slow rotator accumulation’ by Ouazzani et al.
(2018). Our results are consistent with and expand upon the results

from 37 stars by Ouazzani et al. (2018) (these stars are also in
our sample).

The difference between the observations and the theory demands
an explanation. Either there is a selection effect in the observations
or there are ingredients missing from the stellar models that produce
the theoretical predictions. We consider the former, first.

The ‘fast rotators desert’ might be expected if the period-spacing
patterns of rapid rotators cannot be extracted from (evolved) stars
with small asymptotic spacings, as is indeed the case. In other
words, although patterns are extractable for 	0 = 5000 s and frot =
2.5 d−1, they are not extractable for 	0 = 3000 s at the same frot due
to a denser power spectrum. However, the shape of the theoretical
regions in Fig. 16 matches the observational distribution and is
only shifted from it. Stars are not predicted at 	0 = 3000 s and
frot = 2.5 d−1, so the ‘fast rotators desert’ is not the result of an
observational selection effect.

What ingredients might be missing from the models that would
move the theoretical region towards the observed one? One possible
answer is the rigid rotation. As pointed out by Van Reeth et al. (2018)
and Li et al. (2019b) and discussed in Section 7, the γ Dor stars
have almost the same rotation rates between near-core and surface
regions, implying a very effective mechanism of angular momentum
transfer. The model with solid body condition (light blue lines in
Fig. 16) indeed shifts down and is a better match to the observations.
Ouazzani et al. (2018) also modified different coefficients beyond
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Period spacings of 611 γ Dor stars 3597

Figure 17. The distributions of radial orders of different modes.

Figure 18. The normalized distributions of the pattern lengths.

their ordinary range to investigate the effect of the models, such as
enhancing horizontal viscosity in the star by a factor 100, which
also have the desired effects. Another governing variable is the
asymptotic spacings (or called ‘buoyancy radius’ in Ouazzani et al.
2018); increasing the asymptotic spacings moves the theoretical
region down in Fig. 16. An additional parameter that modifies the
asymptotic spacings is convective overshooting above the core.
Including this parameter is physically motivated, it migrates the
theoretical boundaries in the direction of the observations, and may
fully resolve the difference between the theory and observations, as
what we see in Fig. 16.

4.4 Distributions of radial orders

Fig. 17 depicts the distributions of the radial orders for different
modes, which are obtained by the best-fitting results of the TAR.
We find that the distributions of the radial orders are similar to the
results by Li et al. (2019b). For l = 1, m = 1 g modes, the median
of the distribution is 48, and 68 per cent of modes have radial orders
between 30 and 70. For l = 2, m = 2 g modes, the peak of the
distribution has a slightly higher radial order than dipole g modes,
and 68 per cent of modes satisfy 37 < n < 71. We notice that the
radial orders are higher than the theoretical prediction by Bouabid
et al. (2013), which found that the modes with radial orders from
15 to 38 are unstable.

For k = −2, m = −1 r modes, the radial orders are generally
lower than those of g modes. The median is 36, and 21 < n < 53 is
the range for 68 per cent of the modes. The distribution of r-mode
radial orders is asymmetric while the distributions of g modes are
almost symmetric.

Fig. 18 presents the pattern lengths for different modes. The
pattern length is the difference between the maximum and minimum
of the radial orders. The numbers are normalized for a clear
comparison. We find that the lengths for dipole g modes, quadrupole
g modes, and r modes do not show any dramatic differences. The
medians are about 30 and most of them have pattern lengths between
10 and 50 radial orders. Several patterns are extremely long, even
up to 70 radial orders.

Figure 19. The spin parameter s distributions of l = 1, m = 1 g modes
(black), l = 2, m = 2 g modes (grey), and k = −2, m = −1 r modes (red).
Several extremely slowly rotating stars contribute the peak with s near 0 in
l = 1, m = 1 g modes.

Bouabid et al. (2013) calculated the radial order span using the
theory of mode stability and found the radial order span is typically
30. Our observed radial order span is longer than the theory, showing
that improvement of the mode excitation and damping theory may
be needed.

4.5 Distributions of spin parameters

Using equation (3), we calculate the spin parameters for l = 1, m =
1 g modes, l = 2, m = 2 g modes, and k = −2, m = −1 r modes.
Fig. 19 displays their distributions. For l = 1, m = 1 g modes,
the spin parameters show a rapid rise and a slow drop from 0 to
15. Most of the modes have s around 5. Several slow rotators have
extremely low spin parameters, which form the peak close to zero.
For l = 2, m = 2 g modes, the spin parameters are lower since the
pulsation frequencies are longer than dipole g modes. Most of them
are around 2.5. For r modes with k = −2, m = −1 , they show
different spin parameter distributions. The smallest spin parameter
value is ∼6 and the highest is ∼35. They show a peak around 9. The
r-mode spin parameters are typically larger than that of g modes and
have different distributions, implying diverse pulsation properties
for them.

5 ROTATI O N O N S– P D I AG R A M

5.1 Empirical method to calculate rotation rate

The fit of the TAR reveals the near-core rotation rate, asymptotic
spacing, and the estimated radial orders of one pattern, given the
quantum numbers k and m. This fitting procedure converges faster
with a good initial estimate of frot. Hence, we report an empirical
method to estimate the near-core rotation rate based on the three
observables: the mean period 〈P〉, the mean spacing 〈�P〉, and the
slope �. We use a simple formula to describe the relation between
the near-core rotation rate and these three observables. The formula
is designed as

frot = A

〈P 〉 + B

〈�P 〉 + C � + D, (5)

where A, B, C, and D are the coefficients. We selected inversely
proportional functions for 〈P〉 and 〈�P〉 (both in unit of days)
because they are inversely correlated with the rotation rate. For
the slope �, the proportional relation is used since rapid rotation
causes a steeper period-spacing pattern. On the left-hand side of
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3598 G. Li et al.

Table 2. The coefficients of equation (5) for k = 0, m = 1 g mode, k = 0,
m = 2 g mode, and k = −2, m = −1 r mode. Note that k = l − |m| for g
modes. A, B, C, and D are the coefficients. δfrot is the fitting accuracy in unit
of d−1.

(k, m) A B C (d−1) D (d−1) δfrot (d−1)

(0, 1) 0.4189 0.001603 − 11.75 − 0.3554 0.1
(0, 2) 0.3346 0.0003965 − 2.477 − 0.2462 0.07
(− 2, −1) 1.167 − 0.0002585 − 0.2360 0.1099 0.03

Figure 20. The near-core rotation rates calculated by equation (5) for k =
0, m = 1 g modes. Upper panel: the relation between the input and predicted
near-core rotation rates. The red circles are the test set while the others
are the training set. Lower panel: the fit residuals. The residuals have the
standard deviation of 0.1 d−1, which is the accuracy of equation (5).

equation (5), the unit of frotis d−1. On the right-hand side, the
coefficients A and B are dimensionless, the unit of coefficient C
and D are d−1. We applied equation (5) to l = 1, m = 1 g modes, l =
2, m = 2 g modes, and k = −2, m = −1 r modes, respectively. The
slow rotators with frot < 0.4 d−1 were excluded, since the slope is
affected by the glitches more than the rotational effect. The best-
fitting coefficients are listed in Table 2.

Fig. 20 shows the fit result of k = 0, m = 1 g modes. The
upper panel reveals the correlation of near-core rotation rates from
the TAR fit and the empirical formula equation (5). We selected
90 per cent of the data points (coloured by their mean radial orders)
as the training set to obtain the coefficients (listed in the first line
of Table 2), and use the other 10 per cent (red circles) to test if the
coefficients work well and to avoid overfitting. Both the training
set and the test set show a positive correlation, which means that
equation (5) with the parameters in Table 2 can estimate the near-
core rotation rate. The lower panel shows the differences between
the input and output rotation rates. The differences have a standard
deviation of 0.1 d−1, which is the precision of equation (5) for
k = 0, m = 1 g modes. We find that the mean radial orders show
a gradient, in the sense that the points with small residuals have
larger mean radial orders than those with large differences. Hence

the scatter of equation (5) is partially caused by the mean radial
order.

The second and third lines in Table 2 list the coefficients of
equation (5) but for k = 0, m = 2 g modes and k = −2, m = −1
r modes. The precision of equation (5) for k = 0, m = 2 g modes
is 0.07 d−1, which is similar to the k = 0, m = 1 g-mode residuals.
However, The precision of k = −2, m = −1 r modes is 0.03 d−1,
significantly smaller than those of g modes. The reason is that r
modes are not affected by the range of radial orders as much as g
modes.

Equation (5) with the coefficients in Table 2 gives the relation
between the rotation rate and the three observables. They can be
used as the estimate of the near-core rotation rate before running
the TAR fit code. We also tried to search the formula for asymptotic
spacing 	0 and mean radial order as a function of 〈P〉, 〈�P〉, and
�, but there are no clear correlations.

5.2 Rotation on the S–P diagram

To plot the rotation rate on the S–P diagram, we used the TAR
to simulate the period-spacing pattern and calculate the synthetic
mean periods and slopes. We show our simulated curves in Fig. 21,
whose parameters are listed in Table 3. For both g and r modes,
the number of modes in each pattern was selected as 20 and the
range of 	0 is from 3600 to 5600 s with step of 200 s. For g modes,
the rotation is between 0 and 4.0 d−1 with step of 0.1 d−1 to cover
the observed range. Two regions of radial orders were used for g
modes, centred at 20 (10 < n < 30) and 40 (30 < n < 50), as shown
in blue and cyan lines in Fig. 21. For r modes, only radial orders
around 20 (10 < n < 30) and 0.7 d−1 < frot < 4.0 d−1 are displayed
because these parameters regions can explain the r modes data
well.

Fig. 21 shows the simulated results of the S–P diagram. We find
that the simulated curves cover the data points well. For l = 1, m =
1 g modes, the data show two trends: one is the patterns with lower
radial orders (the blue curves) which show shorter mean periods and
the steeper relations between the slope and the period; another trend
shows higher radial orders (cyan curves) whose mean periods are
generally longer and the relation between the slope and the period
is flatter. Two trends have an overlap over P ∼ 0.5 d. For l = 2, m =
2 g modes, the trend between the slope and the mean period is not
obvious due to the limited detection of quadrupole g modes. So only
10 < n < 30 is used to cover l = 2, m = 2 g modes.

The S–P diagram is a map for the near-core rotation rate, as
marked by the dashed lines and numbers in Fig. 21. The dashed
lines connect the positions with same rotation rates, hence we can
estimate the near-core rotation rate by placing the star on the S–
P diagram. The rapidly rotating stars generally appear on the left
in the S–P diagram, because of both the Coriolis force and the
transformation between the corotating and inertial reference frame.
The estimate of the near-core rotation rate is affected by the mode
identification, the asymptotic spacing, and the radial orders. There
is an overlapping area around P ∼ 0.5 d. In this area, the pattern
with higher radial order (cyan curves) shows a higher rotation rate
(∼ 1.6 d−1) while the pattern with low radial order (blue curves)
has a slower rotation rate (∼ 1 d−1). For r modes, the relation is
clearer and the S–P map can give a better estimate for the near-core
rotation rate. It also explains why the r-mode residuals in Table 2
are smaller than those for the g mode, since there is only one trend
for r modes on the S–P diagram.
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Period spacings of 611 γ Dor stars 3599

Figure 21. Theoretical S–P diagram. One solid line has the same quantum numbers, asymptotic spacing, and radial order centres with rotation increasing
from right to left. The dashed lines connect the positions with same rotation rate. Different colours show the curves with different quantum numbers. The
transparency stands for the asymptotic spacing 	0. The lighter, the smaller the 	0. The numbers show the rotation rates in d−1 of the nearest dashed lines.
The parameters for those curves are listed in Table 3. The data points are coloured by their near-core rotation rates to make the comparison with the simulated
rotation straightforward.

Table 3. The parameters of the simulated curvatures in Fig. 21. k and m are
the quantum numbers of the modes. All the patterns have 20 modes with
different radial order centres 〈n〉. 	0 is the asymptotic spacing and frot is the
near-core rotation rate.

Colour (k, m) 〈n〉 	0 (s) frot (d−1)
min, max, step min, max, step

Blue (0,1) 20 3600, 5600, 200 0.0, 4.0, 0.1
Cyan (0,1) 40 3600, 5600, 200 0.0, 4.0, 0.1
Green (0,2) 20 3600, 5600, 200 0.0, 4.0, 0.1
Red (− 2, −1) 20 3600, 5600, 200 0.7, 4.0, 0.1

6 FAST ROTATORS W ITH SPLITTINGS

Li et al. (2019a) reported 22 γ Dor stars in which rotational splittings
were seen. The rotation rates of those stars are generally slow (with
splitting smaller than 0.2 d−1), hence their period-spacing patterns
with different azimuthal orders m overlap each other. The traditional
Échelle diagram was used to distinguish the patterns and the shift-
copy method helped match the modes with equal radial order n (see
details in Li et al. 2019a).

In this work, we found 11 stars whose splittings are much larger,
whose mean splittings and slopes are listed in Table 4. Fig. 22
displays the splittings of KIC 7701947 as an example. The top
panel shows the power spectrum, in which the red dots are the
extracted frequencies and the open dots are the likely combination

Table 4. The slopes and splittings of 11 rapidly rotating stars.
δν are the mean splittings. �l, m are the slopes. The uncertainty
on the last digit is given between brackets.

KIC δν (d−1) �l = 1, m = 1 �l = 1, m = 0

3348714 0.38(2) − 0.0352(2) − 0.0154(4)
4285040 0.46(2) − 0.014(4) − 0.0163(3)
4846809 0.65(1) − 0.036(6) − 0.0087(7)
4952246 0.316(9) − 0.005(5) − 0.011(1)
5476473 1.00(2) − 0.055(5) − 0.0148(8)
7701947 0.32(1) − 0.0281(1) − 0.0165(5)
7778114 0.50(2) − 0.0355(5) − 0.0202(2)
8523871 0.32(5) − 0.075(5) − 0.067(7)
9595743 0.42(1) − 0.044(4) − 0.027(7)
12102187 0.291(6) − 0.017(7) − 0.019(9)
12401800 0.43(1) − 0.0308(8) − 0.021(1)

frequencies. We mark the l = 1, m = 1 g modes as the blue vertical
lines and the l = 1, m = 0 g modes as the green vertical lines. The
plus and circle symbols mark the locations of m = 1 and m = 0
modes, respectively. The horizontal dashed lines connect the modes
with equal n. The bottom panel shows two period-spacing patterns,
the left one (blue plus) is l = 1, m = 1 g modes and the right
one (green circle) is l = 1, m = 0 g modes. The period-spacing
patterns look similar to those in Fig. 1 but two features expose the
difference:
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3600 G. Li et al.

Figure 22. The amplitude spectrum and period-spacing patterns of KIC 7701947. Top panel: the amplitude spectrum as a function of period. The red dots
are the extracted frequencies and the open dots show the likely combination frequencies. The vertical dashed lines show the linear fit by equation (1). Two
period-spacing patterns are seen. The left one denoted by the blue dashed lines is the l = 1, m = 1 g modes. The right one (green vertical lines) is the l = 1, m =
0 g modes. Above the spectrum ‘ + ’ is the m = 1 modes and ‘O’ is the m = 0 modes. The horizontal dotted lines connect the modes with same radial order n.
Bottom: the period-spacing patterns. The left one is the l = 1, m = 1 g modes while the right one is l = 1, m = 0 g modes. The linear fits and uncertainties are
shown by the black and grey dashed lines, with dips removed.

(i) the ratio of pulsation periods between m = 1 and m = 0 modes
does not have a factor of two.

(ii) Slopes of m = 1 and m = 0 modes are different so the patterns
are not parallel.

We also state that these splitting stars are not binaries, since we
can use the same parameters (	0, frot) to fit both the patterns (m =
1 or m = 0) in each star.

Under the condition of slow rotation, the dipole (l = 1) g-mode
splitting is calculated based on the first-order perturbation

δf = fn,l=1, m=1 − fn,l=1, m=0 = m
(
1 − Cn,l

)
frot, (6)

where f is the pulsation frequency, Cn, l 
 1/[l(l + 1)] = 0.5 is the
Ledoux constant, frot is the near-core rotation rate (Ledoux 1951),
the term m is one since we consider dipole g modes. We only
consider the splitting between m = 1 and m = 0 modes since m =
−1 retrograde modes are absent in the fast rotating stars (see theory
in e.g. Saio et al. 2018b). However, the perturbation is broken with
increasing rotation rate. For the newly discovered splitting stars
with much faster rotation rates, the splittings vary between different
overtones significantly and it is hard to match the modes with the
same n.

For the fast rotators, the TAR in equation (2) is a good approxi-
mation. The frequency in the corotating frame is

fnlm,co =
√

λl,m,s

	0

(
n + εg

) , (7)

whose variables are same as equation (2). The frequency in the
inertial frame is

fnlm,in = fnlm,co + mfrot, (8)

Figure 23. The theoretical Ledoux ‘constant’ as a function of frequency
from the TAR, with 	0 = 4000 s and frot = 1 d−1. The considered radial
orders have values between 20 and 70. The blue circles and yellow squares
show the ‘constant’ with different εg. The horizontal dotted line denotes the
position with Cn, l = 0.5.

where frot is the near-core rotation rate. Therefore the splittings is
calculated by

δf = mfrot + 1

	0

(
n + εg

)
(√

λl,m=1,s − √
λl,m=0,s′

)
. (9)

Hence the Ledoux ‘constant’ C = 1 − δf/(mfrot) is no longer a
‘constant’ (see also Keen et al. 2015; Murphy et al. 2016). Fig. 23
shows the theoretical result of the varying Ledoux ‘constant’. The
parameters are 	0 = 4000 s and frot = 1 d−1, which are chosen
from the distributions shown in Figs 9 and 13. We find that with
increasing pulsation frequency, the Ledoux ‘constant’ increases
from ∼0.485, reaches the highest value around 0.52, and drops
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Period spacings of 611 γ Dor stars 3601

Figure 24. The splitting variation as a function of frequency of
KIC 7701947. The blue line and shaded area are the predicted curve and
uncertainty from the TAR fitting result. The black squares are the splittings
which follow the theory best, whose radial orders are subtracted by 1
artificially for the best-fitting result. The grey circles and triangles are the
splittings whose radial orders are mismatched by a factor of ±1 around −1.

slowly. The deviation from the first-order perturbation is ∼±0.02.
We also evaluated different values for εg and find that it does not
change the curve, but only shifts the frequencies of zonal modes, as
shown by the blue circles and yellow squares in Fig. 23.

Fig. 24 shows the comparison between the observed splittings
and the theoretical predictions of KIC 7701947. The blue curve
and shaded area show the theoretical splittings and uncertainties,
whose parameters are from the best-fitting TAR result. We tried to
introduce an artificial shift on the radial order of the l = 1, m = 0 g
modes and plot the results as grey circles and triangles in Fig. 24.
The black squares are the matching that follows the theory best. We
find that changing the mode matching by �n = ±1 indeed changes
the shape of splitting. The splittings with correct matching generally
follow the theoretical prediction. However, the observed splittings
are higher than the theoretical one, showing a discrepancy with
the theory. It means the best model which fits the period-spacing
patterns can only partly explain the splittings. This reflects the limit
of the asymptotic formula of the TAR in equation (2), which can be
improved by performing a full seismic calculation.

Ouazzani et al. (2017) showed that the near-core rotation can
be deduced roughly by the slope. To make an observed relation
between rotation and slope, we combined the 11 rapidly rotating
stars with splittings and 22 slow rotating stars from Li et al.
(2019a) to extend the observed slope–splitting diagram to a larger
splitting area. Fig. 25 shows the slope–splitting relation with both
the observations and theoretical curves. The observed points cluster
into two groups: the left one is composed of the slow rotators with
splitting smaller than 0.2 d−1 and slope close to 0, while the points
with splitting larger than 0.2 d−1 are the fast rotators. There is a gap
over 0.2 d−1, which corresponds to the boundary between the slow
and fast rotators in Section 4.2. Due to the effect of rotation, the
slopes of the fast rotators deviate from zero and become lower than
the slow rotators. The slopes of zonal modes (green) are generally
flatter than the slopes of dipole sectoral modes (blue), consistent
with the theoretical curves by Ouazzani et al. (2017) and us. The
retrograde modes (red) are only seen in the slow rotators. The
reasons of the absence of retrograde modes in fast rotators are:
(1) the period spacings are around 104 s, hence they are hard to
detect; (2) the amplitudes of retrograde modes are concentrated to
the equator; (3) an additional latitudinal nodal lines appear when

Figure 25. Observed relation between slope and splitting from 34 stars.
The shaded areas are theoretical curves. We consider the radial orders from
20 to 70 to make the theoretical areas. KIC 6862920 and KIC 8458690 are
binaries, KIC 8523871 shows a much larger asymptotic spacing, hence they
become outliers.

s > 1, hence retrograde modes become tesseral modes. Therefore,
no retrograde modes are expected in fast rotators (Saio et al. 2018b).

The shaded areas are the theoretical regions of slopes as a function
of splittings with different modes. We calculated the simulated
period-spacing patterns by the TAR, and measured the slopes of
them. The asymptotic spacing 	0 is from 3500 to 4500 s with step
of 100 s. The radial order is from 20 to 70. Since the period spacing
changes quasi-linearly with period, the slope changes as a function
of radial order. We measured the slope at the beginning and at the end
of each simulated period-spacing pattern. We found that the slope
variation at different radial orders is significant, hence the slope–
splitting curves in our work show a much larger dispersion than
Ouazzani et al. (2017), who neglected this effect. Our simulated
curves in Fig. 25 cover the data points in the fast rotation area,
but have difficulty in the slow rotation area. The slopes of slowly
rotating stars spread much wider than the shaded area, implying
that dips dominate the measurement of slopes in slowly rotating
stars.

We only see 11 rapidly rotating stars with splittings among
611 γ Dor stars in our sample. The lack may reflect the surface
amplitude distribution of tesseral modes. With increasing rotation,
the mode geometry are concentrated towards the equator, hence the
brightness change by pulsations is cancelled out unless the line of
sight is almost aligned with the rotation axis of the star (Townsend
2003b). Apart from these 11 splitting stars, we also find two stars,
KIC 5092684 and KIC 5544996, which show l = 2, m = 1 modes.
Precise observations of their projected equatorial velocities vsin i
will reveal their inclinations and allow us to evaluate the theoret-
ical expectations for the amplitude distributions of the pulsation
modes.

7 SU R FAC E MO D U L AT I O N S

The g and r modes allow us to measure the rotation rate of the near-
core region. To see how the rotation rate changes radially, which
is crucial to understand the angular momentum transfer, we looked
for the surface modulation signals. The surface modulation might
be caused by spots (e.g. McQuillan, Mazeh & Aigrain 2014), or
stellar activities, which is straightforward to detect since the signal
is located within the typical g-mode period region. Although we

MNRAS 491, 3586–3605 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/491/3/3586/5594027 by C
N

R
S user on 07 July 2023



3602 G. Li et al.

excluded the eclipsing binaries (EB) when selecting the stars, there
are still several stars which were classified as EB by Kirk et al.
(2016), since their eclipses are too shallow to be seen in the time
domain. The orbital periods are equal to the surface rotation periods
for short-period EBs, considering the components are tidally locked.
Hence we can use the orbital period as the surface rotation period.
We follow the criteria used by Van Reeth et al. (2018) and Li et al.
(2019b) to select the rotational modulation signal. The criteria are:

(i) the surface modulation is a closely spaced group of peaks in
the amplitude spectrum, assuming the lifetime of spot is shorter
than the 4-yr observation.

(ii) the S/N is larger than 4.
(iii) the harmonic of the highest peak is seen.
(iv) the signal is located between g and r modes. For those without

r modes, we search the signal between one and two times the g-mode
mean period, because the mean period of r modes is approximately
twice the mean period of g modes.

(v) Both the rotational modulation signal at the rotation fre-
quency and its harmonic have to be well separated from the period-
spacing patterns, to avoid mistaking pulsation modes for rotational
modulation.

We find 58 stars which show surface modulations, representing
about 9.5 per cent of the 611 stars. The fraction is consistent
with spectroscopic observations of Zeeman splitting (Donati &
Landstreet 2009; Wade et al. 2016) and previous photometric obser-
vations of smaller samples (Van Reeth et al. 2018; Li et al. 2019b).
Table 5 lists the KIC numbers of these stars, the near-core (fcore),
and surface (fsurf) rotation rates, and their ratios. Fig. 26 gives the
amplitude spectrum of KIC 5608334 which shows a surface rotation
signal. We find a peak group at ∼0.44 d (red dashed line), which
is consistent with the near-core rotation rate derived by the g-mode
period-spacing pattern. A hump in Fig. 26 appears around 0.5 d,
which we identify as unresolved r modes (e.g. Saio et al. 2018a).

However, not all such humps are r modes. Fig. 27 displays the
surface modulation of KIC 5608334, in which the hump at ∼0.52 d
lies over the near-core rotation period. This hump is not unresolved
r modes since the latter have periods longer than the rotation period.
We conclude that this hump is caused by the spots on the surface,
as pointed out by e.g. Balona (2013).

We calculate the ratio between the near-core and surface rotation
and show them in Fig. 28. We find that almost all the stars
rotate nearly rigidly since the ratio is between 0.95 and 1.08.
The distribution shows a sharp drop at ∼0.99, implying that the
near-core region rotates slightly faster than the surface, which is
consistent with the theoretical rotation profile reported by Rieutord
(2006). A possible selection bias needs to be mentioned. A surface
rotation period longer than the near-core rotation period might not
be detected since this signal may be identified as a peak group of
unresolved r modes.

8 C O N C L U S I O N S

We report 960 period-spacing patterns detected from 611 γ Dor
stars, including 22 slow rotators with rotational splittings, 11 rapid
rotators with rotational splittings, 110 stars with r modes, and
58 stars that present surface modulation signals. The majority
(62.0 per cent) of the detected modes are l = 1, m = 1 g modes.
We also see many l = 2, m = 2 g modes and k = −2, m = −1
Rossby modes, which comprise 18.9 per cent and 11.5 per cent of
the sample, respectively. Among the 611 γ Dor stars, there are 339
stars which only show dipole g modes, 145 stars showing both

Table 5. The near-core and surface rotation rates, and their ratios of 58 stars
which show surface modulation signals. ‘EB’ means the star is an eclipsing
binary and ‘SURF’ means the signal is caused by surface modulations. fcore

is the near-core rotation rate and fsurf is the surface rotation rate.

KIC Type fcore (d−1) fsurf (d−1) fcore/fsurf

KIC 2846358 SURF 0.755(4) 0.754(8) 1.00(1)
KIC 3341457 EB 1.859(1) 1.893(7) 0.982(4)
KIC 3440840 SURF 0.93(6) 0.938(7) 0.99(6)
KIC 3967085 SURF 0.76(2) 0.77(1) 1.00(3)
KIC 4171102 SURF 0.7579(6) 0.76(2) 1.00(2)
KIC 4567531 SURF 1.018(5) 0.94(2) 1.08(2)
KIC 4932417 SURF 1.285(8) 1.23(2) 1.05(2)
KIC 4951030 SURF 2.53(3) 2.49(4) 1.02(2)
KIC 5021329 SURF 2.02(2) 1.98(4) 1.02(2)
KIC 5025464 SURF 1.57(3) 1.561(3) 1.00(2)
KIC 5115637 SURF 0.714(6) 0.72(2) 0.99(2)
KIC 5210153 SURF 1.051(4) 1.040(5) 1.011(6)
KIC 5370431 SURF 0.618(5) 0.6122(6) 1.009(8)
KIC 5374279 SURF 1.00(2) 0.873(4) 1.14(3)
KIC 5608334 SURF 2.25(1) 2.241(3) 1.005(6)
KIC 5652678 SURF 1.140(5) 1.163(6) 0.980(6)
KIC 5876187 SURF 0.596(5) 0.584(4) 1.02(1)
KIC 5954264 SURF 1.330(9) 1.329(6) 1.001(8)
KIC 5978913 SURF 0.955(5) 0.950(6) 1.006(8)
KIC 6041803 EB 1.53(2) 1.524(7) 1.00(1)
KIC 6284209 SURF 1.48(2) 1.42(4) 1.04(3)
KIC 6366512 SURF 1.17(1) 1.18(1) 0.99(1)
KIC 6445969 SURF 1.263(7) 1.244(5) 1.015(7)
KIC 6469690 SURF 0.566(5) 0.554(6) 1.02(1)
KIC 6935014 SURF 0.789(3) 0.788(7) 1.00(1)
KIC 7059699 SURF 2.30(2) 2.27(2) 1.01(1)
KIC 7287165 SURF 0.95(1) 0.986(2) 0.96(1)
KIC 7344999 SURF 1.40(1) 1.40(3) 1.00(2)
KIC 7434470 EB 1.77(1) 1.698(1) 1.044(6)
KIC 7596250 EB 1.1876(7) 1.185(4) 1.003(4)
KIC 7620654 SURF 1.88(2) 1.83(4) 1.03(2)
KIC 7621649 SURF 0.7745(4) 0.7802(6) 0.9928(9)
KIC 7840642 SURF 1.158(6) 1.158(6) 1.000(8)
KIC 7968803 SURF 1.94(1) 1.949(7) 0.997(8)
KIC 8180062 SURF 0.907(5) 0.904(9) 1.00(1)
KIC 8197019 SURF 1.89(5) 1.86(4) 1.01(3)
KIC 8264667 SURF 0.684(5) 0.682(2) 1.002(8)
KIC 8264708 SURF 1.636(1) 1.636(1) 1.000(1)
KIC 8293692 SURF 1.00(2) 1.044(9) 0.95(2)
KIC 9573582 SURF 0.9495(5) 0.946(5) 1.004(6)
KIC 9652302 SURF 0.9147(6) 0.910(2) 1.005(3)
KIC 9716350 SURF 0.863(3) 0.864(1) 0.999(3)
KIC 9716563 SURF 0.9081(9) 0.90(2) 1.01(2)
KIC 9847243 SURF 0.933(5) 0.913(9) 1.02(1)
KIC 10347481 SURF 1.303(5) 1.27(2) 1.03(2)
KIC 10423501 SURF 0.8420(6) 0.841(4) 1.001(4)
KIC 10470294 SURF 2.00(2) 1.96(4) 1.02(2)
KIC 10483230 SURF 0.9126(4) 0.918(2) 0.995(2)
KIC 10669515 SURF 1.596(7) 1.567(4) 1.019(5)
KIC 10803371 EB 0.98(2) 1.011(3) 0.97(2)
KIC 11183399 SURF 1.89(2) 1.868(3) 1.01(1)
KIC 11201483 SURF 2.28(2) 2.23(3) 1.02(2)
KIC 11294808 SURF 0.802(5) 0.7887(7) 1.016(7)
KIC 11395936 EB 0.944(7) 0.953(6) 0.99(1)
KIC 11462151 SURF 2.00(2) 1.93(4) 1.03(2)
KIC 11520274 SURF 1.03(2) 1.025(3) 1.00(2)
KIC 11922283 SURF 1.088(8) 1.07(1) 1.02(1)
KIC 12202137 SURF 1.96(1) 1.96(1) 0.998(8)

dipole and quadrupole g modes, 83 stars showing dipole g modes
and k = −2, m = −1 r modes, 27 stars showing dipole, quadrupole
g modes, and r modes. We also find 16 stars whose dipole g modes
cannot be resolved, and one star which does not show any dipole
g-mode power.

For each pattern, a series of pulsation periods were identified.
The mean periods, the mean period spacings, and the slope were
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Figure 26. The near-core and surface rotations of KIC 5608334. The red
dots show the frequencies. The red dashed line shows the surface rotation
period, which is consistent with the near-core rotation rate derived by the
g-mode pattern. The hump at 0.5 d is the unsolved r modes.

Figure 27. Same as Fig. 26 but for KIC 10470294. The red vertical dashed
line shows the surface rotation period while the blue dotted line gives the
near-core rotation rate. We identify that in this star the hump at 0.52 d is the
surface rotation signal, not r modes.

Figure 28. The distributions of the core-to-surface rotation ratio.

calculated for each pattern. We find γ Dor stars have a relation
on the slope–mean period diagram (S–P diagram, Fig. 8), where
the data points cluster into different areas based on their quantum
numbers. The S–P diagram gives the typical pulsation period and
slopes of γ Dor stars. For l = 1, m = 1 g modes, the periods are
between 0.3 and 1.2 d with a slope around −0.03, while for l =
2, m = 2 g modes, the period is half that of the l = 1, m = 1 g modes
but the slope is similar. Both l = 2, m = 2 and l = 1, m = 1 g modes
show a positive correlation between the slope and the mean period,
which is an effect of rotation confirmed by the TAR simulations.

We obtain the near-core rotation rates, the asymptotic spacings,
and the radial orders using the TAR. We find that the distribution of
the near-core rotation rate shows a slow-rotator excess, similar to
the previous observations of the projected velocity vsin i. There are
more slow rotators than the angular momentum transfer models

by Ouazzani et al. (2018) predicted, implying some additional
mechanisms of angular momentum transfer are present inside these
stars, or the effect of overshooting is significant. We obtained 11
fast rotators that show splittings, whose modes are l = 1, m = 1
and l = 1, m = 0 g modes. Due to the rapid rotation, the splitting
varies as a function of radial order. We find that the best-fitting TAR
result can explain the period-spacing patterns but it can only partly
explain the splittings. Surface modulations are found in 58 stars,
with rotation rates close to the near-core rotation rates. Most γ Dor
stars rotate rigidly, with the near-core region rotating slightly faster,
but not by more than 5 per cent.

Our observational sample is large enough to identify some
outstanding problems in theoretical models of γ Dor stars:

(i) Most stars in the γ Dor instability strip do not show period-
spacing patterns, or their patterns are incomplete. Mode selection
mechanisms for γ Dor pulsations are needed.

(ii) Concerning γ Dor pulsation excitation, we confirm that a
number of γ Dor stars have hotter temperatures and also excite
more radial orders than theoretically predicted.

(iii) We observe that the near-core regions of γ Dor stars rotate
more slowly than expected, in disagreement with the theory.
Two directions might be considered: fast rotation hinders g-mode
pulsations, or our model for angular momentum transport is missing
some key mechanisms.
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SUPPORTI NG INFORMATI ON

Supplementary data are available at MNRAS online.

We present four appendices: period-spacing patterns and TAR
fittings, parameters of the γ Dor stars, 11 rapidly rotating stars
with rotational splittings, and 58 stars with surface rotation signals.
The appendices are online only, here we only give the descriptions.

Appendix A. Period-Spacing Patterns And Tar Fits.
Appendix B. Parameters Of The γ Dor Stars.
Appendix C. Rapidly Rotating Stars With Rotational Splittings.
Appendix D. Surface Modulations Of 58 Stars.

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

APPENDI X A : PERI OD-SPAC I NG PATTERNS
AND TAR FI TS

We present the periodograms and period-spacing patterns of 611
γ Dor stars. For each star, we show the periodogram with identified
modes, the period-spacing pattern(s) and the linear fitting(s), and
sideways Échelle diagram(s). We also show the TAR fitting and
the posterior distributions of the near-core rotation rate and the
asymptotic spacing.

A P P E N D I X B: PA R A M E T E R S O F T H E γ D O R
STARS

We list the observed and TAR fitting parameters of 611 γ Dor
stars in this paper. The parameters are: the Kepler magnitudes, the
effective temperatures, the luminosities, the mode identifications
(k ≡ l − |m|, l is the angular degree, and m is the azimuthal order),
mean pulsation periods 〈P〉, mean period spacings 〈�P〉, slopes 〈�〉,
asymptotic spacings 	0, near-core rotation rates frot, the ranges of
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radial orders n, and ranges of spin parameters s. We also mark the
stars which have short-cadence data or have p-mode oscillations.
The full version of this table can be found online.

APPENDIX C : RAPIDLY ROTATING STARS
WITH ROTATIONA L SPLITTINGS

We find 11 stars that rotate rapidly but still show rotational splittings.
These stars are interesting because rotational splittings are rare
among rapid rotators. The inclinations of these stars should be
very small so the tesseral modes are seen, based on the amplitude
distribution theory.

A P P E N D I X D : SU R FAC E MO D U L AT I O N S O F 5 8
STARS

58 stars show surface modulation signals. Most of them are caused
by the surface activities while a few are classified as eclipsing
binaries. Their orbital periods are short hence we assume their
surfaces have been tidally locked.
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