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Abstract

The robustness of an ecological network quantifies the resilience of the ecosystem it

represents to species loss. It corresponds to the proportion of species that are disconnected

from the rest of the network when extinctions occur sequentially. Classically, the robust-

ness is calculated for a given network, from the simulation of a large number of extinction

sequences. The link between network structure and robustness remains an open question.

Setting a joint probabilistic model on the network and the extinction sequences allows

analysis of this relation. Bipartite stochastic block models have proven their ability to

model bipartite networks e.g. plant-pollinator networks: species are divided into blocks

and interaction probabilities are determined by the blocks of membership. Analytical

expressions of the expectation and variance of robustness are obtained under this model,

for different distributions of primary extinction sequences. The impact of the network

structure on the robustness is analyzed through a set of properties and numerical illustra-

tions. The analysis of a collection of bipartite ecological networks allows us to compare

the empirical approach to our probabilistic approach, and illustrates the relevance of the

latter when it comes to computing the robustness of a partially observed or incompletely

sampled network.
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Network
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1 Introduction

In response to the rapid evolution of ecosystems due to climate change (habitat losses and

species extinctions) on the one hand, and the increasing number of available data sets of eco-

logical interaction networks on the other hand, the study of the robustness of ecological networks

to species loss has become an active area of research in the ecological scientific community (see

Landi et al., 2018, for a review). Given a primary extinction sequence, the influence of these

extinctions on the other species is studied by monitoring the proportion of species that get

disconnected from the rest of the network (Dunne et al., 2002).

Bipartite networks are used to represent interactions between two separated sets of species

that do not interact within their own set. These interactions may be either mutualistic when

the species of both groups benefit from the interactions (such as pollination for plant-pollinator

networks or seed-dispersal for plant-frugivore bird networks) or antagonistic when one group of

species benefits from the interactions at the expense of the other group of species (e.g. plant-

herbivore or host-parasite networks). Robustness is a numeric indicator quantifying the impact

of the disappearance of one set of (primary) species on the other (secondary species) under

given extinction sequences (see Memmott et al., 2004; Curtsdotter et al., 2011, for examples

of primary extinction sequences). In a few words, the object of interest is the proportion of

secondary species that remain connected to other species after a given number of primary

species have disappeared. Since this proportion depends on the order in which the species

disappear, robustness is defined as the average of these proportions over a large number of

primary extinction sequences. 1

The definition of ecological robustness used in this paper is not the only one, in particu-

lar the robustness of ecological networks is also studied through dynamic approaches. Among

recent developments in the dynamic approach, Song et al. (2018) are interested in the feasi-

bility domain of ecological communities, i.e. the set of environmental conditions under which

all species have positive abundances. Barabás et al. (2014) estimate extinction risk to small

environmental variation through the use of sensitivity analysis while others study the capacity

of coexistence of species through the so-called invasion criterion (see Grainger et al., 2019, for

a review).

Obviously, the robustness defined above is strongly related to the size of the network consid-

1Note that the robustness of ecological networks bears a different meaning than the robustness traditionally
used in the information or epidemic networks literature. In these fields, the goal is to see how a network
stays connected when some nodes are disabled (or on the opposite how epidemics are still able to spread when
nodes become immune), the task is tackled by analyzing the size of the different connected components and in
particular the existence of a giant connected component (see Newman, 2018, chapter 15 and reference therein).
In ecology, the key issue is to observe how species get isolated from the rest of the ecosystem. This approach is
related to the concept of isolated nodes in a graph (Erdős and Rényi, 1960).
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ered (i.e. the number of species involved or species richness) and to its density (i.e. the number

of interactions observed compared to the total number of possible interactions or connectance).

To go further, the question arises to what extent the topological properties of a network also

influence its robustness. Indeed, observed ecological networks present different topological

structures depending on the type of interactions: for example, mutualistic networks are known

to have a strong nested structure, while this is not necessarily the case for antagonistic networks

(Fortuna et al., 2010; Bascompte et al., 2003). A key question is to identify the relationship

between the ability of a network to withstand species extinctions and its characteristics such

as its size and its mesoscale structure.

To that purpose, we propose to assume a parametric probabilistic model for the bipartite

network. This model will embed the topological properties of the network in a few number

of parameters. Then we propose to study the behavior of the robustness in this framework

and in particular the variations of the robustness with respect to the model parameters. More

precisely, we focus on the expectation and the variance of the robustness under a network

probabilistic model. For some particular probabilistic models and some particular extinction

sequences, the relation between the parameters and the expected robustness can be provided

in a closed-form, making a fine study of the relation possible.

Furthermore, relying on a probabilistic model which can be adjusted to account for an

observation process may enable for correction of the sampling effect on the robustness. Indeed,

even though ecological networks are often considered to describe all the possible interactions

between species, the sampling may be incomplete (Blüthgen et al., 2008) which may bias the

computed network statistics (Rivera-Hutinel et al., 2012; de Manincor et al., 2020) such as the

robustness.

The stochastic block model (SBM Nowicki and Snijders, 2001) and its extensions for bipar-

tite networks, such as the biSBM (Govaert and Nadif, 2003, also referred to as Latent Block

Model) or its degree corrected counterpart (DCbiSBM Larremore et al., 2014) have gained a

lot of attention in the statistical and network science research fields during the last decade.

While the Erdős-Rényi model (Erdős and Rényi, 1960) assumes that any pair of species has

the same probability of interaction, SBMs introduce heterogeneity in the connection behavior.

Specifically, in bipartite SBMs, the two sets of nodes are divided into clusters/blocks/groups

and the probability that two nodes are connected depends on which blocks the nodes belong

to. Depending on the number of blocks, their size, and interaction probabilities (inter- and

intra-block), SBMs encompass a wide variety of topologies (such as assortative community or

core-periphery) and encode them in a small number of parameters.

Since Allesina and Pascual (2009) has advocated for the use of groups in ecological net-

works, SBMs (sometimes referred to as group models) have gained in popularity. Some vari-

3



ants adapted to multilayer ecological networks have been proposedfor: multiplex networks (Kéfi

et al., 2016), multipartite networks (Bar-Hen et al., 2020) or temporal networks (Matias and

Miele, 2017). Besides, they have been used to answer specific ecological questions. To name a

few, Michalska-Smith et al. (2018) explore the structural role of parasite species in food webs,

while Miele et al. (2020) use biSBM to assess the core-periphery structure of plant-pollinator

networks. Furthermore, SBMs provide an ecological interpretation in terms of functional groups

in the ecosystem: species in the same block interact in a similar way, which means that the

exchangeability of species in a block model is related to the concept of ecological equivalence

(Sander et al., 2015).

To our knowledge, the behavior of the robustness has never been studied in the SBM frame-

work. Some grouping algorithms are used to derive extinction sequences. Cai and Liu (2016)

optimize an objective function to determine communities in the network and then generates

primary extinction based on these communities. More generally, some models are used to gen-

erate primary extinction sequences, or to model how species of the other functional group react

to those extinctions (such as rewiring or cascading, see Bane et al., 2018; Vizentin-Bugoni et al.,

2020, for examples). In an approach more similar to ours, Burgos et al. (2007) studied the rela-

tionship between nestedness and robustness of mutualistic networks by using the self-organizing

network model (Medan et al., 2007) to generate nested networks and derived analytical expres-

sion of the robustness under this model.

The robustness given as a decreasing function and a robustness statistic classically used in

ecology are described in Section 2. Section 3 is dedicated to the introduction of the biSBM,

the DCbiSBM and related models for sequential species extinctions. Section 4 supplies the

expression of the expectation and the variance of the robustness under a biSBM for different

distributions of primary extinction sequences. The analytical properties of the expected ro-

bustness are given in Section 5 together with more general studies to illustrate the impact of

the network structure on the robustness. In Section 6, we apply our approach on a dataset

composed of both mutualistic and antagonistic bipartite networks and compare our results to

the classical approach. Finally, on the same dataset, we show how our approach allows us to

calculate the expected robustness of partially observed ecological networks.

2 Robustness of bipartite ecological networks

Robustness aims at measuring the tolerance of a network to species extinctions by quanti-

fying the proportion of remaining species along a species extinction sequence. Formally, let

A ∈ {0, 1}nr×nc be the nr × nc incidence matrix of a bipartite network representing ecological

interactions between two groups of species of respective sizes nr and nc (such as plant-pollinators
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or hosts-parasites). Then:

Aij =

1 if row species i interacts with column species j,

0 otherwise.

Let s be an extinction sequence on the row species: s ∈ Snr where Snr is the symmetric

group. The extinctions in row (whose order is given by s) are the primary extinctions. These

row extinctions lead to secondary extinctions among the column species if these column species

remain isolated after the disappearance of row species. More precisely, a column species j is

said to be be extinct after m row primary extinctions if these m primary extinctions caused

species j to lose all its connections, or equivalently if after these m primary row extinctions, j

has no connections left with the remaining rows, which is equivalent to
∑nr

i=m+1 As(i)j = 0.

For a given sequence s and a given number of primary extinctions m, R(A, s,m) is the

proportion of remaining column species:

R(A, s,m) = 1− 1

nc

nc∑
j=1

1{∑nr
i=m+1 As(i)j=0}. (1)

Note that for all m ∈ {0, . . . , nr}, 0 ≤ R(A, s,m) ≤ 1 with R(A, s, nr) = 0. The robustness

function is defined as the expectation of R(A, S,m) against the primary extinction sequences:

m 7→ RS(A,m) = ES [R(A, S,m)] with S ∼ S . (2)

where S is a probability distribution on Snr . Equation (2) is a weighted summation over the

nr! possible permutations of Snr , which may render the computation intractable. In practice,

it is generally approximated by a Monte Carlo integration:

R̂S (A,m) =
1

B

B∑
b=1

R(A, S(b),m) where S(b) ∼i.i.d S, b = 1, . . . , B. (3)

The robustness statistic of a network A and a primary extinction sequences distribution S is

defined as:

RS(A) =
1

nr

nr∑
m=0

RS(A,m), (4)

which corresponds to the area under the curve (AUC) of the robustness function where the

x-axis has been re-normalized to match with the proportion of removed row species. R̂S(A) is

the Monte Carlo version of RS(A).
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Other statistics exist in the literature, such as the median of the robustness function (Dunne

et al., 2002), i.e. the proportion of primary extinctions needed to provoke a secondary extinction

on half of the species. However, the statistic (4) is widely used in ecology and is mathematically

convenient for our purpose.

About the extinction sequence distribution S Several choices for S corresponding to

various ecological scenarios are commonly considered in the literature. The first choice is the

uniform distribution over Snr (S = U
Snr

), assuming that the species disappear without specific

order. For the sake of simplicity, we use U instead of USnr
.

Distributions S depending on A are suggested in the literature (see Curtsdotter et al., 2011,

for examples). Among these approaches, we will focus on sequences depending on the row degree

sequences. For any row species i = 1, . . . , nr, let Di =
∑nc

j=1 Aij be its degree, i.e. the number

of edges involving i. On the one hand, the worst-case scenario in terms of ecological extinctions

assumes that the row species with the highest degrees (most connected row species) disappear

first. In this case, the species in rows are ordered in decreasing degrees and the primary

extinction sequences follow this order; row species of equal degrees disappear in a uniformly

distributed order. On the other hand, the generation of primary extinction sequences that

first eliminate species of lower degree mimics a more favorable ecological scenario. In these

two cases, the support of S is of cardinal
∏

k #{i : Di = k}!. Depending on the sequence

(Di)i=1,...,nr , the corresponding RS(A,m) may become tractable or not. If not, a Monte Carlo

approximation is used.

Instead of considering a strict monotone ordering of the row degrees, one might relax the

constraint and set the probability for a row species to disappear proportional to a function of

its degree, as seen in Liu et al. (2019). This would correspond to sampling without replacement

a sequence s where the weights of each species i ∈ {1, . . . , nr} are, for instance given by:

wi ∝ Dα
i . (5)

α = 0 coincides to the uniform distribution U while, if α = 1, the primary extinction sequence

depends linearly on the degrees. The increasing order is obtained by reversing this sequence of

primary extinction.

Remark 1. The RS(A,m)’s computed for the first two S’s described above are the most widely

used. They are implemented in the R package bipartite (Dormann et al., 2008) available on

cran.

The robustness function (2) and corresponding statistic (4) are then computed from a unique
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observed network A and a probability distribution S conditional to A (through the row degrees):

RS(A,m) = ES|A [R(A, S,m)] with S|A ∼ S . (6)

This robustness computed for a given A will be referred to as the empirical robustness.

In order to understand the variability of the robustness with respect to the network structure

we set a probabilistic model on the network A ∼ Aθ where the parameters θ embeds the network

structure in a small number of parameters and then study the random variable RS(A,m) for

various distributions on (S,A). The following section is dedicated to the description of flexible

probabilistic models on A and adapted joint distributions on A and S.

3 Bipartite Stochastic Block Model and related sequen-

tial extinctions

3.1 Probabilistic model on bipartite ecological networks

Bipartite stochastic block models The bipartite SBM, a.k.a. the Latent Block Model

(Govaert and Nadif, 2003), is a mixture model on the edges adapted to bipartite networks. It

relies on a clustering of nodes in rows and a clustering of nodes in columns. The nodes which

belong to the same cluster (or equivalently block) are assumed to share the same connectivity

profile in the network and the probability of interaction between two nodes depends on the

blocks they belong to. More precisely, each of the nr row species is attributed to a block

k ∈ {1, . . . , Qr} independently from the other species. Let Zi be such that Zi = k if row species

i belongs to block k. The Zi’s are assumed to be independent and identically distributed (i.i.d.)

and:

P(Zi = k) = πk i ∈ {1, . . . , nr}, (7)

with
∑Qr

k=1 πk = 1. For j = 1, . . . , nc, let Wj be such that Wj = q if column species j belongs

to block q ∈ {1, . . . , Qc}. The Wj’s are assumed to be i.i.d. and:

P(Wj = q) = ρq j ∈ {1, . . . , nc}, (8)

with
∑Qc

q=1 ρq = 1. Then, conditionally to their respective latent blocks, the interactions be-

tween two species are distributed independently as:

Aij|{Zi = k,Wj = q} ∼ B(δkq), (9)
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where B is the Bernoulli distribution and δkq ∈ (0, 1) for (k, q) ∈ {1, . . . , Qr} × {1, . . . , Qc}.
The parameter θ = {ρq, πk, δkq}k=1,...,Qr,q=1,...,Qc then encodes the topology of the network. Let

n = (nr, nc) be the numbers of species (richness) in rows and in columns of the network:

biSBM(θ,n) denotes the distribution on the networks defined by equations (7), (8) and (9)

for a given value of θ. Note that d =
∑

k,q πkδkqρq is the expected connection probability for

any pair of species (i, j). d will be referred to as the expected density. .

Remark 2. A special case among the biSBM distributions is the one where δkq = d for any

k, q, or equivalently –in terms of models on networks– where Qr = 1 and Qc = 1. In that case,

all connections occur independently with the same probability d. This biSBM is the bipartite

Erdős-Rényi network.

Degree corrected stochastic block models The degree corrected stochastic block model

(Karrer and Newman, 2011) is an extension of the SBM which accounts for the heterogeneity

in the degree distribution. This heterogeneity does not only depend on the blocks but also on

some parameters related to the nodes themselves. The extension to bipartite network is done in

Larremore et al. (2014). In these models, the distribution on the dyads is a Poisson distribution

even if the observed network consists of binary edges. This is a reasonable approximation in the

case where the network is large and sparse. However, in ecological interaction networks, this

assumption is hardly met. That is why we use a true binary definition of the degree corrected

biSBM that we denote by DCbiSBM in the following. On top of the blocks for the nodes in

rows and columns given by variables Zs and W s as defined in Equations (7) and (8), two vector

parameters γr ∈ Rnr and γc ∈ Rnc are associated to the nodes and control their degree. The

larger γr,i (resp. γc,j) the higher the probability of connection involving species i (resp. j),

compared to other species within the same block. Then, Equation (9) is replaced with

Aij|{Zi = k,Wj = q} ∼ B(1/(1 + exp(−(δkq + γr,i + γc,j))) , (10)

with γr,1 = γc,1 = 1 for identifiability issues.

We denote by DCbiSBM(θ,γ,n) where γ = (γr, γc), this probabilistic model with a given

set of parameters. If there is only one block, i.e. Qr = Qc = 1, this model only accounts for

the heterogeneity of degrees and so corresponds to a bipartite version of the expected degree

distribution (EDD) model (Chung and Lu, 2002).
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3.2 Extinction sequence distributions adapted to bipartite Block

Models

As described in Section 2, classically, the extinction sequences are either distributed uniformly

on Snr or conditionally to A. Positing a probabilistic distribution on A leads to a joint dis-

tribution on A and S. In the case of a uniform distribution on S: S ∼ U, the joint dis-

tribution on (A, S) consists of the product of the distributions for A and S. We will then

denote by Lθ,n,U and Lθ,γ,n,U the corresponding joint distributions when A ∼ biSBM(θ,n) or

A ∼ DCbiSBM(θ,γ,n) respectively.

As described in Section 2, the extinction sequences may depend on A through its degree

distributions. When A follows a probabilistic distribution, such an extinction sequence is

defined conditionally on the realization of A. We propose another dependence between A and

S through the row clustering variables Zs. More precisely, we consider that species of row

block 1 disappear first, then block 2, etc. Formally, let B be the uniform probability on the row

species following a given ordering of the blocks, then S|Z ∼ B if:

P(S = s|Z) =
1Zs(1)≤···≤Zs(nr)

#{s : Zs(1) ≤ · · · ≤ Zs(nr)}
. (11)

The support of B is restricted to
∏Qr

k=1 nk! elements, where nk is the cardinal of block k.

Equations (7), (8), (9) and (11) define a joint probability distribution on (A, S) such that A

and S are independent conditionally to Z. We denote Lθ,n,B this joint distribution on (A, S)

when A ∼ biSBM(θ,n). Under this joint distribution, if θ is such that δk+ =
∑Qc

q=1 ρqδkq

is a decreasing (resp. increasing) sequence, then B will generate sequences with an expected

decreasing (resp. increasing) sequence of degrees, i.e. with decreasing (resp. decreasing)

connectivity. In the following, these extinction sequences will be referred to as block-decreasing

(resp. block-increasing). The blocks may also be used to generate extinctions by ecological

traits that correspond to the blocks.

If A ∼ DCbiSBM(θ,γ,n), the extinction sequences are not related to expected degrees

anymore but it may still make sense to generate extinction sequences linked to ecological traits.

4 Moments of the robustness statistic

Studying the distribution of R(A, S,m) or R(A, S) = 1
nr

∑M
m=1R(A, S,m) under the joint dis-

tribution of A and S could be done by simulation, using the fact that the biSBM and DCbiSBM

are generative models. However, this comes at a computational cost. In this section, we prove

that, when (A, S) ∼ Lθ,n,U or (A, S) ∼ Lθ,n,B the first moments of the robustness are tractable
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in a closed-form. The proof relies on the exchangeability of the nodes under a biSBM and on

the fact that the considered extinction sequences are adapted to this exchangeability. When

A follows a DCbiSBM, the nodes are no longer exchangeable because of the parameters γ as-

sociated with each node. Although we are able to obtain a closed-form expression, it is not

tractable. Therefore, we will rely on a Monte Carlo approximation for summing on the extinc-

tion sequences.

We now exhibit explicit expressions ofRθ,n,S(m) = EA[RS(A,m)] when (A, S) ∼ Lθ,n,U or Lθ,n,B
and of VA[RU(A,m))] when A ∼ biSBM(θ,n).

4.1 Expectation

Proposition 1. Let (A, S) ∼ Lθ,n,U and set δ+q =
∑Qr

k=1 πkδkq. Then,

• ∀m = 1, . . . , nr:

Rθ,n,U(m) = 1−
Qc∑
q=1

ρq(1− δ+q)
nr−m, (12)

• Consequently, the robustness statistic is:

Rθ,n,U =
1

nr

nr∑
m=0

Rθ,n,U(m) = 1− 1

nr

Qc∑
q=1

ρq
(1− δ+q)− (1− δ+q)

nr+1

δ+q

. (13)

Proof. Since (A, S) ∼ Lθ,n,U,

RA,S(m) = EA[ES[R(A, S,m) ]] = EA[RU(A,m) ] =
1

nr!

∑
s∈Snr

(
1− 1

nc

nc∑
j=1

EA
[
1∑nr

i=m+1 As(i)j=0

])
.

Using the property of exchangeability of the biSBM, we have that, for any permutation s,

EA
[
1∑nr

i=m+1 As(i)j=0

]
= EA

[
1∑nr

i=m+1 Aij=0

]
. Moreover, introducing the latent variables Z and
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W we have:

EA
[
1∑nr

i=m+1 Aij=0

]
=

∑
km+1:nr∈{1,...,Qr}nr−m

Qc∑
q=1

P

[
nr∑

i=m+1

Aij = 0|Zm+1:nr = km+1:nr ,Wj = q

]
× P (Zm+1:nr = km+1:nr ,Wj = q)

=
∑

km+1:nr∈{1,...,Qr}nr−m

Qc∑
q=1

nr∏
i=m+1

(1− δkiq)

(
nr∏

i=m+1

πki

)
ρq

=

Qc∑
q=1

ρq
∑

km+1:nr∈{1,...,Qr}nr−m

nr∏
i=m+1

(1− δkiq)πki =

Qc∑
q=1

ρq

(
Qr∑
k=1

πk(1− δkq)

)nr−m

.

As a consequence,

Rθ,n,U(m) = 1−
Qc∑
q=1

ρq

(
Qr∑
k=1

πk(1− δkq)

)nr−m

= 1−
Qc∑
q=1

ρq(1− δ+q)
nr−m

where δ+q =
∑Qr

k=1 πkδkq. Then, averaging over m leads to:

Rθ,n,U =
1

nr

nr∑
m=0

Rθ,n,U(m) = 1− 1

nr

Qc∑
q=1

ρq
(1− δ+q)− (1− δ+q)

nr+1

δ+q

.

Note that, if the network has no specific structure (δkq = d or Qr = Qc = 1) then

Rθ,n,U(m) = 1− (1− d)nr−m..

Proposition 2. Let (A, S) ∼ Lθ,n,B, then

Rθ,n,B(m) = 1−
Qc∑
q=1

ρq
∑

n1+···+nQr=nr

nr!

n1! . . . nQr !

Qr∏
k=1

πnk
k (1− δkq)

min+(nk,
∑
l≤k

nl−m)

, (14)

where min+ is the positive part of the minimum function: min+(x, y) = max(0,min(x, y)).

The proof of Proposition 2 is provided in the supplementary material S-1. The robustness

statistic Rθ,n,B is the mean of the Rθ,n,B(m)’s: no simplified expression has been obtained. Note

that, if Qr = 1 or if δkq = d, then Rθ,n,B(m) = Rθ,n,U(m).

In Equation (14), the summation over the partitions of the nr row species into Qr blocks

may be burdensome if nr or Qr are large. In such cases, a Monte Carlo approximation may be

used. Among the ecological networks we consider in Section 6, only a few of them require this

approximation.
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4.2 Variance

We now aim at computing the variance of the robustness VA[RU(A,m)], whenA ∼ biSBM(θ,n),

thus quantifying the variability of the robustness for a sample of networks sharing the same

block models parameters (i.e. the same mesoscale patterns of connectivity).

Proposition 3. Let A ∼ biSBM(θ,n), ηq = 1− δ+q and ηqq′ =
∑Qr

k=1 πk(1− δkq)(1− δkq′).

1. Then:

VA[RU(A,m)] =
1

nc

min(2m,nr)∑
l=m

(
m
l−m

)(
nr−m
l−m

)(
nr

m

) Qr∑
q=1

ρqη
l
q − (

Qr∑
q=1

ρqη
m
q )2

+
(nc − 1)

nc

max(2m,nr)∑
l=m

(
m
l−m

)(
nr−m
l−m

)(
nr

m

) Qr∑
q,q′=1

ρqρq′(ηqηq′)
l−mη2m−l

qq′ .

2. The variance of the robustness statistic due to the network variability under a given biSBM

is:

VA[RU(A)] =
1

n2
rn

2
c

nc

nr∑
m,m′=0

min(m+m′,nr)∑
l=max(m,m′)

(
m

l−m′
)(
nr−m
l−m

)(
nr

m′

) Qr∑
q=1

ρqη
l
q − (

1

nr

nr∑
m=0

Qr∑
q=1

ρqη
m
q )2

+
1

n2
rn

2
c

nc(nc − 1)
nr∑

m,m′=0

min(m+m′,nr)∑
l=max(m,m′)

(
m

l−m′
)(
nr−m
l−m

)(
nr

m′

) Qr∑
q,q′=1

ρqρq′η
l−m′
q ηl−mq′ ηm+m′−l

qq′ .

The proof is provided in the supplementary material S-1. The expectations of the robustness

under the biSBM given in Proposition 1 and 2 only rely on the model parameters θ and the

number of rows nr, whereas the expression of the variance also involves the number of columns

nc. Note that for the block sequences S = B, the calculus is not so simple, but the value could

still be estimated by simulations if required.

VA(RU(A)) quantifies the variability of the robustness statistic among a population of net-

works distributed as biSBM. However, from an ecological point of view, it could also be inter-

esting to quantify the variability of the robustness of a network with respect not only to the

network but also to the extinction sequence. This is obtained by computing

VA,S

(
1

nr

nr∑
m=1

R(A, S,m)

)
= VA,S

(
R(A, S)

)
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Remark 3. This total variance can be reformulated as:

VA,S

(
R(A, S)

)
= ES(VA|S

(
R(A, S)

)
) + VS(EA|S(R(A, S) )) = ES(VA

(
R(A, S)

)
) (15)

= EA(VS

(
R(A, S)

)
) + VA(ES(R(A, S) )) (16)

because S and A are independent under Lθ,n,U and EA|S(R(A, S)) does not depend on S by

exchangeability. The total variance can be expressed explicitly for S = U as

VA,S
(
R(A,S)

)
=

nc
n2
rn

2
c

nr∑
m,m′=0

Qr∑
q=1

ρqη
nr−min(m,m′)
q −

(
1

nr

Qc∑
q=1

ρq
ηq − ηnr+1

q

δ+q

)2

+
nc(nc − 1)

n2
rn

2
c

nr∑
m,m′=1

Qr∑
q,q′=1

ρqρq′η
max(m,m′)−min(m,m′)
q η

nr−max(m,m′)
qq′ ,

through the computation of Equation (15). The second term in Equation (16) is provided in Propo-

sition 3. Thus we are able to compute the remaining terms to understand the various sources of

variability (due to S or A).

4.3 Illustration of the variability of the robustness function

In Figure 1, we illustrate the variations of the robustness function for a given structure encoded

in

θ =

(
δ =

(
.4 .15

.25 .05

)
, π = (0.25, 0.75), ρ = (0.2, 0.8)

)
.

This corresponds to a so-called core-periphery structure where the first blocks (in rows and

columns) are well connected (the core) and the second blocks are less connected (the periph-

ery). We represent the functions m 7→ Rθ,n,S(m) with S = U and S = B such that the blocks are

ordered by decreasing or increasing connectivity (solid black lines in Figure 1). For the uniform

distribution, we also plot the area given by m 7→ Rθ,n,U(m)± 2
√
VA(RU(A,m)) (grey ribbon).

The colored dotted lines are Monte Carlo estimates of the robustness functions R̂S (A,m) corre-

sponding to 10 simulated networks for the same extinction sequence distributions. The Monte

Carlo estimates are computed over 300 realizations of extinction sequences. The inflection

points and the dispersion of the dotted lines observed respectively around an extinction rate

of 0.25 for decreasing extinction and 0.75 for increasing extinction correspond respectively to

the proportion of the core or the periphery blocks. When the rate of extinction exceeds one of

these proportions, the extinctions which were only happening in one block then happen in the

other block. Also notice that when S = B ordered by increasing connectivity, some networks

still have a robustness of 1 even after a large fraction of primary extinctions has occurred. The

13



robustness for this primary extinction distribution is highly dependent on the degree of the

most connected primary species.

Figure 1: Robustness function computed from a set of biSBM parameters (plain black) and by
Monte Carlo for 10 networks generated from the same biSBM distribution (dotted) for block
decreasing, uniform and block increasing primary extinction sequences. The grey ribbon on the
uniform facet is twice the standard error given in Proposition 3.

5 Impact of the Network Structure on the Robustness

From the expressions derived in the previous section when A ∼ biSBM(θ,n), we are now able

to study the average behavior of the robustness with respect to the mesoscale structure of the

network encoded in θ.

5.1 Analytical Properties

5.1.1 First properties on Rθ,n,S(m)

We first derive the following straightforward but useful properties of the robustness function

and statistic:

Properties 1. 1. Under the joint distribution Lθ,n,S where S ∈ {U,B}, the following prop-

erties hold:

(a) the function m ∈ {0, . . . , nr} 7→ Rθ,n,S(m) is a strictly decreasing function provided

that δk+ > 0 for all k > 0,

(b) Rθ,n,S(0) ≤ 1− (1− d)nr ≤ 1 where d =
∑

k,q πkρqδkq,
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(c) For θ = (π, ρ, δ) and θ′ = (π′, ρ′, δ′) such that π = π′, ρ = ρ′ and ∀(k, q) ∈
{1, . . . , Qr} × {1, . . . , Qc} δkq ≤ δ′kq, we have

∀m ∈ 0, . . . , nr, Rθ,n,S(m) ≤ Rθ′,n,S(m) and Rθ,n,S ≤ Rθ,n,S .

2. Under the joint distribution Lθ,n,U, if nr ≤ n′r then Rθ,(nr,nc),U < Rθ,(n′r,nc),U.

Proof. Property 1.(a) comes from the robustness definition and from the fact that s(m + 1 :

nr) ⊂ s(m : nr) for any extinction sequence s. Property 1.(b) is a consequence of Proposition

4. Property 1.(c) is true for all m ∈ {0, . . . , nr} from Equations (12) and (14).

For Property 2., first notice that Rθ,(nr+1,nc),U(m+ 1) = Rθ,(nr,nc),U(m). Then,

Rθ,(nr+1,nc),U =
1

nr + 1

(
Rθ,(nr+1,nc),U(0) +

nr∑
m=0

Rθ,(nr+1,nc),U(m+ 1)
)

=
1

nr + 1

(
Rθ,(nr+1,nc),U(0) +

nr∑
m=0

Rθ,(nr,nc),U(m)
)

=
1

nr + 1

(
Rθ,(nr+1,nc),U(0) + nrRθ,(nr,nc),U

)
(Property 1.(a)) >

1

nr + 1

(
Rθ,(nr,nc),U(0) + nrRθ,(nr,nc),U

)
>

1

nr + 1

(
Rθ,(nr,nc),U + nrRθ,(nr,nc),U

)
= Rθ,(nr,nc),U

Properties 1.(a) and 1.(b) supply a bound depending on the expected density and the

number of row species nr. Property 1.(d) implies that for a given block structure, the robustness

increases when each element δkq increases while Property 2. states that the uniform robustness

automatically increases with the size nr of the network. However, it is important to note that

these properties do not assess that the robustness is an increasing function of the connectance

d.

5.1.2 Upper bound for the robustness under a uniform extinction sequence

We now aim at identifying mesoscale structures maximizing the average robustness under the

joint distribution Lθ,n,U. In order to remove the effect of the mean number of interactions a.k.a.

the density d =
∑

k,q πkδkqρq, we propose to compare structures encoded in θ leading to the same

density value. We also fix the number of row species nr. Thus, for a given density d, we define

the set Θd = {θ = (π, ρ, δ) :
∑

k,q πkδkqρq = d}. The following proposition provides an upper

bound for the expectation of the robustness function and of the robustness statistic as a function
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of the density. It also identifies a condition on θ to achieve this upper bound. Eventually,

it shows that the parametrization of an Erdős-Rényi distribution satisfies this condition and

reaches the lowest variance of the robustness statistic among the parametrizations satisfying

this condition.

Proposition 4. Upper bound of robustness under Lθ,n,U.

1. For all m ∈ {0 . . . , nr}: Rθ,(nr,nc),U(m) ≤ 1− (1− d)nr−m.

2. For all m ∈ {0 . . . , nr − 2}

arg max
θ∈Θd

Rθ,(nr,nc),U(m) =

{
θ :

Qr∑
k=1

πkδkq =

Qr∑
k=1

πkδkq′ , ∀(q, q′) ∈ {1, . . . , Qc}2

}
:= Θmax

d,nr
,

Moreover, ∀θ ∈ Θd and ∀nc:

Rθ,(nr,nc),U ≤ 1− 1

nr

(1− d)− (1− d)nr+1

d
. (17)

3. Assume that E is a network with nr rows and nc columns following an Erdős-Rényi

distribution with density parameter d. Then:

min
A∼biSBM(θ,n):θ∈Θmax

d,nr

VA(RU(A)) = VE(RU(E)) .

In other words, among all parameters θ ∈ Θmax
d,nr

, the one of the Erdős-Rényi network

minimizes the variance of robustness statistic RU(A) given in Proposition 3.

Proof. 1. Recall that Rθ,(nr,nc),U(m) = 1 −
∑Qc

q=1 ρq (1− δ+q)
nr−m where δ+q =

∑Qr

k=1 πkδkq

for any q ∈ {1, . . . , Qr}. So, Rθ,(nr,nc),U(nr) = 0 and for Rθ,(nr,nc),U(nr − 1) = 1− (1− d) :

the bound is true for m = nr and m = nr − 1. Now, if 0 ≤ m ≤ nr − 2, then x 7→ xnr−m

is a strictly convex function and the Jensen. inequality applies:

Rθ,(nr,nc),U(m) = 1−
Qc∑
q=1

ρq (1− δ+q)
nr−m ≤ 1−

(
Qr∑
q=1

ρq(1− δ+q)

)nr−m

(18)

= 1−

(
1−

Qr∑
q=1

ρqδ+q

)nr−m

= 1− (1− d)nr−m,

2. Equality at line (18) holds if and only if the term inside the strictly convex function is

constant, ie. for any q, q′, δ+q = δ+q′ .
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3. When we compute the variance given in Proposition 3(2) on any biSBM with θ ∈ Θmax
d,nr

,

we notice that ηq = ηq′ = 1−d and that only the term
∑

q,q′ ρqρq′η
l−m′
q ηl−mq′ ηm+m′−l

qq′ varies.

We can reformulate this quantity and use the Jensen inequality:∑
q,q′

ρqρq′η
l−m′
q ηl−mq′ ηm+m′−l

qq′ = (1− d)l−m
′
(1− d)l−m

∑
q,q′

ρqρq′η
m+m′−l
qq′

(Jensen) ≥ (1− d)2l−m′−m
(∑

q,q′

ρqρq′
∑
k

πk(1− δkq)(1− δkq′)
)m+m′−l

(Distributivity) = (1− d)2l−m′−m
(∑

k

πk(1−
∑
q

ρqδkq)(1−
∑
q′

ρq′δkq′)

)m+m′−l

(Jensen) ≥ (1− d)2l−m′−m
((∑

k

πk(1−
∑
q

ρqδkq)
)2
)m+m′−l

= (1− d)m
′+m (Initial term from ER)

Although the homogeneous distribution on the networks (Erdős-Rényi) leads to the max-

imum robustness in expectation for a given density, a particular realization of a network ac-

cording to another distribution may be likely to have a larger robustness than a realization

according to the Erdős-Rényi distribution. Indeed, the variance is larger when it corresponds

to a distribution that represents a more complex structure. This behavior is illustrated in

Figure 2.

5.2 Analysis for Typical Structures

We now illustrate numerically how the robustness statistic varies with respect to the network

topology 2. For that purpose, we fix nr = nc = 100, Qc = Qr = 2, and π = (.25, .75) and make

ρ vary. For j ∈ [1/8, 8], we consider the following connectivity matrices.

Modular: δ =

(
j 1

1 j

)
, each block of row species is strongly connected to a block of column

species and lowly connected to the other.

Core-periphery: δ =

(
j j

j 1

)
.

• For j > 1, the structure is nested, the core is strongly connected to the whole network

while the periphery is lowly connected with itself.

2All the simulations and estimations in this section are done using the R package robber (Chabert-Liddell,
2021)available on CRAN and documented at https://chabert-liddell.github.io/robber/.
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Figure 2: Density curve of the distribution of the expectation of the robustness statistic under
biSBMs of the same size and density with three different sets of parameters. Each network is
simulated from a given set of parameters, then the robustness is computed by the Monte-Carlo
approximation given in (4). 500 simulations each.

• For j < 1, the core is strongly connected with itself but the rest of the network is

lowly connected.

Each connectivity matrix is then normalized such that the density of the network is equal to

0.0156, by applying the following transformation: δ̃kq = 0.0156
δkq∑

k′,q′ πk′δk′q′ρq′
∀k, q ∈ {1, 2}.

This value is chosen so the robustness statistic associated with an Erdős-Rényi distribution

with density d = 0.0156 and nr = 100 rows is approximately equal to 0.5. We recall this value

is an upper bound of the expectation of the robustness statistic under the joint distribution

Lθ,n,U where θ is such that the network has the same density and same number of rows.

The extinction sequence distributions are S ∈ {U,B↑,B↓} where B↑ (resp. B↓) corresponds

to the block increasing (resp. decreasing) extinction sequences distribution defined in Equation

(11). For every S, topology (modular or core-periphery) and value of j and ρ, we compute the

expectations of the robustness statistics by using the expressions derived in Section 4. These

expectations are displayed in the heat maps of Figure 3.

For modular networks, the plots are symmetric with respect to the central dot which cor-

responds to the case of an Erdős-Rényi distribution. The impact of the modular structure is

slighter for S = U than for S ∈ {B↑,B↓}. For S = U, the strongest impact is observed when

the modular structure is strong and the most connected blocks are slightly larger than the

least connected ones (Fig. 3.♦). Keeping the same strong modular structure with the most

connected blocks slightly smaller than the least connected ones (Fig. 3.4) leads to a negative
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Figure 3: Robustness for different biSBM topologies. Primary extinction sequences are dis-
played in rows and topologies in columns. In abscissa, j is a topology strength parameter.
rho is the proportion of column species that belongs to the first column block. • represents
a topology with no structure (Erdős-Rényi (ER)). Color gradient varies from blue (less robust
than an ER), to white (as robust as an ER), to red (more robust than an ER). The symbols
corresponds to the following mesoscale structures: � - large core, strongly connected only to
itself, � - small core, strongly connected to the whole network, N - medium size core strongly
connected only to itself, � - highly modular with unbalanced blocks’ sizes, ♦ - highly modular
with slightly smaller highly connected blocks, 4 - highly modular with slightly larger highly
connected blocks.

impact on the robustness no matter S.

When the network is highly modular and the most connected block is small (j and ρ both

small or both large, Fig. 3.�) the robustness is strongly impacted. This impact is negative for

B↓ and positive with B↑.
For a core-periphery structure, there is a clear asymmetry between j < 1 and j > 1. The

robustness statistic tends to be smaller when the core is mainly connected to itself, especially

when the core is small (j < 1 and large ρ: Fig. 3.�) no matter S. On the other hand, core-

periphery structure with small core that are highly connected to the whole network have the

strongest impact on the robustness, negatively when S = B↓ and positively when S = B↑ (Fig.

3.N). The effect of this structure (N) is very slight on uniform extinction sequences whereas

the effect tends to get larger when the blocks’ sizes are more balanced (Fig. 3.�).
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6 Analysis of a collection of observed bipartite ecological

networks

In this section, we analyse the robustness of a collection of 136 plant-pollinator, seed-dispersal

or host-parasite networks, issued from the Web of Life dataset (www.web-of-life.es). The

selected networks involve at least 10 row species and 10 column species.

When observing an interaction network, one can compute its empirical robustness as de-

fined in Equation (3). However, understanding the behavior of the robustness statistic for any

network with the same probabilistic distribution (i.e. with the same mesoscale structure) may

also be attractive and informative. This can be done by positing a model on the network of

interest, estimating the corresponding parameters (summarizing its structure) and deriving the

moments of the robustness for these inferred parameters using Section 4 (either using a closed-

form expression or a Monte Carlo integration, depending on the model). This expected version

of the standard robustness may be considered as a new robustness indicator.

In what follows, we put in perspective the empirical robustness and its expected versions

for the biSBM and DCbiSBM models (Subsection 6.1) and comment the systematic differences

we observe. Then, we demonstrate the interest of the expected version when the network is

partially observed (Subsection 6.2). Indeed, when inferring the bipartite SBM, the observational

process that generates the observed network with possibly missing data could be taken into

account (Tabouy et al., 2020). This which allow us to compensate for observational biases in

the empirical robustness.

Inferring the biSBM and DCbiSBM The parameters of these two models can be inferred

by a variational version of the Expectation-Maximization (EM) algorithm. The number of

blocks is chosen according to an Integrated Classification Likelihood (ICL) criterion (Daudin

et al., 2008). This variational EM algorithm is theoretically grounded (Bickel et al., 2013) and

has proven its pratical efficiency (Daudin et al., 2008; Mariadassou et al., 2010). In practice

for the inference of these models, we use the blockmodels R package (Leger et al., 2020) and

to handle missing observations the GREMLINS R package (Bar-Hen et al., 2020), both available

on CRAN .

6.1 Computation of the Robustness for the Web of Life Dataset

For each network A, on the one hand, we compute the empirical robustness R̂U(A) using 300

Monte Carlo realisations. On the other hand, for each model (biSBM and DCbiSBM) we denote
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θ̂ (resp. θ̂, γ̂) the estimated parameters and compute the expectations of the robustness under

each model. For the biSBM, we also supply their variance and define the ratio

ZR(A) =| R̂U(A)−Rθ̂,n,U | /
√

Vθ̂,n(EU[R(A, S)|A ] )

which is the number of standard deviations separating the two computed robustness statistics.

This quantity helps assess the goodness of fit of the biSBM to the network A with respect to

the robustness statistic.

Figure 4: Expected robustness statistic (Rθ̂,n,U) under a biSBM (circles) and DCbiSBM (purple

triangles) as a function of the standard robustness (R̂U(A)) for uniform extinction sequences.
The grey to red gradient stands for (1− d̂)nr , the probability to have an empty column under
an Erdős-Rényi distribution. The size of the point is related to ZR(A).

biSBM versus DCbiSBM In Figure 4, we plot the points (R̂U(A), Rθ̂,n,U) for the two models

(circles are for biSBM and purple triangles for DCbiSBM). For the biSBM, the color of the point

depends on (1−d̂)nr which is the estimated probability to observe a column with no interaction.

The observed robustness indicators range from 0.5 to 1. The points roughly follow the identity

line for the biSBM (circles) whereas the expected version seems systematically smaller than the

empirical robustness for the DCbiSBM (purple triangles). We comment further on these points

hereafter.

• Under a biSBM, the smaller (1 − d̂)nr , the smaller | R̂U(A) − Rθ̂,n,U | and ZR(A) (the

number of standard deviations). When (1− d̂)nr is large (red dots), the expected version

of the robustness under a biSBM underestimates the standard robustness (red dots at

the bottom left of the plot). This phenomenon may be explained as follows. By con-

struction, ecological networks only involve species that have been seen at least one time

21



in interaction (species with no interaction were removed). As a consequence, since the

biSBM does not take into account this phenomenon, the space of networks we integrate

over when computing the robustness statistic under a biSBM is too large. This remark is

especially true for small networks and highlights the limitation of the biSBM model for

small ecological networks.

• On 127 networks (over the 136), the DCbiSBM selects 1 block, encoding solely, as the

EDD model, the degree distribution and the size of the networks in their parameters. On

these networks, the expectation of the robustness statistic under a DCbiSBM is smaller

than the empirical robustness most of the time (purple triangles). We can conclude that

the DCbiSBM seems to be unable to capture the additional structure beyond their degree

distribution that makes them more robust to uniform random extinction than expected.

This first study highlights the limitation of the DCbiSBM model to mimic ecological net-

works (hence, hereafter, we focus our analysis solely on the biSBM). On the contrary, for not

too small networks, the expected version of the robustness with biSBM supplies coherent ro-

bustness values with the empirical indicator R̂U(A). This new version of the robustness has

the advantage to arise in a closed-form and a quantification of its variance is available. This

comparison has been made for S = U, we now consider more elaborate extinction sequence

distributions.

About S. We compute the robustness statistics for decreasing and increasing primary

extinction sequences on the degrees with the two methods described in Section 2: the one

which strictly depends on the order of the degrees (R̂D↑ord
(A) and R̂D↓ord

(A)) and the one where

the nodes are weighted by a linear function of the degrees as in Equation (5) with α = 1

(R̂D↑lin
(A) and R̂D↓lin

(A)). We examine the fit with Rθ̂,n,S where S ∈ {B↓,B↑} mimics the degree

increasing and decreasing extinction sequences. The comparison are plotted in Figure 5.

When considering primary extinction sequences by decreasing connectivity, there is a pos-

itive bias of Rθ̂,n,B↓ on R̂D↓ord
(A) (top-left) which is attenuated when considering R̂D↓lin

(A)

(bottom-left). For primary extinction sequences by increasing connectivity, the empirical ro-

bustness is highly dependent on the degrees of the most connected species, hence the fit of

Rθ̂,n,B↑ on R̂D↑ord
(A) is very poor with a negative bias (top-right). While the negative bias still

remains, the fit on R̂D↑lin
(A) is correct for a much higher fraction of the networks (bottom-right).

As a conclusion, the degree decreasing sequences standardly used in the ecological field

can be easily reproduced with our block decreasing connectivity sequences, leading to quite

comparable values. Once again, our expected version of the robustness can be calculated in a
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Figure 5: Rθ̂,n,S as a function of the classical robustness R̂D(A) for various S. Block Decreasing

(resp. increasing) = B↓ (resp B↑), Ordered Decreasing (resp. Increasing) = D↓ord (resp. D↑ord).
Linear Decreasing (resp. Increasing) = D↓lin (resp. D↑lin). The grey to red gradient stands for

(1 − d̂)nr , the probability to have an empty column under an Erdős-Rényi distribution. The
size of the point is the deviation between the biSBM and the empirical robustness in terms of
the number of standard deviations of the robustness under a biSBM distribution for S = U.

closed-form while the empirical robustness relies on a computationally expensive Monte Carlo

integration. The degree decreasing extinction sequences are very sensible to the most highly

connected species leading to no agreement between the two versions of the robustness.

6.2 Correction for Partially Observed Networks

Although the ecological networks are often considered to describe all the possible interaction

between species, the sampling may be incomplete (Blüthgen et al., 2008) which may bias the

computed network statistics (Rivera-Hutinel et al., 2012) such as the robustness. By relying on

a probabilistic model such as the biSBM which can be adjusted to account for the observation

process, the sampling effect on the robustness can be corrected. We assume that we could have

obtained the true interaction network if the sampling effort has been large enough. Instead of

this true network, we have only a partially observed interaction network that corresponds to

a subset of the true network. We assume that one of the two following frameworks may have

generated missing data:

Partially observed species 25% of both the row species and the column species are re-

moved uniformly at random, resulting in the following networks subset: Aobs = {Aij :
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i and j are observed}. In this framework, we need to assume that some other data or

some expert knowledge gives us the true number of species and the density of the true

network. By relying on this expert knowledge, we are able to adjust the parameters of

the biSBM.

Partially observed interactions The observation process consists of the observation of in-

teraction on two different transects T1 and T2. Since not all the species are present on

both transects, the interactions between the species which were not observed on the same

transect are labelled as missing and encoded by NAs. This results in the following modified

incidence matrix:

Aobs =


j ∈ {T1 ∩ T2} j ∈ {T1 \ T2} j ∈ {T2 \ T1}

i ∈ {T1 ∩ T2} Aij Aij Aij

i ∈ {T1 \ T2} Aij Aij NA

i ∈ {T2 \ T1} Aij NA Aij

.

More precisely, we consider that on average 50% of the species were observed on both

transects while 25% were just observed on one of the two transects and select those species

uniformly at random, resulting in 12.5% of missing interactions on average. Note that

in this case, we do not need any expert or additional knowledge to have an unbiased

estimation of the biSBM parameters. It is sufficient that the missing values are taken

into account in the biSBM inference.

We performed a simulation study where we considered 98 networks from the web of life

dataset as the true interaction networks. We kept the 98 networks where (1 − d)nr < .1 and

the error in terms of standard deviation is smaller than 1. For each of these 98 networks, we

simulated the two observation processes described above 30 times, then we computed the stan-

dard robustness statistic and its expectation under a biSBM. For Figure 6, we computed the

root mean squared error (RMSE) for each network and for different cases (in terms of observa-

tion process and extinction sequence) between the robustness computations on the true network

(fully observed) and on the partially observed network. When the method for computing the

robustness is based on MC computations, we considered the uniform primary extinction se-

quences (named Monte Carlo in Fig. 6) and the increasing and decreasing extinction sequences

that depend strictly (named Ordered Monte Carlo in Fig. 6) or proportionally as in Equa-

tion (5) (named Linear Monte Carlo in Fig. 6) on the row degrees. More specifically, the

RMSE for the methods based on MC computations are computed for any extinction sequences
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S = {U,D↑ord,D
↑
lin,D

↓
ord,D

↓
lin} listed above, as:√√√√ 1

30

30∑
b=1

( ̂̄RS(A)− ̂̄RS(Ãb))2

for each of the 98 fully observed networks A and where the Ãb’s are realizations of a partial

observation of A. In order to get the robustness under a biSBM, the biSBM was first inferred

by taking into account missing data and the robustness statistics were then computed under

the inferred biSBM. We computed the corresponding RMSE for the distributions on extinction

sequences S ∈ {U,B↑,B↓} as: √√√√ 1

30

30∑
b=1

(Rθ̂,n,S −Rθ̃b,n,S)
2

where θ̂ is estimated from the fully observed network and the θ̃b’s are estimated from partial

observations of the network. Note that the numbers of species in row and in column are the

same for the fully and the partially observed networks even in the case of missing species since

we assumed that we had some additional knowledge which provided us with this information.

The errors in the prediction of the robustness statistics computed from partially observed

networks are much smaller when computing the robustness under a biSBM than when using

MC computations. Indeed, the missing data can be accounted for in the biSBM inference and

the underlying structure of the network can still be recovered from partial information whereas

the Monte Carlo simulations are more sensitive to perturbations in the network. The extinction

sequences which depend strictly on the degrees are the most impacted by a partial observation

of the network. This impact is rather strong although only 12.5% of the information is missing.

Note that adding some randomness in the primary extinction sequences by using a distribution

which depends linearly on the degrees instead of a strict order has a stabilizing effect.

In the framework with partially observed species we assumed that we had additional knowl-

edge giving us access to the true number of species and network density. In practice, this is not

always the case. When details about the sampling of networks are available, a few methods

exist in the literature to estimate the number of species (Jiménez-Valverde et al., 2006; Gotelli

and Colwell, 2011) and similar methods could be used to estimate the density. One could

then plug these estimates in the formula of robustness. If neither the sampling scheme nor the

expert knowledge is available, the true number of species remains unknown. Note that in most

available ecological interaction networks, the number of species is underestimated as species

which have not been seen in interaction with other species are not included in the network.

Finally, having access to the number of species, but not to the true number of interactions,
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Figure 6: Error (RMSE) in the prediction of the robustness of 98 fully observed networks
computed from partially observed networks. On the left, 12.5% of possible interactions are
recoded as NA. and on the right, 25% of species are missing.

leads to an underestimated robustness.

7 Discussion

We proposed an expected version of the empirical robustness for bipartite ecological interaction

networks by considering a joint model on the network and on the primary extinction sequences.

In particular, we obtained a closed and tractable form of the robustness when considering a

biSBM as the network model for uniform and by blocks primary extinction sequences. We

validated our method by showing that the obtained values were consistent with the empirical

robustness classically used in the ecological network community. Having analytical forms allows

us to better understand the impact on the robustness of the topology of the network in terms

of number of species, density, and mesoscale connectivity patterns. Furthermore, we used the

difference between the empirical and expected versions to show that the biSBM is better suited

than the DCbiSBM for bipartite ecological networks. This could come from the fact that the

DCbiSBM tends to favor community structure above core-periphery structure (Newman, 2018,

14.7.3). The core-periphery structure is indeed very common in bipartite ecological networks

which has a strong impact on the robustness.

On real networks, this method can serve as an alternative to the traditional empirical

approach, especially when networks are partially observed (because of the inference stability of

the biSBM) or when the sampling effort is incomplete (because the model parameters can be

easily corrected). This step could be improved with more precise information by considering

specific sampling schemes in the model (Tabouy et al., 2020) or by obtaining more details on
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the sampling in order to better estimate the parameters block by block. Moreover, from the

observation of a network, the impact of some hypotheses on the structure might be tested by

tuning some parameters of the models and computing the corresponding expected robustness.

It may also help study the impact of the structure beyond the effect of the number of species or

density when comparing the robustness of several networks: indeed, once the biSBM parameters

are estimated, the robustness statistics can be computed by setting the same numbers of species

and the same density for all the networks.

Although we developed our method for bipartite networks, this approach can be extended to

other types of networks in particular multipartite networks (Pocock et al., 2012) and food webs.

Multilayer networks (multiplex or multipartite networks) are gaining a lot of attention with

scholars studying ecological networks (Hutchinson et al., 2019). Extending this framework to

multipartite networks by including cascading effect between layers is an interesting perspective

once data will be more readily available. The study of robustness for food webs is quite active

but requires some ecological insight to properly model the food web as some species are basal

species and thus do not prey on other species (in-degree is 0). So food webs which are usually

blockmodeled by a directed stochastic block model, might be better handled in our case using

a multipartite block model with basal species as a functional group of its own. In this case, it

might be important to incorporate rewiring or cascading mechanisms to the modeling of the

extinctions. A direction to look at in order to deal with the extinction of basal species and the

incorporation of cascading mechanisms is the approach of Bayesian networks to model species

extinction in food webs (Eklöf et al., 2013; Häussler et al., 2020).

Lastly, we believe that other ecological indicators could be estimated through a parametric

model based approach. Especially, the EDD model and the DCbiSBM seem particularly well

suited to study nestedness (see Mariani et al., 2019, for a review) which is a widely used statistic

for ecological networks.
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Kéfi, S., V. Miele, E. A. Wieters, S. A. Navarrete, and E. L. Berlow (2016). How structured

is the entangled bank? the surprisingly simple organization of multiplex ecological networks

leads to increased persistence and resilience. PLoS Biology 14 (8), 1–21.
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S-1 Proof for Section 4 (Moments of the robustness statis-

tic)

Proposition 2. Let (A, S) ∼ Lθ,n,B, then

Rθ,n,B(m) = 1−
Qc∑
q=1

ρq
∑

n1+···+nQr=nr

nr!

n1! . . . nQr !

Qr∏
k=1

πnk
k (1− δkq)

min+(nk,
∑
l≤k

nl−m)

, (S-19)

where min+ is the positive part of the minimum function: min+(x, y) = max(0,min(x, y)).
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Proof. Let us assume without loss of generality that the primary extinction sequences go from

block 1 to block Qr. Under this assumption, P(S = s|Z) =
1Zs(1)≤···≤Zs(nr)

#{s:Zs(1)≤···≤Zs(nr)}
. Thus, an

extinction sequence which does not maintain the block ordering has a null probability. Then,

conditioning first by the blocks memberships then the primary extinction sequences:

E(A,S)[R(A,S,m)] =

Qc∑
q1:nc

ρ1:nc

Qr∑
k1:nr

π1:nrE(A,S)[R(A,S,m)|Z1:nr = k1:nr ,W1:nc = q1:nc ] (S-20)

= 1− 1

nc

nc∑
j=1

Qc∑
q

ρq

Qr∑
k1:nr

π1:nrE(A,S)

[
nr∏

i=m+1

(1−AS(i)j)|Z1:nr = k1:nr ,Wj = q

]

= 1− 1

nc

nc∑
j=1

Qc∑
q

ρq

Qr∑
k1:nr

π1:nr

∑
s∈Snr

P(S = s | Z1:nr = k1:nr)

(
nr∏

i=m+1

(1− δks(i)q)

)
.

We have for all sequences s, s′ in the support of S | Z, that for all i, Zs(i) = Zs′(i). Hence,

using the exchangeability properties of the biSBM for species belonging to the same block:∏nr

i=m+1

(
1− δks(i)q

)
=
∏nr

i=m+1

(
1− δks′(i)q

)
. Furthermore,

nr∏
i=m+1

(
1− δks(i)q

)
=

nr∏
i=m+1

Qr∏
k=1

(1− δkq)
1{ks(i)=k} =

Qr∏
k=1

(1− δkq)
∑nr

i=m+1 1{ks(i)=k} ,

with for all s such that ks(1) ≤ · · · ≤ ks(nr):

nr∑
i=m+1

1{ks(i)=k} =



0 if
∑
l≤k
nl ≤ m,∑

l≤k
nl −m if

∑
l≤k
nl − nk < m <

∑
l≤k
nl,

nk if m ≤
∑
l≤k
nl − nk.

This leads to:

∑
s∈Snr

P(S = s |Z1:nr = k1:nr)

nr∏
i=m+1

(1− δks(i)q) =
∑
s∈Snr

P(S = s | Z1:nr = k1:nr)

Qr∏
k=1

(1− δkq)min+(nk,
∑

l≤k nl−m)

=

Qr∏
k=1

(1− δkq)min+(nk,
∑

l≤k nl−m) . (S-21)

Inputting Equation (S-21) in Equation (S-20), we obtain the result:

E(A,S)[R(A, S,m)] = 1−
Qc∑
q=1

ρq
∑

n1+···+nQr=nr

nr!

n1! . . . nQr !
×

Qr∏
k=1

πnk
k (1− δkq)min+(nk,

∑
l≤k nl−m) .
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Proposition 3. Let A ∼ biSBM(θ,n), ηq = 1− δ+q and ηqq′ =
∑Qr

k=1 πk(1− δkq)(1− δkq′).

1. Then:

VA[RU(A,m)] =
1

nc

min(2m,nr)∑
l=m

(
m
l−m

)(
nr−m
l−m

)(
nr

m

) Qr∑
q=1

ρqη
l
q − (

Qr∑
q=1

ρqη
m
q )2

+
(nc − 1)

nc

max(2m,nr)∑
l=m

(
m
l−m

)(
nr−m
l−m

)(
nr

m

) Qr∑
q,q′=1

ρqρq′(ηqηq′)
l−mη2m−l

qq′ .

2. The variance of the robustness statistic due to the network variability under a given biSBM

is:

VA[RU(A)] =
1

n2
rn

2
c

nc

nr∑
m,m′=0

min(m+m′,nr)∑
l=max(m,m′)

(
m

l−m′
)(
nr−m
l−m

)(
nr

m′

) Qr∑
q=1

ρqη
l
q − (

1

nr

nr∑
m=0

Qr∑
q=1

ρqη
m
q )2

+
1

n2
rn

2
c

nc(nc − 1)
nr∑

m,m′=0

min(m+m′,nr)∑
l=max(m,m′)

(
m

l−m′
)(
nr−m
l−m

)(
nr

m′

) Qr∑
q,q′=1

ρqρq′η
l−m′
q ηl−mq′ ηm+m′−l

qq′ .

Proof. The calculus of the following proof relies on the following lemma:

Combinatorial lemma 1. Let m,m′ the first terms of two permutations of Sn, the the pro-

portion of couple of permutation (s, s′) that have exactly l unique terms is:

#{(s, s′) : s(1 : m) ∪ s′(1 : m′) = l}
#(Sn,Sn)

=


( m
m+m′−l)(

n−m
l−m)

( n
m′)

if max{m,m′} ≤ l ≤ min{m+m′, n}

0 otherwise
,

where s(1 : m) = {s(1), . . . , s(m)}.

Proof. There are n! permutations of size n. For the first permutation of size n, we look at the

first m . In order to create the second permutation we must among the first m′ terms take:

• l −m terms that are not common with the first permutation (among n−m)

• m+m′ − l terms that are common with the first permutation (among m).

Those m′ terms can be reordered into m′! possible arrangements and the n − m′ resting

terms into n−m′! permutations, giving:

# {(s, s′) : s(1 : m) ∪ s′(1 : m′) = l} = n!

(
m

m+m′ − l

)(
n−m
l −m

)
m′!(n−m′)!
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We then divide by the (n!)2 couple of permutations possible.

#{(s, s′) : s(1 : m) ∪ s′(1 : m′) = l}
#(Sn,Sn)

=

(
m

m+m′−l

)(
n−m
l−m

)(
n
m′

)
The bound on l is straightforward.

We first prove the result for the robustness statistic. The variance of the robustness function

is a straightforward derivation from it.

VA(ES [R(A,S))|A ] ) = EA[E2
S [ 1−R(A,S)|A ] ]︸ ︷︷ ︸

B

−E2
A[ES [ 1−R(A,S)|A ] ]︸ ︷︷ ︸

C

(S-22)

Using Equation (12) and Equation (4), we have: C =
(

1
nr

∑nr

m=0

∑Qc

q=1 ρqη
nr−m
q

)2

. We divide

B into 2 terms, based on the column index:

B = EA

[
( 1− 1

nr

nr−1∑
m=0

ES [R(A,S,m)|A] )2

]

=
1

n2
r

nr−1∑
m,m′=0

EA
[

1− ES [R(A,S,m)|A] · ES [ 1−R(A,S,m′)|A]
]

=
1

n2
r

nr−1∑
m,m′=0

EA

 1

nr!

∑
s∈Snr

1

nc

nc∑
j=1

1
{

nr∑
i=m+1

As(i)j=0}


·

 1

nr!

∑
s′∈Snr

1

nc

nc∑
j′=1

1
{

nr∑
i=m′+1

As′(i)j′=0}


=

1

n2
r

nr−1∑
m,m′=0

1

n2
c

nc∑
j 6=j′=1

1

nr!nr!

∑
s,s′∈Snr

EA

1
{

nr∑
i=m+1

As(i)j=0}
1
{

nr∑
i=m′+1

As′(i)j′=0}


︸ ︷︷ ︸

B1

+
1

n2
r

nr−1∑
m,m′=0

1

n2
c

nc∑
j=1

1

nr!nr!

∑
s,s′∈Snr

EA

1
{

nr∑
i=m+1

As(i)j=0}
1
{

nr∑
i=m′+1

As′(i)j=0}


︸ ︷︷ ︸

B2

. (S-23)

To compute B1, we separate the set of the union of the extinction sequences into 3 disjoint
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sets in order to distribute the mixture parameter π:

B1 =
1

nr!nr!

∑
s,s′∈Snr

Eπ,ρ

Eδ
[
1
{

nr∑
i=m+1

As(i)j=0}
1
{

nr∑
i=m′+1

As′(i)j′=0}
|Z,W

]
=

1

nr!nr!

∑
s,s′∈Snr

Eπ,ρ

[
nr∏

i=m+1

(1− δZs(i)Wj )

nr∏
i=m′+1

(1− δZs′(i)Wj′ )

]

=
1

nr!nr!

∑
s,s′∈Snr

∑
q,q′

ρqρq′
∑
k1:nr

πk1:nr

nr∏
i=m+1

(1− δks(i)q)
nr∏
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∏
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(Lem.1) =
∑
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(
m
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)(
n
m′

) ∑
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ρqρq′η
l−(nr−m′)
q η

l−(n−m)
q′ η2n−m−m′−l

qq′

For B2, the column indices are the same, hence some entries of A are taken twice:

B2 =
1

nr!nr!

∑
s,s′∈Snr

∑
q

ρq
∑
k1:n

πk1:nEδ
[
1{

∑
i∈s(m+1:nr)

Aij=0}

·1{ ∑
i′∈s′(m′+1:nr)

Ai′j=0}|Z1:nr = k1:nr ,Wj = q

]
=

1

nr!nr!

∑
s,s′∈Snr

∑
q

ρq
∑
k1:n

πk1:n

·Eδ
[
1{

∑
i∈s(1:nr−m)∪s′(1:nr−m′)

Aij=0}|Z1:nr = k1:nr ,Wj = q

]
=

1

nr!nr!

∑
s,s′∈Snr

∑
q

ρq
∑
k1:n

πk1:n
∏

i∈s(1:nr−m)∪s′(1:nr−m′)

(1− δkiq)

(Lem. 1) =
∑
l

(
m

m+m′−l
)(
n−m
l−m

)(
n
m′

) ∑
q

ρqη
l
q

Finally we use the symmetry between m and nr−m and input first B1 and B2 into Equation

(S-23) then B and C into Equation (S-22) to obtain the variance of the robustness statistic.

To obtain the variance of the robustness function, we fix m, and set m = m′ in Lemma 1,

and Equation (S-23).
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