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Abstract. This paper is based on a research project aiming at improv-
ing learning long arithmetic operations in primary school using pen-based
tablets. The goal is to automatically analyze a student’s handwritten an-
swer by comparing it to an expected answer and to provide immediate
feedback. This comes down to find any mistake made such as a calculus
mistake, missing carry over or symbol misalignment. We use the corre-
spondence obtained by the Graph Edit Distance (GED) computed be-
tween both the student and expected answers. In order to reduce graph
sizes to overcome the computational complexity of the GED on large
graphs, we present a new semantic graph of line segmentation. We pro-
pose a backtracking process to correct potential early mis-recognition
mistakes for non-corresponding vertices. We evaluate the improvement
on the analysis performances for an increasing number of backtracks on
an in-house dataset composed of 400 handwritten operations.

Keywords: arithmetical operation analysis · graph edit-distance · on-
line hand-drawn structured document recognition

1 Introduction

Through the use of Intelligent Tutors, we are able to provide students with im-
mediate feedback to help them correct their mistakes. For mathematics some
tutors were proposed using keyboard interfaces [1, 2], but with the improvement
of pen-tablet devices such systems can be enhanced to transfer solving mathe-
matical problem from numerical devices to paper back and forth. The on-line
handwritten input is a list of sequences of points in the 2D space. A long arith-
metic operation is a 2D structure represented by a set of related handwritten
mathematical symbols. Figure 1 displays an example of such input. Given a
long arithmetic problem we can represent the expected answer to confront it to
the handwritten answer made by the student. The goal is to produce adapted
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feedback for the student, which depends on the nature of its mistakes. Given
the learning context, mistakes can be a wrong instruction recopy, misaligned
symbols, a forgetting of symbols, calculus mistakes, an excess of symbols... (see
Figure 5) Due to the complexity of the input, there is a need to devise a recog-
nition system to transform the handwriting into an adapted representation. The
comparison between this representation and the expected answer also needs to be
computed in no more than a couple of seconds to present ”immediate” feedback
to the students.

Fig. 1: Input of the system. (a) A long arithmetic problem is given to the student.
(b) His answer is handwritten using a pen-tablet device. (c) An expected answer
is created based on the problem. (d) A graph-based representation is generated.
The dissimilarities we are looking for as an output of the analysis system are
circled.

To represent both the handwritten input and the expected answer, we build
a graph-based representation commonly used to represent mathematical expres-
sion and their symbols relationships [3]. We can produce corresponding repre-
sentations to compute a comparison between the two graphs using the Graph
edit Distance [4]. It is a popular and general graph similarity computation that
searches the best vertices and edges correspondence between a pair of graphs.
The dissimilarities found between graphs can be used to produce the analysis.
For instance corresponding vertices with different labels might highlight calculus
mistakes. However long arithmetic operation graphs easily reach 15+ vertices. To
overcome the computational complexity of the GED on such graphs, we propose
the use of a new graph segmentation. We transform the initial graph of sym-
bols into a graph of lines by clustering symbols. This greatly reduces the size
of graphs while keeping their structural identity. We propose to use the GED
results by introducing backtracking steps into the system. Non-corresponding
vertices between graphs can be re-evaluated to create several new recognition
hypotheses to find a better fit to the expected answer.
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1.1 Related works

Handwritten mathematical expression (HME) recognition is a widely researched
subject with the popular CROHME competition [3]. The most recent and best
performing systems use end-to-end neural network by transforming the set of
online strokes to an image. A CNN is used to extract a features map encoded and
decoded by a Recurrent Neural Network with attention based model [5]. Those
systems are limited to the translation of an HME to a recognized expression,
reducing the relationships between symbols to the bare minimum to construct
the LATEXexpression. Other works focus on sequential solutions to build graphs,
such as visibility graphs [6, 7], representing mathematical symbols by vertices
and relationships by edges. Those graphs are then parsed using a grammar to
produce a Symbol Layout Tree containing only relationships to build a valid
mathematical expression. The lower recognition results are mainly due to the
missing context on the recognition step introduced by attention model in neural
network. However they create a complete representation of the 2D structure
of the mathematical expression in regards to relationships between symbols. In
order to produce explicit feedback to the students, we need such an explicit
representation of the structure of the operation with the complete relationships
between symbols.

Given the graph representation of a student answer, it is then possible to
compare it to another generated expected answer with the same architecture.
The common method used for exact graph comparison are based on the Graph-
Edit Distance, initially introduced in [8], which searches for the best pair-by-pair
transformation from one graph to another. Several algorithms on the exact com-
putation of the GED are presented in [4], and though several improvement using
Depth-First Search [9], using sub-graph isomorphism [10] or through a math-
ematical solver [11] are proposed, it is yet challenging to compute this GED
on graphs larger than 16 vertices without reaching the fixed time-out of 100
seconds. In practice we are able to compute the GED in a couple of seconds
for smaller sizes of graphs. Other much faster methods rely on an inexact com-
putation of the GED [12, 13]. Though efficient, an incorrect matching between
symbols could induce unexpected dissimilarities between the student answer and
the expected answer, and thus produce incorrect feedback. Other methods focus
on graph sizes reduction by clustering graph nodes such as in [14]. In [15] they
use this graph clustering algorithm to create hierarchical graph representation in
order to embed graphs to a vectorial space while keeping most of the important
structural information.

To overcome the computational complexity of the GED on larger graphs,
we present a similar approach to graph clustering with an adapted graph seg-
mentation for arithmetical operation to reduce the sizes of graphs while keep-
ing the structural information of the operation. Furthermore, to avoid early
mis-recognition made by our sequential solution and to take advantage of our
knowledge of the expected answer, we propose to use the results of the GED
computation to develop a backtracking process. By selecting strokes with an
incorrect fit with the expected answer, we can call back the recognition step to
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produce new segmentation hypotheses on these specific strokes in order to look
for a better fit to the expected answer.

The rest of the paper is structured as follows. We present our graph repre-
sentation and construction with an overview of our system in Section 2.1 be-
fore introducing the sub-segmentation of graphs in Section 2.2. We present the
backtracking solution to correct potential recognition mistakes in Section 2.3.
The experimental results on analysis accuracy and the quantity of operations
timing-out on an in-house Handwritten Arithmetical Operation (HAO) dataset
are detailed in Section 3. We discuss future improvements in Section 4.

2 Proposed method

2.1 Overview

In the following sections we present our contributions. We first present an overview
of the system before presenting the graph of lines segmentation and backtracking
steps.

The Figure 2 presents an overview of our system. (1) A graph is first con-
structed given a list of strokes as input : several classifiers are used namely for the
strokes segmentation into symbols, the symbols classification and the symbols
relationships classification. Using the classification rates of the previous classi-
fiers, we will be able to use previous computation on pair of strokes or symbols
to create new hypotheses. The segmentation features and classifier are based
on [16]. The symbol classifier uses a standard VGG [17] architecture. The re-
lationship features and classifier, computed using learned fuzzy landscapes [18]
for mathematical relationship, are based on our previous work [19]. (2) Once the
graph containing the symbols and their mathematical relationships is built, it
is once again segmented using those same relationships to create a new graph
of lines (see Section 2.2). This line segmentation is also applied to the expected
answer graph.

(3) We can compute the GED using the DFS algorithm [9] to produce a first
correspondence between our graphs of lines. Each corresponding pair of lines,
represented each by a small subset of symbols, can later be matched to obtain
a symbol-to-symbol correspondence. (5) If a pair of lines has a perfect match,
it is possible to fix each corresponding pair of symbols, reducing the search
space of the GED applied on the graph of symbols. (4) If any dissimilarities are
detected between lines, we can backtrack to create new recognition hypotheses.
By looking for new recognition hypotheses on non-corresponding strokes, we
may correct mis-recognition by finding a better fit to the expected answer (see
Section 2.3).

2.2 Graph of lines segmentation

In [4] the authors have shown that computing the exact GED on graphs larger
than 16 vertices in less than 100 seconds is still challenging. To propose a sys-
tem able to produce immediate feedback for the students, our goal is to reduce
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Fig. 2: Overview of our system. (1) From the input, a hypothesis graph and the
expected answer graph are produced. (2) Those graphs are segmented into graphs
of lines, (3) and then matched with the DFS algorithm. (4) If dissimilarities arise,
the process is iterated with a lower threshold for non-corresponding strokes to
create new hypotheses. (5) Once the steps are completed, the best hypothesis is
kept and matched on the symbols level. In this example, the first iteration pro-
duce an incorrect segmentation on the highlighted digit 4. The corresponding
line doesn’t have a perfect match, thus we backtrack to the recognition process
with a lower threshold. The second iteration create a new segmentation hypoth-
esis on this digit, with a better fit to the expected answer (no dissimilarities
arise).
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this time-out to a couple of seconds at most. To overcome this computational
problem, we propose to create a graph representation with a reduced number of
vertices each containing more knowledge while keeping the structural identity of
the operation.

An arithmetical operation is composed of numbers defined by the instruction,
the expected result and single digits identified either as carry over or report.
Those digits can have a variety of placement and be misaligned, however numbers
are always written and aligned from left to right and each symbol constituting the
number are temporally close one to another. As specified earlier, each operation
is represented by a graph in which a vertex is a mathematical symbol and each
edge represents a mathematical relationship between a pair of symbols. Using
the relationships defined earlier, we can cluster those vertices into a sub-set of
vertices, each one representing a line of the operation.

Algorithm 1 Graph of lines creation from a set of symbols and corresponding
relationships

INPUT: V (set of symbols), E (set of relationships), t (temporal gap defined
to reject symbols)
Vlines = {}, Elines = {}
// We check every vertex in the graph
while V is not empty do

// The nearest neighbor with Left or Right relationship are used to cluster
the symbol vertex into a line vertex
search←− (V [0], Right), (V [0], Left)
line←− {V [0]}
// Until no new neighbor with the corresponding relationship are found, we
extend the neighbor search to new vertices
while search! = φ do
v, r ←− search[0]
for v′, r′ ∈ E[v] do
if r′ == r&&gap(v, v′) < t then
search+ = (v′, r′)
line+ = v′

end if
end for
pop(search[0]), pop(V [v])

end while
Vlines+ = line

end while
Each vertex is segmented into a line, and relationships between lines are de-
duced from relationships between vertex inside the lines
return Vlines, inherit E(Vlines, V, E)
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Figure 3 shows the resulting Algorithm 1 applied on an addition. (a) A vertex
is randomly selected, and linked to its neighbor with Right and Left relation-
ships. Those vertices are then selected and the search is extended on both sides
with the corresponding edges. (b) Once no more vertices are found, a single ver-
tex, containing the previously selected vertices, can be created. (c) The process
is repeated until all vertices are checked to produce the complete graph of lines.
To avoid clustering instruction vertices with their related carry over or report, a
time constraint is considered. Given a vertex and a neighbor candidate with the
correct relationship, if the temporal gap between them is too high, they are not
considered belonging to the same cluster and thus the neighbor is rejected. The
edges between clustered vertices one to another are inherited from the known
relationships between symbols vertices. An expected answer graph of lines can
also be generated with the same rules. This new representation contains less
vertices, each vertex contains more information and the structural information
between them is inherited from the graph of symbols representation.

Fig. 3: An addition with 14 vertices written with the corresponding long arith-
metic problem : 999 + 412 = 1411. (a) A random vertex is selected and linked to
its neighbor with Right and Left relationships. The highlighted edges between
the 9 digits and the 1 and 2 digit are ignored because of the huge temporal gap
between those vertices (carry over). The process is repeated for each neighbor
until no new neighbor are found to create the line (b). The process is iterated
until all vertices belongs to a line. (c) The resulting graph of lines contains 7
vertices.

Given this graph of lines representation, we can apply the DFS on this new
pair of graphs. To compute the cost of replacing one line by another, we transform
those sub-graphs into strings by using the left-right order inside each sub-graph.
We can apply a Levenshtein distance to compute this cost. If two lines have a
cost similarity of 0, we can fix them by adding this knowledge to the graph of
symbols. To avoid an imperfect match between numbers due to the malleability
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of the operators position, the insertion cost of an operator is fixed to 0. If at
least a vertex has an incorrect label or is missing, other vertices belonging to the
same cluster won’t be directly matched.

The complete DFS on the pair of graph of symbols can be computed with
the knowledge of fixed vertices with an updated cost (Equation 1). If at least
one of the vertex was found and the id does not match, then an infinite cost is
applied. Thanks to the updated cost for matched vertices, a large part of the
search tree will be ignored. The DFS is computed much faster on initially larger
graphs with the same resulting correspondence.

d(vi, vj) =


if found and fi! = fj ∞
else if µi ∈ [-, +] and µj /∈ [-, +] 50
else if µi! = µj 10
else 0

(1)

2.3 Backtracking recognition

Thanks to the line segmentation we are able to compute the DFS faster with
the updated cost of corresponding symbols to non-corresponding symbols, thus
considering only a sub-set of correspondence. However in addition to mistakes
from the students, it is also possible to make wrong assumption on the recogni-
tion steps, either due to a wrong segmentation or by missing relationships with
misaligned symbols. Thus vertices which should belong to the same cluster are
split into different lines. In [19] we proposed to create multiple hypotheses us-
ing a fixed segmentation threshold before computing the matching. However on
operations with many overlapping strokes, it is likely to create an exponential
number of new hypotheses, many of whom will not fit the expected answer and
could have been avoided. Moreover it is needed to compute a partial matching
with each hypothesis to select the best fit, thus reaching a time-out if too many
hypotheses are created.

We propose to include a backtracking step to take advantage of the result-
ing correspondence, detailed in the Algorithm 2. Figure 4 displays a backtrack-
ing example where a mis-segmentation on a digit can be revised by computing
new segmentation hypotheses on the set of unmatched strokes. In the previ-
ous Section, we obtain a correspondence between graph of lines, which yield a
cost transformation from lines to lines. If any lines from the expected answer is
not perfectly matched with a transformation cost of 0, then non-corresponding
strokes are labeled as such in the initial set of strokes. The recognition step is
once again called with an increased threshold τ to create new hypotheses. Only
the labeled pair of non-corresponding strokes are re-evaluated. If new hypotheses
or relationships are created from one step to another, then the lines segmenta-
tion and matching is once again applied on each hypothesis. By reducing the
search space to non-corresponding strokes, we can greatly reduce the number of
new hypotheses that might be generated.

When multiple graphs are generated after a new recognition steps, each hy-
pothesis is segmented into a graph of lines and matched to the expected answer.
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The hypothesis with the lowest transformation cost is kept for further analysis
while others are discarded. If the end condition is not reached (either a number
of backtracking steps reached or all lines returning a perfect correspondence),
then the recognition process is applied on non-corresponding strokes with an
increased threshold τ . Previous segmentation hypotheses will be discarded, only
new segmentation hypotheses as well as the current best will be kept for the new
selection. Once the end condition is reached, we can compute the DFS on the
remaining unmatched symbols on the best hypothesis selected.

Fig. 4: Backtracking applied over an addition. The highlighted digit 4 is mis-
segmented on the first iteration, resulting in an imperfect line matching. New
segmentation hypotheses is computed on these un-matched strokes. The result-
ing new hypothesis has a better lines matching cost and new symbols can be
preemptively matched. This hypothesis is kept for the DFS symbols-to-symbols.

3 Experiments

The dataset of handwritten arithmetical operation (HAO) presented in Table
1 is composed of both additions and substractions written by primary school
students (age 6 to 9) on pen-based tablet. Samples from this dataset are displayed
in Figure 5. An operation is considered incorrect when an expected symbol is
missing (number, operator or carry over) or when an expected symbol is matched
with an incorrect label. The result of an analysis is based on these mistakes.
Symbols in excess are not counted as mistakes due to the noisy input devices
but they are expected to not be matched to any symbol from the expected
answer.

A separate training set of 200 operations was indiscriminately input by both
adults and students and was used to train the segmentation and relation classi-
fiers presented earlier. For the symbol classifier, a much larger training set from
the CROHME 2019 competition [3] was used. The test set of 200 operations is
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Algorithm 2 Recognition backtracking through lines matching

INPUT: S (set of strokes), τ (classification threshold), GEA (expected answer
graph), Vfixed (set of matched vertices)
// Generate a set of hypothesis given the threshold and previous found vertices
G ←− reco(S, Vfixed, τ)
GEAline

←− line(GEA)
cost = {}, path = {}
// For each hypothesis, apply the line segmentation and compute the corre-
spondence with the expected answer
for G ∈ G do
Gline ←− line(G)
path, cost+ = DF −GED(Gline, GEAline

)
end for
path, cost = min(path, cost)
// For each corresponding line in the best hypothesis, if its transformation
cost is 0, keep the vertices
V = Vfixed
for (line, lineEA) ∈ path do

path line, cost line ←− Levenstein(line, lineEA)
if cost line == 0 then
V+ = line

end if
end for
// If all lines are matched, or if last iteration is reached, we return the corre-
spondence symbol to symbol
if (V == GEAline

‖τ == 0.2) then
return DF-GED(best hyp, GEA, EP, V)

end if
// Otherwise, we backtrack with a greater threshold to generate more hy-
potheses while keeping the previous found vertices
return backtrack(S, τ + 0.05, GEA, V )

Table 1: Description of the HAO dataset. The size of the training and test set as
well as the number of independent writers are reported. The number of mistakes
contained through all operations and expected to be detected is also quantified.
A single operation may contain multiple mistakes (see Figure 5).

Training set Test set

Size 200 200
Writers 28 24
Symbols 2908 3285

Incorrect symbols label - 83
Missing symbols - 122
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Fig. 5: Samples from the HAO dataset with their related long arithmetic problem.
Students mistakes we are looking for are circled.

exclusively composed of handwritten operation written by primary school stu-
dents. 110 out of 200 operations contains at least one mistake. No writer is found
in both the training and testing set.

Evaluations are conducted on a machine with an Intel i5-8250U processor
with 8GB of RAM. A time-out of 5 seconds was set for the computation on each
operation. If the computation reaches a time-out, the last matching obtained
is used for the analysis. We evaluate the improvement of the new graph seg-
mentation in regards to the analysis score and quantity of operation reaching
the time-out for different initial sizes of graphs. For the backtracking method,
we consider a backtracking threshold value τ = 0.05% with 5 backtracking it-
erations. The accuracy is computed on the detected dissimilarities between the
operation and the expected answer compared to the ground truth (see Figure 8).
If the dissimilarities detected are different, then the analysis result is considered
incorrect.

We compare 4 different systems. (1) The DFS applied on the first graph
of symbols hypothesis. (2) As proposed previously in [19], a partial matching
applied on sub-graphs to match part of the operation before computing the DFS
on the complete graph of symbols. (3) The DFS applied subsequently on the first
graph of lines hypothesis then on the graphs of symbols with the fixed vertices.
(4) The DFS applied in the complete backtracking process on several hypotheses
and on the last selected graph of symbols hypothesis and its fixed vertices.
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The goal is to evaluate the analysis score improvement of using the new graph
of lines representation over different sizes of graphs in relation to the number of
operations reaching a time-out. The results on the analysis accuracy are reported
in the Figure 6. The analysis score are improved using the iterative process com-
pared to previous methods. The backtracking allows for the correction of some
mis-recognition from the system as we notice an improvement on the accuracy
using the backtracking solution. The graph segmentation doesn’t generate in-
correct correspondence between graphs. We report the quantity of operations
reaching a time-out in the Figure 7 for each method. We notice a much lower
number of operations reaching the time out of 5 seconds by using the DFS on the
graph of lines. The lines segmentation greatly improves the number of operations
solved before reaching the time-out, which is in direct relation with operations
in which an incorrect analysis was yielded before. The best process can match
162 out of 200 operations under 5 seconds, as opposed to the results previously
reported in [19] of 134 operations.

Fig. 6: Accuracy for each graph size. The accuracy is computed on the resulting
analysis: if dissimilarities found were expected, the analysis is correct

Figure 8 displays two operations, the resulting recognition results from the
backtracking process as well as the ground-truth which was previously annotated
to evaluate the experiments. On the first operation, we are able to correct a mis-
segmentation by keeping a new recognition hypothesis after a single iteration.
However for the second operation, by searching a new recognition hypothesis
with a better fit, we generated an hypothesis which yield an incorrect analysis.
No hypothesis produces a correct matching on the result line because both seg-
mentation do not correspond to the expected answer, and the system ends up
selecting the incorrect segmentation hypothesis. Thanks to the lines matching,
the DFS is computed before the time-out but an incorrect analysis is produced
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Fig. 7: Quantity of operations reaching time-out for each graph size confronted.
The purple indicator represents the quantity of operations in the dataset for
each graph size.

compared to the ground-truth. It would be necessary to have a balance between
the fitting cost of the operation and the deterioration of the recognition results
to avoid too far-fetched recognition hypothesis.

Fig. 8: Top: An operation with an initial incorrect segmentation, corrected thanks
to the backtracking process on the second iteration. Bottom: incorrect segmen-
tation on the highlighted 4 digit on the second iteration resulting in a similar
high line matching cost, resulting in an incorrect hypothesis selected.

4 Conclusion and future works

We tackle the problematic of the analysis of on-line handwritten arithmetical
operation in the context of primary school students long arithmetic teaching.
We use a graph-based representation to transform the handwritten input. We
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propose to use the knowledge of the expected answer and the correspondence
between this answer and the student answer using Graph-Edit distance to correct
recognition mistakes. To speed up the matching process and reduce the size of the
search space, we propose a sub-segmentation to transform graphs of symbols to
graphs of lines using the relative positioning and temporality between symbols.
The structural identify of the operation is preserved while greatly reducing the
graphs sizes and each vertex also contains more information. This allows for a
faster yet correct matching between graphs. We introduce a backtracking step
to produce several hypotheses for non-corresponding strokes. By doing so we
produce new recognition hypotheses to look for a better fit to the expected
answer.

The experiments on a dataset of 400 arithmetical operations show that we’re
able to improve the analysis results by correcting recognition mistakes through
the backtracking steps. Those steps can be quickly computed thanks to the lines
segmentation. The number of new hypothesis created doesn’t increase exponen-
tially by limiting the new recognition hypotheses to non-corresponding strokes.
However relying on the correspondence with the expected answer might influ-
ence the system to select an incorrect recognition hypothesis with a better fit
to the expected answer. To avoid those mistakes, it would be advised in future
works to combine both the matching costs of hypotheses as well as the classifier
scores for each hypothesis to avoid selecting a hypothesis degrading too much
the recognition results.
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