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Abstract

We study topology optimization in quasi-static plasticity with linear kinematic and linear isotropic
hardening using a level-set method. We consider the primal variational formulation for the plasticity
problem. This formulation is subjected to penalization and regularization, resulting in an approximate
problem that is shape-di�erentiable. The shape derivative for the approximate problem is computed using
the adjoint method. Thanks to the proposed penalization and regularization, the time discretization of
the adjoint problem is proved to be well-posed. For comparison purposes, the shape derivative for the
original problem is computed in a formal manner. Finally, shape and topology optimization is performed
numerically using the level-set method, and 2D and 3D case studies are presented. Shapes are captured
exactly using a body-�tted mesh at every iteration of the optimization algorithm.

Keywords: topology optimization, plasticity, level-set method, body-�tted mesh

1 Introduction

In structural design involving steel, it is often required to use a plasticity model in order to determine
the plastic strain, or permanent deformation, which occurs in the structure when it undergoes a stress
that exceeds a value known as the yield strength [20]. As the time-dependent force evolves, if the yield
strength remains constant everywhere in the structure, the resulting phenomenon is called perfect plasticity,
otherwise is is called plasticity with hardening. Using a hardening law, one can determine the shift in the
yield strength and measure how ductile the material is. Plasticity modeling has been developed signi�cantly
since the 1960's. At the heart of the model lies the Hill's principle and its equivalent Drucker Illyushin
principle [29]. The plasticity model is often simpli�ed by assuming that the evolution of the force is slow.
This assumption results in a quasi-static plasticity model, which has been largely studied theoretically. The
model, when written in its variational formulation, is an inequality which can be expressed either in a dual
form or in a primal form. One of the interest of the primal form is that it can be shown to be a well-posed
problem [21]. While the primal formulation illuminates the theoretical properties of the solution to the
plasticity problem, it is not easily amenable to numerical resolution. Therefore, one instead resorts to the
radial-return algorithm [38, 37] which discretizes the governing equations of hardening-based plasticity using
an implicit Euler scheme.

Shape and topology optimization is a powerful tool to determine an optimal design satisfying several
design constraints. The optimization algorithm necessitates a method to describe the shape, which can
either be approximated by a continuous density function or represented exactly by a level-set function. Most
research in shape and topology optimization is based on density methods [6]. The idea of capturing fronts and
interfaces using a level-set function was introduced by Osher and Sethian [35] and integrated into the shape
and topology optimization framework in [4, 43]. Most of the shape and topology optimization algorithms
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are developed for linearized elasticity problems while less focus is given to non-linear ones. Non-linearities
can arise due to material properties (plasticity, damage), contact boundary conditions, hyper-elasticity [26],
large displacement (large strain [41, 8], �nite strain [42]) and structural buckling [28]. Topology optimization
using density approaches or SIMP (Solid Isotropic material with Penalization) was applied to elasto-plastic
problems [32, 42, 25, 7, 27], visco-elastic problems [24] and visco-elasto-plastic problems [34]. A common
feature in all the previous works is the determination of a design gradient by di�erentiating the space and
time-discretized schemes of the plasticity models, which are approximated using a �ctitious material density.
The material properties like the Young's modulus and the hardening coe�cients are modi�ed using this
material density raised to a certain exponent. This exponent is di�erent for every mechanical property and
ought to be chosen in an ad-hoc manner, ensuring numerical stability. The optimized shape obtained have
intermediate densities undergoing a plastic �ow, which might actually be arti�cial. In the level-set framework,
since the material properties are not approximated using material densities, such arti�cial plastic zones are
avoided.

The level-set method for topology optimization was applied to a simpli�ed version of perfect plasticity in
[31]. There, the �rst time-step of time-discretized perfect plasticity, also known as the Hencky's model, was
approximated using Perzyna penalization and the resulting approximation was shown to be well-posed. The
model did not take into account hardening laws, the time dependence or the irreversibility of the plasticity
problem. As soon as one incorporates the irreversibility of the plastic �ow and hardening laws, one ends up
with a variational inequation with a complex theoretical and numerical treatment.

In this article, we apply the level-set method to quasi-static plasticity with linear kinematic and linear
isotropic hardening. Unlike all other previous works, the quasi-static plasticity is considered in its primal form
and the shape derivative is determined for the continuous problem. The primal form being non-smooth is not
di�erentiable. Nevertheless, we construct an approximate problem that is di�erentiable using a penalization
and regularization technique. We show that the approximate problem is well-posed and the corresponding
solution converges to the actual solution. Then, we compute the shape derivative for minimizing an objective
function with the approximate problem as a constraint. As usual, this shape derivative involves an adjoint
problem. Thanks to the proposed penalization and regularization, the time discretized version of this adjoint
problem is proved to be well-posed. It is well known that the original primal problem is not di�erentiable in
the usual sense but admits only a so-called conical derivative (see [33, 40, 31]). Similarly, there is no rigorous
notion of adjoint for this primal problem. Nevertheless, to make a comparison with our regularized adjoint,
we present a formal approach, relying on strong assumptions (not always realistic), which allows us to give
a shape derivative and an adjoint problem for the primal problem. In some sense, this �formal" or �naive"
shape derivative and adjoint equation of the original problem should be the limits of our regularized shape
derivative and adjoint equations when the penalization and regularization coe�cients go to zero. However,
we do not perform such a limit analysis, which of course would require strong assumptions, and rather we
content ourselves in pursuing a pedagogical goal in Section 3.

The e�ciency of the shape derivative (obtained with our penalization and regularization process) is
assessed by optimizing some numerical examples in 2D and 3D. The plasticity problem is numerically solved
using the radial return algorithm. One salient feature of our approach is that the geometry is captured
at each iteration of the optimization process by a body-�tted mesh, which nevertheless allows for topology
changes. This is possible thanks to the open source library MMG [13]. This library meshes a moving domain
de�ned by a level-set on a mesh of the initial domain and its exterior, allowing for possible topology changes.
Unlike XFEM [18], where the mesh elements can become heavily distorted, our capturing of the geometry
using MMG ensures a much better mesh and thus an accurate calculation of the shape derivative. We present
numerical case studies of a cantilever and a wedge in 2D and in 3D. The two geometries are loaded with a
uniaxial force that increases monotonically in time. We compare the shapes optimized for plasticity with the
ones optimized for linear elasticity. For the 2D wedge, we also consider a force that changes its direction with
time. While optimizing the shape for such a force, we show that the dependence of the optimized topology
on the forcing history is signi�cant.

The remainder of this paper is organized as follows. In Section 2, we present the governing laws of
plasticity and recall the primal formulation of plasticity with linear kinematic and linear isotropic hardening.
To replace the variational inequality by a smoother non-linear variational formulation, which is amenable
to optimization, the primal formulation is penalized and regularized. We prove the well-posedness of the
resulting approximate model and that the approximate solution converges to the actual solution. In Section
3, we determine the shape derivative for the proposed penalized-regularized formulation using the well-
known Céa's technique [12]. For comparison purposes we formally derive the adjoint problem and the shape
derivative of the primal problem. In Section 4, we discretize the approximate problem and its adjoint in
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Figure 1: Boundary conditions on the structure Ω

space-time, discuss its numerical resolution with the open source software FreeFEM++ [22], and then brie�y
recall the level-set method and our optimization algorithm. Finally, Section 5 presents several test-cases in
2D and 3D.

2 Variational formulation of plasticity

We �rst present the laws governing plasticity with linear kinematic and isotropic hardening. Using these
laws, we derive the primal variational formulation. This formulation is further subject to penalization and
then to regularization in order to make it di�erentiable. This section closes with some statements about the
well-posedness and the convergence of the solution of the penalized-regularized plasticity model towards the
actual solution.

2.1 Governing equations

Throughout this article, we adopt the convention of representing non-scalar mathematical entities by bold
symbols. We consider a structure represented by a smooth bounded open set Ω ⊂ Rd, d = 2 or 3 and
a bounded time interval [0, T ]. Let Md

s denote the set of symmetric d × d matrices and I represent the
fourth-order identity tensor of dimension d. The structure, having a boundary ∂Ω = ΓN ∪ ΓD ∪ Γ, is �xed
on ΓD and loaded on ΓN as shown in Fig.1. Plasticity is a quasi-static process as we now describe (see [20]
for more details). Let u : Ω × [0, T ] → Rd denote the displacement �eld, σ : Ω × [0, T ] → Md

s denote the
stress tensor, n denote the outward normal to ∂Ω. The structure when subjected to a time-dependent body
force f : Ω× [0, T ]→ Rd and a surface force g : ΓN × [0, T ]→ Rd, satis�es the equilibrium equation:

div(σ) + f = 0 in Ω× (0, T ], (1a)

σ · n = g on ΓN × (0, T ], (1b)

σ · n = 0 on Γ× (0, T ], (1c)

u = 0 on ΓD × (0, T ]. (1d)

The total strain tensor of the structure ε : Ω × [0, T ] → Md
s , expressed in terms of u, ε = ε(u) =

(∇u+ (∇u)T )/2 can be decomposed as
ε = εe + εp,

where εe denotes the elastic strain and εp, the plastic strain. Plasticity occurs when the magnitude of σ
exceeds the yield strength, a material parameter determined experimentally. Hardening occurs when the
plastic �ow is followed by a change in yield strength. The hardening is modeled by a stress-like hardening
tensor q : Ω × [0, T ] → Md

s , a scalar force g : Ω × [0, T ] → R, and the corresponding internal variable,
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r : Ω × [0, T ] → Md
s , γ : Ω × [0, T ] → R, respectively. To de�ne the structure's elastic limit, we consider

the von Mises yield criterion [37]

f(σ, q, g) = |σD − qD|+
√

2

3
(g − σY ) ≤ 0, (2)

where the superscript D denotes the deviatoric part of a tensor and σY ∈ R+ is the yield strength. This
criterion de�nes the elastic domain

E = {(σ, q, g) : f(σ, q, g) ≤ 0},

which, by de�nition, is convex. The structure is made of an isotropic material, with Hooke's tensor given
by

C = λ1⊗ 1 + 2µI,

where λ, µ are Lamé constants. We place ourselves in the framework of associated plasticity, namely, the
plastic �ow rate is proportional to the normal of the elastic domain. We �rst state the second law of
thermodynamics

σ: ε̇− ψ̇ ≥ 0, (3)

where the overdot denotes di�erentiation with respect to time and ψ is the Helmholtz free energy, given by
the sum

ψ = ψ(εe, r, γ) = ψ̂e(εe) + ψ̂p(r, γ),

where the elastic and plastic energies are respectively de�ned as

ψ̂e(εe) =
1

2
Cεe: εe and ψ̂p(r, γ) =

1

2
Hr: r +

1

2
Eisoγ

2,

where H is the hardening tensor and Eiso ≥ 0 is a material parameter. On the other hand the stress is
assumed to be σ = σ(εe). Using these de�nitions, the second law (3) is re-written as(

σ − ∂ψ̂e
∂εe

)
: ε̇+ σ: ε̇p −

∂ψ̂p
∂εp

: ε̇p −
∂ψ̂p
∂r

: ṙ − ∂ψ̂p
∂γ

γ̇ ≥ 0. (4)

Using Coleman-Noll arguments [11], we deduce

σ =
∂ψ̂e
∂εe

= Cεe = C(ε(u)− εp). (5)

Now, the power dissipation function D is introduced as the di�erence between the external power and the
rate of change of Helmholtz free energy

D = σ: ε̇p + q: ṙ + gγ̇

where

q = −∂ψ̂p
∂r

= −Hr and g = −∂ψ̂p
∂γ

= −Eisoγ. (6)

Substituting D in (4), we get
D ≥ 0.

This is exactly Hill's principle (or second law of thermodynamics) and is equivalent to the Drucker-Illyushin's
principle of maximum work which states that for any stress state (σ, q, g) in E, the plastic �ow variables
(ε̇p, ṙ, γ̇) must satisfy

σ : ε̇p + q: ṙ + gγ̇ ≥ τ : ε̇p + p : ṙ + kγ̇ ∀(τ ,p, k) ∈ E. (7)

Since the set E is invariant by addition of a multiple of the identity tensor to σ and q, (7) implies that
necessarily the trace of ε̇p + ṙ vanishes. Furthermore, (7) yields the following characterization of D

D(ε̇p, ṙ, γ̇) = sup
(τ ,p,k)∈E

(τ : ε̇p + p : ṙ + kγ̇) , (8)
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where the supremum is attained at (σ, q, g). This maximization ensures that the normality law is satis�ed
[20]

f(σ, q, g) < 0 =⇒ ε̇p = 0, ṙ = 0, γ̇ = 0

f(σ, q, g) = 0 =⇒ ε̇p = ζ∂σf, ṙ = ζ∂qf, γ̇ = ζ∂gf, (9)

where ζ is a Lagrange multiplier satisfying

ζ ≥ 0 and ζf(σ, q, g) = 0.

The derivatives of f (normal to the elastic domain) are given by

∂σf =
σD − qD

|σD − qD|
, ∂qf = − σ

D − qD

|σD − qD|
and ∂gf =

√
2

3
.

The multiplier ζ is determined by imposing the consistency condition ḟ = 0 [37] and in our case (of linear
isotropic and kinematic hardening) an analytic formula is available in the plastic zone (where f = 0)

ζ =
∂σf : σ̇√

2
3Eiso + H∂σf : ∂σf

.

From (9), we get ε̇p = −ṙ. Assuming that the plastic variables εp and r are zero at the initial time instant, we
deduce εp = −r for all time t. The internal variable r has thus been characterized and D(ε̇p, ṙ, γ̇) = D(ε̇p, γ̇).
Using the de�nition of a sub-di�erential, the maximization (8) can then be written as

D(εq, µ) ≥ D(ε̇p, γ̇) + (σ − q) : (εq − ε̇p) + g(µ− γ̇) ∀εq ∈Md
s , µ ∈ R. (10)

The primal variables are (u, εp, γ). We wish to work with a primal formulation, and hence we need an
expression of D(ε̇p, γ̇) in terms of the primal variables. The dissipation function D satis�es [36]

D(ε̇p, γ̇) =


√

2

3
σY |ε̇p| if

√
2

3
|ε̇p|≤ γ̇,

∞ if

√
2

3
|ε̇p|> γ̇.

(11)

The above expression is obtained by substituting f = 0 in (8) and performing simple algebra to determine
the variables (σ, q, g), which maximize D. The �rst expression in (11) also follows from a simple substitution
of (9) in (8). As a consequence, the domain of D is de�ned by

domD =

{
(ε̇p, γ̇),

√
2

3
|ε̇p|≤ γ̇ a.e. in Ω

}
. (12)

Eventually, the plasticity model, used in this paper, is:

σ = C(ε(u)− εp) in Ω× (0, T ], (13)

div(σ) + f = 0 in Ω× (0, T ],

σ · n = g on ΓN × (0, T ],

σ · n = 0 on Γ× (0, T ],

u = 0 on ΓD × (0, T ],√
2

3
σY |εq| ≥

√
2

3
σY |ε̇p|+(σ −Hεp) : (εq − ε̇p)− Eisoγ(µ− γ̇) ∀(εq, µ) ∈ domD on Ω× (0, T ]. (14)

The inequality (14) is obtained by injecting (6) and (11) in (10).
Very often, the partial di�erential equations (13) are solved in conjunction with the ordinary di�erential

equations (9). But here, we solve (13) coupled to the inequation (14). This coupling, which is purely in
terms of the variables (u, εp, γ) results in the so called primal formulation.

If the dissipation function D is expressed in terms of the stress-variables, the plasticity problem is for-
mulated in terms of (u,σ, q, g) resulting in the dual formulation. The analytical treatment of the primal
formulation being much easier than that of the dual formulation, we have chosen the former in this article.
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2.2 Primal formulation

The material tensors C and H are assumed to be coercive, i.e., ∃ c0 > 0, ∃ h0 > 0 such that, ∀ξ ∈Md
s ,

Cξ: ξ ≥ c0|ξ|2 and Hξ: ξ ≥ h0|ξ|2.

We de�ne the displacement space

V = {u ∈ H1(Ω)d, u = 0 on ΓD}

and the space of of plastic strain Q as

Q = {εq ∈ L2(Ω)d×d, tr(εq) = 0 a.e. in Ω}.

We then de�ne the product space
Z = V ×Q× L2(Ω), (15)

where we seek the solution w = (u, εp, γ). The space Z is a Hilbert space equipped with the scalar product,
for w = (u, εp, γ) and z = (v, εq, µ),

〈w, z〉 =

∫
Ω

u · v dx+

∫
Ω

εp : εq dx+

∫
Ω

γµ dx. (16)

Let Z∗ be the dual space of Z. The forces are assumed to be smooth as

f ∈ H1([0, T ], L2(Ω)d) and g ∈ H1([0, T ], L2(ΓN )d).

Indeed, since H1([0, T ], H) ⊂ C0([0, T ], H) for any Hilbert space H, at any time t the forces f(t) and g(t)
are well de�ned. We introduce a bilinear form a : Z × Z → R,

a(w, z) =

∫
Ω

(C(ε(u)− εp) : (ε(v)− εq) + εq : Hεp + Eisoγµ) dx, (17)

and a linear form lt : Z → R such that

lt(z) =

∫
Ω

f(t) · v dx+

∫
ΓN

g(t) · v ds, (18)

with the forces f(t) ∈ L2(Ω)d, g(t) ∈ L2(ΓN )d and a nonlinear convex functional j : Z → R such that

j(z) =

∫
Ω

D(εq, µ) dx, (19)

where D(εq, µ) is de�ned by (11). This functional j(·) is convex and lower semi-continuous on Z and it is
Lipschitz continuous on the convex set K ⊂ Z de�ned as

K = V × domD,

where domD is de�ned by (12). The admissible plastic �ow rates ε̇p, γ̇ belong to the convex set domD.

Lemma 1. The bilinear form a(·, ·) de�ned in (17) is coercive on Z.

Proof. From (17) with z = w ∈ Z, and for any s ∈ (0, 1), we get

a(w,w) =

∫
Ω

C(ε(u)− εp): (ε(u)− εp) dx+

∫
Ω

Hεp: εp dx+

∫
Ω

Eisoγ
2 dx

≥ c0 ‖ε(u)‖2L2(Ω) + (c0 + h0) ‖εp‖2L2(Ω) −
∫

Ω

2Cε(u): εp dx+ Eiso ‖γ‖2L2(Ω)

≥ (c0 − c0(1− s)) ‖ε(u)‖2L2(Ω) +

(
c0 + h0 −

c0
1− s

)
‖εp‖2L2(Ω) + Eiso ‖γ‖2L2(Ω) s ∈ (0, 1)

= c0s ‖ε(u)‖2L2(Ω) +

(
h0 −

c0s

1− s

)
‖εp‖2L2(Ω) + Eiso ‖γ‖2L2(Ω)

≥ min

(
c0s,

(
h0 −

c0s

1− s

)
, Eiso

)(
‖ε(u)‖2L2(Ω) + ‖εp‖2L2(Ω) + ‖γ‖2L2(Ω)

)
.

We choose s = h0

2c0+h0
in order to make the right hand side positive for all w ∈ Z. Finally using Korn's

inequality, this proves the coercivity of a(·, ·) on Z.
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In order to obtain the primal formulation of (13) and (14), we multiply (1) by v−u̇, use (5) and integrate
the product over Ω by parts to obtain∫

Ω

C(ε(u)− εp) : (ε(v)− ε(u̇)) dx =

∫
Ω

f(t) · (v − u̇) dx+

∫
ΓN

g(t) · (v − u̇)ds ∀v ∈ V, (20)

We then integrate (14) over Ω, add (20) to it and obtain the variational inequality, for any z ∈ K,∫
Ω

√
2

3
σY |εq| dx ≥

∫
Ω

√
2

3
σY |ε̇p| dx+

∫
Ω

f(t) · (v − u̇) dx+

∫
ΓN

g(t) · (v − u̇) ds

−
∫

Ω

(C(ε(u)− εp) : (ε(v)− εq − ε(u̇) + ε̇p) + Hεp : (εq − ε̇p) + Eisoγ(µ− γ̇)) dx.

We complement this variational inequality with the following initial conditions

u(0) = 0, εp(0) = 0, γ(0) = 0 in Ω.

To prove existence and uniqueness of a solution, we rely on theorem 4.3 in [21] which requires some additional
regularity in time for the solution. Therefore, we assume that the forces satisfy

f(0) = 0 in Ω and g(0) = 0 on ΓN .

Using the linear forms and the nonlinear functional de�ned earlier, we obtain the primal form of the plasticity
problem (13) and (14): �nd w(t) = (u, εp, γ)(t) with w(0) = 0 such that ẇ(t) ∈ K (for almost all t ∈ (0, T ))
and

a(w, z − ẇ) + j(z)− j(ẇ) ≥ lt(z − ẇ) ∀z ∈ K. (21)

As a result of theorem 4.3 in [21], the variational inequality (21) is well-posed.

Theorem 1. [21] Let Z be a Hilbert space; K ⊂ Z be a nonempty, closed, convex cone; a : Z × Z → R
a continuous bilinear form that is symmetric and coercive; j : K → R non-negative, convex, positively
homogeneous, Lipschitz continuous form; lt ∈ H1([0, T ], Z∗) with l0(·) = 0. Then there exists a unique
w ∈ H1([0, T ], Z) satisfying (21).

Remark 1. In the absence of kinematic hardening or h0 = 0, we cannot show the coercivity of a(·, ·) and
thus the well-posedness of the problem (21).

Equation (21) is not shape-di�erentiable [33], [40] in the classical sense and we are going to approximate
it by a smooth variational equation. The non di�erentiability of (21) is due to D, which is discontinuous

exactly where
√

2
3 |ε̇p|= γ̇ (or equivalently, where f = 0). Thus the function D admits only directional

derivatives where the yield limit f is attained.

2.3 Penalization

We approximate the problem (21) posed on the convex set K by a problem posed on the full vector space Z
by penalizing the constraint z(t) ∈ K. We introduce a small penalization parameter 0 < ε � 1 and modify
the dissipative function D(ε̇p, γ̇) to Dε(ε̇p, γ̇) as

Dε(ε̇p, γ̇) =

√
2

3
σY

(
|ε̇p|+

1

ε
max

(√
2

3
|ε̇p|−γ̇, 0

))
. (22)

The above penalization is similar to viscoplastic regularization (see [37], equation 7.5b), in the sense that in
both situations the stress state is allowed to exceed the von Mises yield limit by some value. However, the
exact correspondance between the two is not clear to us.

We then modify j(·) to jε : Z → R as

jε(ẇ) =

∫
Ω

Dε(ε̇p, γ̇) dx.

Problem (21) is penalized as: �nd wε(t) ∈ Z such that wε(0) = 0, ẇε(t) ∈ Z and

a(wε, z − ẇε) + jε(z)− jε(ẇε) ≥ lt(z − ẇε) ∀z ∈ Z. (23)

The above penalized problem is well-posed as the following theorem shows.
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Theorem 2. Problem (23) admits a unique solution wε ∈ H1([0, T ], Z).

Proof. The bilinear form a(·, ·) is coercive in Z (as shown in Lemma 1), and the nonlinearity Dε(·) is convex,
positively homogeneous and Lipschitz continuous. jε(·) is thus non-negative, convex, positively homogeneous
and Lipschitz continuous on Z.With these properties, (23) admits a unique solution wε ∈ H1([0, T ], Z) using
Theorem 1.

Now we split jε(z) in two as

jε(z) = j1(z) +
1

ε
j2(z) (24)

with j1(z) =

√
2

3
σY

∫
Ω

|εq| dx and j2(z) =

√
2

3
σY

∫
Ω

max

(√
2

3
|εq|−µ, 0

)
dx.

By exploiting the convexity of the functional jε(·) the next theorem proves that the sequence of solutions to
(23) converges weakly and strongly to the solution of (21) as the penalization parameter ε goes to zero.

Theorem 3. The sequence of solutions wε to (23) satis�es, as ε −→ 0,

wε
∗
⇀ w in L∞([0, T ], Z) and ẇε ⇀ ẇ in L2([0, T ], Z),

where w is the solution to (21). Moreover as ε −→ 0,

wε −→ w in L∞([0, T ], Z).

The proof of Theorem 3 is given in appendix (A).

2.4 Penalization and regularization

The nonlinearity j(z) being unbounded for z /∈ K, (21) is not di�erentiable with respect to parameters
like the shape of the domain [33], [40]. On the contrary, jε(z) is now bounded on the full space Z, so one
should be able to di�erentiate the penalized formulation (23). However jε(z) is still non-smooth because of
the maximum operator and the norm of the plastic tensor. We therefore need to regularize the nonlinearity
jε(·).

We introduce a small regularization parameter 0 < η � 1. The dissipation function (22) has two kinds of
non-smoothness: max(·, 0) and |·| (the Euclidean norm): we regularize them with operators Mη : L2(Ω) →
L2(Ω) and Nη : Q→ L2(Ω) respectively, de�ned as

Mη(γ) =
1

2

(
γ +

√
γ2 +

(σY η
TE

)2
)
, Nη(εp) =

√
εp: εp +

(σY η
TE

)2

,

where T is the �nal time, σY is the yield strength and E is the Young's modulus. In the above, the factor
η is multiplied by σY

TE so as to ensure that the regularization is coherent with the order of magnitude of the
solution ε̇p. For the ease of numerical implementation, a globally smooth regularization is chosen rather
than a piecewise regularization. The dissipation function (22) is regularized as

(25)Dε,η(ẇ) =

√
2

3
σY

(
Nη (ε̇p) +

1

ε
Mη

(√
2

3
Nη(ε̇p)− γ̇

))
,

and we de�ne jε,η : Z → R in the same manner as before,

jε,η(ẇ) =

∫
Ω

Dε,η(ẇ) dx.

Lemma 2. The function jε,η(·) is convex, lower semi-continuous and satis�es

|jε,η(z)− jε(z)|≤ Cη ‖z‖Z and jε(z) < jε,η(z) ∀η > 0, z ∈ Z, (26)

where C is a constant independent of η.
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We safely leave the proof of Lemma 2 to the reader. We consider a new problem: �nd wε,η(t) ∈ Z such
that wε,η(0) = 0, ẇε,η(t) ∈ Z and

a(wε,η, z − ẇε,η) + jε,η(z)− jε,η(ẇε,η) ≥ lt(z − ẇε,η) ∀z ∈ Z. (27)

Theorem 4. The variational inequality (27) admits a unique solution wε,η ∈ H1([0, T ], Z).

The proof, given in appendix (B), is inspired from that of Theorem 4.3 in [21]. One cannot apply directly
Theorem 1 because the functional jε,η is not positively homogeneous.

We now convert the variational inequation (27) into an equation. Since the function Dε,η is smooth, we
can de�ne its gradient

∇ZDε,η(w) =

(
∂Dε,η(w)

∂u
,
∂Dε,η(w)

∂εp
,
∂Dε,η(w)

∂γ

)
.

Lemma 3. The variational inequality (27) is equivalent to the variational formulation: �nd wε,η(t) ∈ Z
such that wε,η(0) = 0, ẇε,η(t) ∈ Z and

a(wε,η, z) + 〈∇ZDε,η(ẇε,η), z〉 = lt(z) ∀z ∈ Z, (28)

where 〈, 〉 is the scalar product de�ned by (16).

Proof. By de�nition of the convexity of jε,η we get

jε,η(z)− jε,η(ẇε,η) ≥ 〈∇ZDε,η(ẇε,η), z − ẇε,η〉 ∀z ∈ Z.

The right hand side in the above is the tangent hyperplane to jε,η at z = ẇε,η. On the other hand, (27) can
be written as

jε,η(z)− jε,η(ẇ) ≥ a(wε,η, ẇε,η − z) + lt(z − ẇε,η) ∀z ∈ Z.

Again, the right hand side in the above above is a�ne in z and it vanishes at z = ẇε,η, implying that it is
also tangent at z = ẇε,η. Since jε,η is smooth, the two tangent hyperplanes must be equal

a(wε,η, ẇε,η − z) + lt(z − ẇε,η) = 〈∇ZDε,η(ẇε,η), z − ẇε,η〉 ∀z ∈ Z.

Replacing z in the above by ẇε,η + z ∈ Z, we deduce (28).

Equation (28) is our approximation of the plasticity problem (21) we treat for the rest of this article.
We call it the state equation and its solution, the state solution. As expected, for a �xed ε, one can prove
the convergence of the sequence wε,η of solutions to (27) to the solution wε to (23) as η −→ 0. We content
ourselves in proving a weak convergence.

Theorem 5. The sequence of solutions wε,η to (27) satis�es

η −→ 0, wε,η
∗
⇀ wε in L∞([0, T ], Z) and ẇε,η ⇀ ẇε in L2([0, T ], Z),

where wε is the solution to (23).

The proof of Theorem 5 is postponed to appendix (C).

3 Shape derivative computation

In this section, to simplify the notations, we drop the indices ε and η, and simply write w instead of wε,η.
We minimize an objective function J(Ω) de�ned as

J(Ω) =

∫ T

0

(∫
Ω

m(w(Ω)) dx+

∫
ΓN

p(w(Ω))ds

)
dt, (29)

where w(Ω) is solution to the state equation (28) and the integrands m(·) and p(·) are assumed to be
smooth functions at least of class C1. In addition we assume a growth condition on m(·) and p(·) such that
the objective function is well-de�ned and the adjoint equation (33) is well-posed. This objective can represent
a mechanical property such as the total compliance, total power, elastic energy, plastic energy, etc. as well

9
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Figure 2: Design domain D and the shape Ω

as a geometric property such as the volume. An industrially relevant objective is the total compliance, given
by

J(Ω) =

∫ T

0

∫
ΓN

g · u(Ω) ds dt. (30)

In practice, the shape Ω is designed inside a pre-�xed design space D ⊂ Rd. As shown in Fig.2, the blue
region represents the shape Ω, and the blue and grey area represent the design space D.We de�ne the space
of admissible shapes Uad as

Uad =

{
Ω ⊂ D,

∫
Ω

dx = Vf

}
, (31)

where Ω is an open set and Vf is a target volume. The optimization problem then reads

min
Ω∈Uad

J(Ω).

The question of existence of optimal shapes Ω is a delicate one and we shall not dwell into it (see [23] for
a discussion). Rather, we content ourselves with computing numerical minimizers, using a gradient-descent
method.

3.1 Preliminaries

The gradient in the context of shape optimization is based on the notion of the Hadamard shape derivative
[1, 2, 23, 40]. Starting from a smooth domain Ω, the perturbation of the domain is expressed as

Ωθ = (Id + θ)(Ω),

where θ ∈W 1,∞(Rd,Rd) and Id is the identity map. It is well-known that when the norm of θ is su�ciently
small, the map Id + θ is a di�eomorphism in Rd. With this perturbation of the domain, one can de�ne the
notion of a Fréchet derivative for a function J(Ω).

De�nition 1. The shape derivative of J(Ω) at Ω is de�ned as the Fréchet derivative in W 1,∞(Rd,Rd)
evaluated at 0 for the mapping θ 7→ J((Id + θ)(Ω)) i.e.,

J((Id + θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(θ) with lim
θ→0

o(θ)

‖θ‖W 1,∞
= 0,

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

Given an initial shape Ω, one can then apply the above gradient, and move the shape iteratively, mini-
mizing the objective. In general, nothing ensures that our iterations would converge. Moreover, even in the
case of convergence, one ends up in a �nal shape, which is often a local minimum, depending on the choice
of the initial design.

Typically when a structure is designed, the clamped and the forced boundaries are assumed to be non-
optimizable. Hence in our optimization, we allow only Γ to move along θ as shown in Fig.2. To incorporate
this constraint, we introduce the space

W 1,∞
0 (Rd,Rd) = {θ ∈W 1,∞(Rd,Rd), θ = 0 on ΓN ∪ ΓD}

and state a classical lemma we shall use later.
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Lemma 4. Let Ω be a smooth bounded open set and ϕ,ψ ∈W 1,1(Rd,R). De�ne J(Ω) by

J(Ω) =

∫
Ω

ϕ(x) dx+

∫
ΓN

ψ(x) ds,

then J(Ω) is di�erentiable at Ω with the derivative being

J ′(Ω)(θ) =

∫
Γ

θ · n ϕ ds ∀θ ∈W 1,∞
0 (Rd,Rd).

3.2 Shape derivative

Since the regularized nonlinearity jε,η(·) is C∞, it is possible to compute the shape derivative of the objective
function J(Ω) de�ned by (29).

Theorem 6. Let Ω ⊂ Rd be a smooth bounded open set. Let f ∈ C0([0, T ], H1(Rd)d), g ∈ C0([0, T ], H2(Rd)d)
and w(Ω) ∈ H1([0, T ], Z) the solution to (28). Then the shape derivative of J(Ω) along θ ∈ W 1,∞

0 (Rd,Rd),
J ′(Ω)(θ) is given by

J ′(Ω)(θ) =

∫ T

0

∫
Γ

θ·n
(
m(w)+C(ε(u)−εp) : (ε(v)−εq)+εq :Hεp+Eisoγµ+∇ZDε,η(ẇ)·z−lt(z)

)
ds dt, (32)

where z(Ω) ∈ H1([0, T ], Z) is the solution to the adjoint problem, with the �nal condition z(T ) = 0,

a(z,ϕ)−
〈
d

dt

(
∇2

Z
Dε,η(ẇ)z

)
,ϕ

〉
= −〈∇Zm(w),ϕ〉 −

∫
ΓN

∇Zp(w)ϕ ds ∀t ∈ [0, T ), ∀ϕ ∈ Z, (33)

which is assumed to be well-posed (recall that 〈, 〉 is the scalar product de�ned by (16) in Z).

Proof. The idea of the proof is classical and, assuming that the adjoint equation is well-posed, it relies on
Céa's technique [12]. De�ne three spaces Ṽ , Q̃ and Z̃ = Ṽ × Q̃×L2(Rd) (which are similar to those in (15)
except that Ω is replaced by Rd) by

Ṽ = {u ∈ H1(Rd)d, u = 0 on ΓD} and Q̃ = {εq ∈ L2(Rd)d×d, tr(εq) = 0 a.e. in Rd}. (34)

For w̃ = (ũ, ε̃p, γ̃) ∈ H1([0, T ], Z̃), z̃ = (ṽ, ε̃q, µ̃) ∈ H1([0, T ], Z̃) (the Lagrange multiplier for the state

equation (28)) and λ̃ ∈ L2(Rd)d (the Lagrange multiplier for the initial condition w̃(0) = 0), de�ne a
Lagrangian by

(35)
L(Ω, w̃, z̃, λ̃) =

∫ T

0

(∫
Ω

m(w̃) dx+

∫
ΓN

p(w̃)ds

)
dt

+

∫ T

0

(
a(w̃, z̃)− lt(z̃) + 〈∇ZDε,η( ˙̃w), z̃〉

)
dt+

∫
Ω

λ̃ · w̃(0) dx.

We remark that here the variables w̃(t), z̃(t) and λ̃ are de�ned on the full space Rd and are thus independent
of Ω. Although ũ(t) and ṽ(t) are required to vanish on ΓD, they do not depend on Ω since ΓD is a �xed
boundary. Therefore, writing the optimality conditions applied to the Lagrangian (35), namely that its
partial derivatives with respect to the independent variables (Ω,w, z,λ) vanishes, yields the state equation,
the adjoint equation and the shape derivative.

When the Lagrangian (35) is di�erentiated with respect to the adjoint variable z̃, along ϕ ∈ H1([0, T ], Z̃),
and equated to zero, followed by the substitution w̃ = w, we get

∂L
∂z

(ϕ) =

∫ T

0

(a(w,ϕ) + 〈∇ZDε,η(ẇ),ϕ〉 − lt(ϕ)) dt = 0 ∀ϕ ∈ H1([0, T ], Z̃).

Since the bilinear form a(·, ·) and the linear forms in the above are de�ned only on Ω, we can replace Z̃ by
Z. Di�erentiating (35) with respect to λ̃ at w̃ = w, equating it to zero, we deduce the initial condition
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w(0) = 0 a.e. on Ω. We thus recover the state equation (28). Next, we di�erentiate the Lagrangian (35)
with respect to w̃ along ϕ ∈ H1([0, T ], Z̃) and equate it to zero at w̃ = w, z̃ = z, λ̃ = λ, to get

∂L
∂w

(ϕ) =

∫ T

0

∫
Ω

∇Zm(w)ϕ dx dt+

∫ T

0

∫
ΓN

∇Zp(w)ϕ ds dt

+

∫ T

0

a(ϕ, z)dt+

∫ T

0

〈∇2
Z
Dε,η(ẇ)ϕ̇, z〉dt+

∫
Ω

λ ·ϕ(0) dx = 0 ∀ϕ ∈ H1([0, T ], Z̃).

Using the symmetry of the second derivative ∇2
Z
Dε,η(ẇ), and integrating by parts in time, we deduce

∫ T

0

∫
Ω

∇Zm(w)ϕ dx dt+

∫ T

0

∫
ΓN

∇Zp(w)ϕ ds dt+

∫ T

0

a(ϕ, z)dt+ 〈ϕ,∇2
Z
Dε,η(ẇ)z〉

∣∣
t=T

− 〈ϕ,∇2
Z
Dε,η(ẇ)z〉

∣∣
t=0
−
∫ T

0

〈
ϕ,

d

dt
(∇2

Z
Dε,η(ẇ)z)

〉
dt+

∫
Ω

λ ·ϕ(0) dx = 0 ∀ϕ ∈ H1([0, T ], Z̃).

Since all integrals in the above are de�ned only on Ω, we can replace Z̃ by Z. Varying the test function ϕ,
we derive the following adjoint equation:

λ = ∇2
Z
Dε,η(ẇ)z

∣∣
t=0

, z(T ) = 0 and

a(z,ϕ)−
〈
d

dt

(
∇2

Z
Dε,η(ẇ)z

)
,ϕ

〉
= −〈∇Zm(w),ϕ〉 −

∫
ΓN

∇Zp(w)ϕ ds t ∈ [0, T ), ∀ ϕ ∈ Z.

Finally, using the relation J(Ω) = L(Ω,w, z̃, λ̃), we determine the shape derivative J ′(Ω)(θ) for any θ ∈
W 1,∞

0 (Rd,Rd) by

J ′(Ω)(θ) =
∂L
∂Ω

(θ) +
∂L
∂w

(
∂w

∂Ω
(θ)

)
,

because z̃ and λ̃ do not depend on Ω. Now, replacing them by their precise values z and λ, given by the
adjoint problem, the last term cancels to get

J ′(Ω)(θ) =
∂L
∂Ω

(θ)

and formula (32) is deduced by application of Lemma 4.

3.3 Well-posedness of the time discretized version of the adjoint equation (33)

In the previous proof, we assumed that the adjoint equation (33) was well-posed. The adjoint problem
(33) is a linear backward parabolic equation with a �nal condition at t = T. The right hand side of (33)
involves the derivative of the objective function which is assumed to satisfy a growth condition that renders
it well-de�ned. The only di�cult point is that the time derivative of z is multiplied by the Hessian operator
of the convex dissipation function. If we knew that this operator is coercive, then existence and uniqueness
would be easy (assuming further that ẇ is a smooth function). In full generality, the analysis for the time-
continuous adjoint problem (33) is very complicated. However, if we consider a time-discretized version of
(33), then the analysis is much simpler as we shall now show. We split the time interval [0, T ] in N intervals
of length δt. We denote the solution of the state problem (28), w(t) evaluated at time instant tn = nδt by
wn = (un, εp,n, γn). Similarly, ẇn = (u̇n, ε̇p,n, γ̇n) denotes the time derivative ẇ(t) at time instant tn. On
the other hand, zn denotes an approximation of the adjoint state (33) at time tn de�ned as the solution to
the system below: for zN = 0, �nd a family zn ∈ Z, N − 1 ≥ n ≥ 0, such that

a(ϕ, zn) +
1

δt

〈
∇2

Z
Dε,η(ẇn)zn −∇2

Z
Dε,η(ẇn+1)zn+1,ϕ

〉
= −〈∇Zm(wn+1),ϕ〉 −

∫
ΓN

∇Zp(wn+1) ·ϕ ds ∀ϕ ∈ Z. (36)

Theorem 7. We assume that ẇn ∈ V × L∞(Ω)d×d × L2(Ω) and ε > 0, η > 0. Then the time-discretized
adjoint problem (36) admits a unique solution zn ∈ Z, n = N − 1, · · · , 1, 0.
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Proof. Every equation in the system (36) is linear in zn. The form a : Z × Z → R is bilinear, symmetric,
bounded and coercive as shown in Lemma 1 for h0 > 0. In what follows, we show that the adjoint equation
is well posed even for h0 = 0. The bilinear form δta(·, ·) + 〈∇2

Z
Dε,η(ẇn)·, ·〉 is symmetric and bounded, and

in order to demonstrate its coercivity, we consider it for all z, z = (v, εq, µ) ∈ Z,

δta(z, z) + 〈∇2
Z
Dε,η(ẇn)z, z〉 = δt

(∫
Ω

C(ε(v)− εq) : (ε(v)− εq) dx+

∫
Ω

Hεq : εq dx+

∫
Ω

Eisoγ
2 dx

)
+ 〈∇2

Z
Dε,η(ẇn)z, z〉.

We write the expression of 〈∇2
Z
Dε,η(ẇn)z, z〉 (which is the second derivative of Dε,η(ẇ) along two directions

z, z):

(37)

〈∇2
Z
Dε,η(ẇn)z, z〉 =

∫
Ω

√
2

3
σY

N ′′η (ε̇p)ε
2
q +

1

ε
M ′′η

(√
2

3
Nη(ε̇p)− γ̇

)(√
2

3
N ′η(ε̇p)εq − µ

)2

+
1

ε

√
2

3
M ′η

(√
2

3
Nη(ε̇p)− γ̇

)
N ′′η (ε̇p)ε

2
q

 dx

where N ′′η (ε̇p)ε
2
q =

(
ε2
q

(ε̇2
p + η̃2)1/2

− (ε̇p : εq)
2

(ε̇2
p + η̃2)3/2

)
and η̃ =

σY η

TE
.

By construction M ′η(·), M ′′η (·) ≥ 0. Moreover

N ′′η (ε̇p)ε
2
q ≥

(
ε2
q

(ε̇2
p + η̃2)1/2

−
ε̇2
p ε

2
q

(ε̇2
p + η̃2)3/2

)
=

η̃2ε2
q

(ε̇2
p + η̃2)3/2

.

The second derivative (37) can then be bounded from below by

(38)

〈∇2
Z
Dε,η(ẇn)z, z〉 ≥

∫
Ω

√
2

3
σY ε

2
q

(
η̃2

(ε̇2
p,n + η̃2)3/2

+
1

ε

√
2

3
M ′η

(√
2

3
Nη(ε̇p,n)− γ̇n

)
η̃2

(ε̇2
p,n + η̃2)3/2

)
dx

≥
∫

Ω

√
2

3

σY η̃
2ε2
q

(ε̇2
p,n + η̃2)3/2

dx.

Then, performing a similar calculation as in Lemma 1, we get for s ∈ (0, 1)

δta(z, z) + 〈∇2
Z
Dε,η(ẇn)z, z〉 ≥ δt

(
c0s ‖ε(v)‖2L2(Ω) +

(
h0 −

c0s

1− s

)
‖εq‖2L2(Ω) + Eiso ‖µ‖2L2(Ω)

)
+

√
2

3
σY min

x∈Ω

(
η̃2

(ε̇2
p,n + η̃2)3/2

)
‖εq‖2L2(Ω) .

Denote C =
√

2
3σY minx∈Ω

(
η̃2

(ε̇2p,n+η̃2)3/2

)
, which is �nite since η > 0. By the assumption ε̇p,n ∈ L∞(Ω)d×d

we have that C > 0. If h0 > 0, we take s = h0

2c0+h0
, while if h0 = 0, we take s = C

2c0δt+C
and �nd

the left hand side in the above to be coercive. The adjoint equation (36) thus admits a unique solution
zn ∈ Z, n = N − 1, · · · , 1, 0.

Remark 2. As shown in the previous theorem, the approximate dissipation function (25) is so constructed
such that 〈∇2

Z
Dε,η(ẇ)z, z〉 is positive for all non zero z ∈ Z. This ensures the well-posedness of the system

(36) even for h0 = 0. This is remarkable because the adjoint system (36) is well posed even when the state
equation (28) cannot be shown to be well-posed.
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3.4 Formal analysis of the limit adjoint equation

At this stage, one may ask what happens in the adjoint (33) when the parameters ε, η −→ 0. In this subsection,
we answer this question in a formal manner. Note that the adjoint equation is the adjoint operator of the
linearized equation corresponding to the nonlinear problem (27). We have been able to pass to the limit
ε, η −→ 0 in the nonlinear problem (27) (end of Section 2), and obtain the formulation (21). Instead of
passing to the limit ε, η −→ 0 in (33), one may equivalently linearize (21). This linearization is not possible
in a classical sense as (i) it contains a non-smooth functional j(·), (ii) it is posed on a convex set K. The
�rst di�culty is addressed using the sub-di�erential of j(·). The second di�culty may be addressed using
the notion of conical derivative, which is well studied for inequality of the �rst kind [40]. It �nds application
in the obstacle problem and contact mechanics [30]. The conical derivative for a particular inequality of the
second kind is studied in [40] and an application to the continuous viscoplasticity problem is considered in
[39].

The plasticity problem (21) is an inequality neither of the �rst kind nor of the second. Its time-discretized
version however classi�es as an inequality of the second kind. To the best of our knowledge, calculation of
the conical derivative for neither the continuous plasticity problem (21) nor its time-discretized version
has been performed yet and remains outside the scope of this article. Nevertheless, we shall determine a
shape derivative for a simpli�ed version of problem (21) and in a formal manner because of the very strong
assumption (A) below. Problem (21) is simpli�ed by assuming that only the �rst time step of its time-
discretized version is considered and that the isotropic hardening Eiso = 0 vanishes. These two simpli�cations
are made only for the sake of simplicity of the proof, without loss of generality. We remind the reader that
in problem (21) the solution and the forces are assumed to vanish at time t = 0. An incremental body force
f and surface load g are applied, so that the problem reads: �nd w = (u, εp) ∈ V ×Q such that

a(w, z −w) + j(z)− j(w) ≥ l0(z −w) ∀z ∈ V ×Q, (39)

where z = (v, εq), and the forms a(·, ·), j(·) and l0(·) are given by

a(w, z) =

∫
Ω

(C(ε(u)− εp) : (ε(v)− εq) + Hεp : εq) dx,

j(z) =

∫
Ω

√
2

3
σY |εq| dx and l0(z) =

∫
Ω

f · v dx+

∫
ΓN

g · v ds,

respectively. The problem (39) can equivalently be formulated as the minimization of J : V ×Q→ R

min
z∈V×Q

J (z), (40)

where J (z) =

(
1

2
a(z, z) + j(z)− l0(z)

)
. (41)

Since the functional J (·) is convex on its convex domain V ×Q, it admits a unique solution w = (u, εp) ∈
V ×Q. We seek an adjoint problem for a shape optimization problem with (39) as a constraint. For the same,
we must convert the inequation (39) into an equation. In order to facilitate this conversion, we introduce
the set where the plastic �ow takes place:

Ωw = {x ∈ Ω, εp(x) 6= 0 in Ω} , (42)

and a space Qw de�ned by
Qw = {εq ∈ Q, εq(x) = 0 ∀x ∈ Ω\Ωw}. (43)

Both the set Ωw and the space Qw are dependent on the solution w. We suppose that the set Ωw is open
and Lipschitz. To simplify notations, we let

σ = C(ε(u)− εp) and q = Hεp. (44)

We now consider the minimization of (41) over the smaller space V ×Qw :

min
z∈V×Qw

J (z). (45)

This problem is well posed as the following lemma shows.
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Lemma 5. Let w be the solution to problem (40). Let Ωw and Qw be as de�ned in (42) and (43) respectively
and the set Ωw be open and Lipschitz. Then there exists a unique solution w∗ ∈ V × Qw to problem (45).
In addition, if a(·, ·) is coercive, then

(u∗, ε∗p) = w∗ = w,

and w∗ equivalently satis�es∫
Ω

Cε(v) : (ε(u∗)− ε∗p)dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ V, (46)

∫
Ωw

εq :

(
σ∗ − q∗ −

√
2

3
σY

ε∗p
|ε∗p|

)
dx = 0 ∀εq ∈ Qw. (47)

Proof. The functional (41) is convex on the convex domain V × Qw. Thus problem (45) admits a unique
solution w∗ ∈ V ×Qw. This solution also satis�es

a(w∗, z −w∗) + j(z)− j(w∗) ≥ l0(z −w∗) ∀z ∈ V ×Qw. (48)

We now establish the equality between w∗ and w. One easily verify that w ∈ V ×Qw. Substituting z = w
in (48) and z = w∗ in (39), and adding the two resulting inequations, we get

a(w −w∗,w −w∗) ≤ 0.

Given the coercivity of a(·, ·), we deduce w = w∗. In order to derive equation (47), we rewrite the functional
(41)

∀z ∈ V ×Qw, J (z) =
1

2
a(z, z) +

∫
Ωw

|εq| dx− l0(z).

In the above, the integral on Ωw is di�erentiable in the classical sense if εq(x) 6= 0 over the open Lipschitz
set Ωw. We know that the minimizer εp(x) is non-zero over Ωw by de�nition. Thus the functional J (·) is
di�erentiable at w∗, and equating it to zero leads to (46)-(47).

Remark 3. No derivatives are involved in (47) so it implies

σ∗D − q∗D −
√

2

3
σY

ε∗p
|ε∗p|

= 0 and |σ∗D − q∗D|=
√

2

3
σY in Ωw∗

since εq is trace-free. In other words, the normality law is respected. Alongside, the yield limit is attained
wherever there is plastic �ow. Problem (39) takes Ω and the forces f , g as input whereas problem (46)-(47)
takes Ω, f , g, as well as Ωw (and hence Qw), as input.

For the shape optimization problem, we minimize a simpli�ed version of (29), namely

J(Ω) =

(∫
Ω

m(w(Ω)) dx+

∫
ΓN

p(w(Ω)) ds

)
, (49)

where w(Ω) is the solution to (46)-(47). We compute the shape derivative of (49) under the following strong
assumption.

(A) When Ω is perturbed to (Id + θ)Ω, with a small vector �eld θ ∈ W 1,∞
0 (Rd,Rd), the corresponding

solution wθ ≡ w((Id + θ)Ω) of problem (40) is di�erentiable with respect to θ and the plastic zone
Ωwθ is perturbed to (Id + θp)Ωw0

where θp is a vector �eld which smoothly depends on θ and w0,
while Ωw0

is an open Lipschitz set.

In particular, this assumption implies that the plastic zone does not change its topology, meaning that there
is no creation of new plastic zones or creation of elastic zones inside the plastic zone.

Theorem 8. Let Ω ⊂ Rd be a smooth and bounded open set, f ∈ H1(Rd)d and g ∈ H2(Rd)d be smooth loads.
Assume that the solution to (46)-(47), w = (u, εp) ∈ V ×Q, is smooth, namely belongs to H2(Ω)d×H1(Ω)d×d.
Assume that the integrand p(·), in the cost function (49), does not depend on εp and that H is proportional
to identity tensor.
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Under assumption (A), the shape derivative of (49), in the direction θ ∈W 1,∞
0 (Rd,Rd), is given by

J ′(Ω)(θ) =

∫
Γ

θ · n (m(w) + Cε(v) : (ε(u)− εp)− f · v) ds, (50)

where σ, q are de�ned in (44) and z = (v, εq) ∈ V ×Q is the adjoint variable satisfying, ∀ϕ ∈ V ,∫
Ω

Cε(ϕ) : (ε(v)− εq)dx = −
(∫

Ω

∂um(w) ·ϕ dx+

∫
ΓN

∂up(w) ·ϕ ds
)
, (51)

εq = −

(
C + H +

√
2

3
σY

(
I
|εp|
− εp ⊗ εp
|εp|3

))−1 (
Cε(v)− ∂εpm(w)

)
D in Ωw. (52)

Remark 4. Note that the variation θp of the plastic zone, which is assumed to exist in assumption (A),
does not play any role in the shape derivative (50). Theorem 8 is a mathematically clean version of many
results in the engineering literature (often in a discretized setting) where the equations are derived without
taking into account the non-di�erentiability issues. Of course, our result relies on a very strong assumption
which is the price to pay to deduce a simple formula as (50).

Proof. The shape derivative is determined by applying Céa's method. The main idea is to de�ne a Lagrangian
for the simpler equations (46)-(47) rather than for the variational inequality (39). The Lagrangian is de�ned
by

L
(
w̃, z̃, λ̃,Ωp,Ω

)
=

∫
Ω

m(w̃)dx+

∫
ΓN

p(w̃)ds+

∫
Ω

Cε(ṽ) : (ε(ũ)− ε̃p)dx

−
∫

Ω

f · ṽ dx−
∫

ΓN

g · ṽ ds+

∫
Ωp

ε̃q :

(
σ̃D − q̃D −

√
2

3
σY

ε̃p
|ε̃p|

)
dx+

∫
Ω\Ωp

λ̃ : ε̃p dx,

(53)

where w̃ = (ũ, ε̃p) ∈ Ṽ × Q̃ (de�ned in (34)), z̃ = (ṽ, ε̃q) ∈ Ṽ × Q̃ is the adjoint variable, Ωp is the plastic

zone (which is independent of w̃), λ̃ ∈ Q̃ is a Lagrange multiplier penalizing the constraint ε̃p = 0 in the
elastic zone Ω\Ωp, σ̃ = C(ε(ũ)− ε̃p) and q̃ = Hε̃p. The variables w̃ and z̃ vanishes on ΓD, which is a �xed
set, so it does not cause any problem for di�erentiating the Lagrangian (53).

We now compute the optimality condition for the Lagrangian (53). The optimal variables are denoted
by (w, z,λ). Since the Lagrangian is linear with respect to z̃ and λ̃, it is easy to compute its partial
derivatives with respect to these two variables. Equating to zero the partial derivative for z̃ in the direction
(ϕ,ψ) ∈ V ×Q yields∫

Ω

Cε(ϕ) : (ε(u)− εp)dx =

∫
Ω

f ·ϕ dx+

∫
ΓN

g ·ϕ ds ∀ϕ ∈ V, (54)

∫
Ωp

ψ :

(
σ − q −

√
2

3
σY

εp
|εp|

)
dx = 0 ∀ψ ∈ Q. (55)

Equating to zero the partial derivative for λ̃ in the direction µ ∈ Q leads to∫
Ω\Ωp

µ : εpdx = 0 ∀µ ∈ Q, (56)

which implies that εp = 0 in Ω\Ωp. Choosing Ωp = Ωw one can check that the optimality conditions
(54)-(55) and (56) are precisely the state equations (46)-(47).

The adjoint equations (51)-(52) are obtained by writing the optimality condition of the Lagrangian (53)
with respect to w̃ in the direction (ϕ,ψ) ∈ V ×Q. The adjoint z is evaluated at the state w, λ and Ωp = Ωw.
The adjoint problem amounts to �nd z = (v, εq) ∈ V ×Q such that∫

Ω

Cε(ϕ) : (ε(v) + εq)dx = −
(∫

Ω

∂um(w) ·ϕ dx+

∫
ΓN

∂up(w) ·ϕ ds
)

∀ϕ ∈ V,∫
Ωw

ψ :

(
Cε(v) + (C + H)εq +

√
2

3
σY

(
εq
|εp|
− (εp : εq)εp

|εp|3

))
dx

=

∫
Ωw

∂εpm(w):ψ dx+

∫
Ω\Ωw

(∂εpm(w):ψ + λ :ψ) dx ∀ψ ∈ Q,
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where we used the assumption that the cost function p(·) does not depend on εp. The second equation has
no derivative on the test function ψ so it yields

λ = −∂εpm(w) in Ω\Ωw,

((C + H)εq)
D +

√
2

3
σY

(
εq
|εp|
− (εp : εq)εp

|εp|3

)
=
(
−Cε(v) + ∂εpm(w)

)
D in Ωw.

Some easy algebra shows that εq is indeed given by formula (52) (where we used the fact that ((C + H)εq)
D

=
(C + H)εq) .

Since w and Ωp = Ωw, solution of problem (40), satis�es the state equations (46)-(47), we have, for any

z̃, λ̃,

L
(
w, z̃, λ̃,Ωw,Ω

)
= J(Ω).

Now we di�erentiate both sides in the above with respect to the shape Ω in the direction of a vector �eld θ.
Because of assumption (A), when θ moves the domain Ω to (Id + θ)Ω, the plastic zone Ωw is displaced to
(Id + θp)Ωw, with another vector �eld θp. Thus, by the chain rule lemma, we obtain

(57)
J ′(Ω)(θ) =

〈
∂L
∂Ω

(
w, z̃, λ̃,Ωw,Ω

)
,θ

〉
+

〈
∂L
∂Ωw

(
w, z̃, λ̃,Ωw,Ω

)
,θp

〉
+

〈
∂L
∂εp

(
w, z̃, λ̃,Ωw,Ω

)
,
∂εp
∂Ω

(θ)

〉
+

〈
∂L
∂u

(
w, z̃, λ̃,Ωw,Ω

)
,
∂u

∂Ω
(θ)

〉
.

Now, substituting z̃ = z, λ̃ = λ and using the adjoint equations (51)-(52), the last line of (57) vanishes
because it is the adjoint variational formulation. We obtain

J ′(Ω)(θ) =

〈
∂L
∂Ω

(w, z,λ,Ωw,Ω) ,θ

〉
+

∫
∂Ωw

(θp · n) εq :

(
σD − qD −

√
2

3
σY

εp
|εp|

)
ds+

∫
∂(Ω\Ωw)

θp · n (λ : εp) ds.

Given that εp = 0 in Ω\Ωw and the assumption that εp ∈ H1(Ω)d×d, we deduce that the last integral
vanishes. Furthermore, the smoothness assumption (u, εq) ∈ H2(Ω)d × H1(Ω)d×d implies that the yield
strength is attained even on ∂Ωw, so the penultimate integral vanishes too. Thus we �nd

J ′(Ω)(θ) =

〈
∂L
∂Ω

(w, z,λ,Ωw,Ω) ,θ

〉
.

Finally, using Lemma 4 leads to formula (50).

4 Numerical Implementation

We �rst discuss the numerical resolution of the state equation (28), then that of the adjoint equation (33)
and �nally we describe the shape optimization algorithm. The domain Ω is discretized using a simplicial
unstructured mesh and the space Z, de�ned by (15), is discretized as Zh, using the �nite element framework

Zh = P1(Ω)d × P0(Ω)d×d × P0(Ω). (58)

The space K is discretized as Kh, de�ned by

Kh =

{
(u, εp, γ) ∈ Zh,

√
2

3
|εp|≤ γ a.e. in Ω

}
. (59)

The maximal mesh size is denoted by hmax, the minimal mesh size by hmin and the number of mesh vertices
is Nv. We assume the mesh to be regular, or hmax and hmin to be of the same order. The space-time
discretized state solution is w̃(t) ∈ Zh and the space-time discretized adjoint solution is z̃(t) ∈ Zh. The time
interval [0, T ] is discretized in N intervals of length δt. We label the time at the end of n-th time interval as
tn, n = 1, 2, · · · , N. All our numerical experiments are performed with the open-source software FreeFEM++
[22].
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4.1 Resolution of the plasticity formulation

The space-discretized version of the problem (21) reads: �nd wh(t) ∈ Kh such that

a(wh, zh − ẇh) + j(zh)− j(ẇh) ≥ lt(zh − ẇh) ∀zh ∈ Kh. (60)

The solution of the time-discretized version of (60) is denoted by w̃(t) ∈ Zh. More precisely, it is de�ned by
its values w̃n = w̃(tn) at each time step and extended by a�ne interpolation as w̃(t) = w̃n + δw̃n(t − tn)
for t ∈ [tn, tn+1], where δw̃n = (w̃n+1 − w̃n)/δt is the increment. Equation (60) could be regularized and
penalized as before but we refrain ourselves from doing so and instead solve its time-discretization via the
radial return algorithm [37].

4.2 Resolution of adjoint system

We denote by z̃n = z̃(tn) the discrete values of the adjoint, which is linearly interpolated in time on each sub-
interval. We further discretize in space the time-discrete adjoint system (36) which was studied in Section 3
(and proved to be well-posed). The space-time discretized adjoint problem is de�ned by: z̃N = 0 and, for
n = N − 1, · · · , 1, 0, �nd the solution z̃n ∈ Zh of

δt〈∇Zm(w̃n+1),ϕ〉+ δt

∫
ΓN

∇Zp(w̃n+1)ϕ ds+ δta(ϕ, z̃n)

+
〈
∇2

Z
Dε,η(δw̃n)z̃n −∇2

Z
Dε,η(δw̃n+1)z̃n+1,ϕ

〉
= 0 ∀ϕ ∈ Zh. (61)

This system is going backward in time. One ought to solve the state equation (60) until the last time step,
store the solutions w̃n for every time-step and retrieve the solutions one by one starting from the last time
step. This is thus quite heavy in terms of memory requirement for numerical simulations. Finally, the time
discretized shape derivative reads

(62)
J ′(Ω)(θ) =

N−1∑
n=0

δt

∫
Γ

θ · n
(
m(w̃n) + C(ε(ũn+1)− ε̃p,n+1): (ε(ṽn)− ε̃q,n) + Hε̃p,n+1: ε̃q,n

+ Eisoγ̃n+1µ̃n +∇ZDε,η
(
w̃n+1 − w̃n

δt

)
z̃n − f(tn) · ṽn

)
ds,

where (ũn, ε̃p,n, γ̃n) = w̃n and (ṽn, ε̃q,n, µ̃n) = z̃n.
In numerical practice, denoting by L a characteristic length of the domain D, we choose the values of

ε, η for penalization and regularization according to the following rule (see [16] for more details)

ε =

(
hmin

L

)1+d/2

and η = ε2. (63)

Remark 5. For all of our numerical experiments, we replace w̃n in the adjoint equation (61) and in the
shape derivative (62) by the solution obtained via radial return, wr(tn) ∈ Kh, which does not take into
account the penalization and regularization. In formula (62) of the shape derivative, and more precisely in
the term ∇ZDε,η, we neglect the contribution 1

εM
′
η(·). The reason for this is because we replace the penalized

solution w̃(t) by the non-penalized one wr(t). For the penalized solution, the contribution 1
εM
′
η

(
w̃n+1−w̃n

δt

)
is of order O(1) since it satis�es the problem (28). However, the same term is of order O(1/ε) for the
non-penalized solution because the regularization Mη(s) of max(0, s) is not exactly zero for negative values
of s. To avoid this numerical artifact we found it more e�cient to just cancel this term in (62).

4.3 Level-set method

The level-set method was introduced by Osher and Sethian [35] and adapted to the shape optimization
framework in [3], [43]. This method proposes to describe the shape Ω ∈ Rd by the level-set function
φ : D → R de�ned as 

φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ Γ,

φ(x) > 0 if x ∈ Ω
c
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where Γ is the movable part of the boundary ∂Ω and D is the design space as shown in Fig.2. The crux of
the method lies in letting the shape deform along a velocity �eld θ : D → Rd. The evolution of the shape is
governed by the transport equation

∂φ

∂t
+ θ · ∇φ = 0. (64)

Very often, the velocity �eld is oriented along the normal, namely θ = θn where n = ∇φ/|∇φ| and the
scalar function θ is the normal velocity. In such a case, (64) can be re-written as a Hamilton-Jacobi equation

∂φ

∂t
+ θ|∇φ|= 0.

In our numerical setting, we work with the linear transport equation (64) because we use non cartesian
meshes and rely on the library advect [9] which solves (64) by the method of characteristics, known to be
unconditionally stable. The level-set function is a P1 function on a simplicial mesh. After every advection,
the new shape is captured using a body-�tted mesh obtained using MMG [13].

The level-set method is known to capture rather smooth surfaces. It is even more the case when each
new shape is precisely remeshed with MMG. However, it is not the only possible approach to obtain smooth
shapes. Let us mention the recent work [5] which is also based on a re-meshing strategy and a so-called
screened Poisson equation for regularization, which is actually very similar to our own regularization process
(65).

It is well-known that the level-set method cannot nucleate new holes in the shape Ω although it can
easily merge or close them. However in 3D, the level-set function can evolve in such a way that it digs the
boundary Γ, creating holes in the shape. In any case, both in 2D and 3D, we initialize the shape optimization
algorithm with a shape that has many holes (see Section 5).

4.4 Regularization and extension of the shape derivative

During optimization the produced shapes may not have a smooth boundary so the shape derivative may have
no rigorous meaning on the boundary Γ. In such a case, it is imperative to regularize the shape derivative
[10, 15, 2] in such a way that it is still a descent direction. One possibility is to consider the H1 scalar
product instead of the L2 scalar product by �nding a function dj(Ω) ∈ H1(D) such that∫

D

(
h2

min∇dj(Ω) · ∇ϕ+ dj(Ω)ϕ
)
dx =

∫
Γ

j′(Ω)ϕ dx ∀ϕ ∈ H1(D), (65)

where hmin is the �xed minimal mesh size, and the function j′(Ω) is de�ned by formula (62) with

(66)J ′(Ω)(θ) =

∫
Γ

θ · n j′(Ω) ds.

Since we have chosen P1 basis elements for the displacement vector and the plastic strain, the shape derivative
in (62) is P0 smooth and so j′(Ω) ∈ P0(Ω). Thus, it is enough to discretize (65) with P1 �nite elements, so
that dj(Ω) ∈ P1(D).

4.5 Shape optimization algorithm

We consider the shape optimization problem

min
Ω∈Uad

J(Ω),

where we remind the reader that Uad is the space of admissible spaces inside the design space D (see
Fig.2). In order to devise an optimization strategy taking the volume constraint into account, we introduce
a Lagrangian L(w̃, z̃,Ω, λ) de�ned as

L(w̃, z̃,Ω, λ) =
J(Ω)

C1
+

λ

C2

(∫
Ω

dx− Vf
)

(67)

where λ is the Lagrange multiplier for the volume constraint and C1, C2 are two normalization constants.
Starting from some initial shape Ω0, these constants are chosen as

C1 =

∫
∂Ω0

|j′(Ω0)| dx, C2 =

∣∣∣∣∫
Ω0

dx− Vf
∣∣∣∣ , (68)
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where j′ is the integrand of the shape derivative, de�ned in (66), and the initial volume is usually larger
than the target volume Vf . In the context of a gradient algorithm, the descent step is also a pseudo-time
step for the level-set transport equation (64), denoted by τ , which we choose as

τ =
hmin

2
, (69)

where hmin is the minimal mesh size at the �rst iteration. The number of gradient descent iterations is
Imax = 200. The volume constraint is not enforced at each iteration but the volume will converge to its
target value by applying a gradient algorithm to the Lagrange multiplier with the same step τ . We thus
perform the algorithm 1.

Algorithm 1 Repeat over i = 0, · · · , Imax

1. Solve for w̃ using the radial return algorithm on the mesh of Ωi starting from t1 until the last time tN .

2. Solve for the adjoint z̃ using (61) on the mesh of Ωi starting from the last time tN until t1.

3. Compute the regularized shape derivative dj(Ωi) by solving (65) with the right hand side (62).

4. Apply a gradient ascent algorithm, with step τ given by (69), to get

λi+1 = λi +
τ

C2

(∫
Ωi

dx− Vf
)
.

5. Set n = ∇φi (the level-set function for Ωi) and solve (64) with the initial data φi and a velocity

θi =

(
dj(Ωi)

C1
+
λi+1

C2

)
n

for a pseudo-time step τ to obtain φ̃i+1.

6. Re-initialize φ̃i+1 to the signed distance function, using mshdist [14], to obtain φi+1 corresponding to
the new shape Ωi+1.

7. Compute the volume Vi+1. If |Vi+1 − Vf |≤ 10−5Vf , then update the level-set φi+1 by adding to it the
constant (Vi+1 − Vf )/

∫
∂Ωi+1

ds.

8. Remesh the box D using MMG [13] to obtain the body �tted mesh of the new shape Ωi+1

Remark 6. Once the working domain D is remeshed in the last step of algorithm (1), the volume tolerance
|Vi+1 − Vf |≤ 10−5Vf of the previous step is no longer satis�ed. One has to move the mesh points of the
remeshed shape Ωi+1 using the lag 0 option of MMG to ensure that the volume tolerance is satis�ed.

5 Results

This section displays 2D and 3D optimization results with three minimization criteria: total compliance
(30), total energy (72) and plastic energy (73). In each case a volume constraint |Ω|= Vf is imposed
and the optimization algorithm 1 is applied. The structure is composed of mild steel with the properties:
E = 210GPa, ν = 0.3, σY = 279MPa, Eiso = 712MPa. For all test-cases in this section except the one
corresponding to (74), we consider a force g that increases from zero to a �nal value in one second in a
constant direction with a time step δt = 0.05. The time-discretized adjoint equation (61) is solved using ε, η
given in (63).

5.1 2D Cantilever

We study a 2m × 1m 2D cantilever beam which is partially clamped on the left side (there is a small
di�erence between the size of the Dirichlet boundary condition and the left edge of the beam), while a
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Figure 3: 2D Cantilever boundary conditions

vertical concentrated force is applied at the middle of the right side of the beam (see Fig.3). The reason to
not completely clamp the left side of the cantilever beam is to allow the shape to move around ΓD and to
avoid potential plastic zone which often appears around the Dirichlet boundary condition. A target volume
Vf = 0.7m2 is imposed. Based on the quasi-static assumption, the rate of force increment has no impact on
the solution at the �nal time instant t = 1. However, the rate does impact the objective function (30). If
the force grows faster in the beginning and then slowly after the onset of plasticity, the objective function is
in�uenced more by the plastic �ow. To see a greater impact of the plastic �ow on the shape derivative (and
hence the shape), we choose

g = (0, 220 min(1.5t, 1))MN/m, t ∈ [0, 1]s. (70)

(a) Initialization with small holes placed periodically (b) Optimized for (30), linear elasticity

(c) Optimized for (30), Eiso = 712MPa, H = 0 (d) Optimized for (30), Eiso = 712MPa, H = 105IMPa

Figure 4: Von Mises stress at t = 1s corresponding to various shapes for a target volume Vf = 0.7m2 and
force (70)

The parameters of the remeshing tool MMG are �xed to hmin = 0.01m (minimal mesh size), hmax = 0.02m
(maximal mesh size). First, we minimize the total compliance (30). The initial shape and the �nal shapes
for the linear elasticity and plasticity models are shown in Fig. 4. Let us �rst note that the presence,
or not, of the hardening tensor H does not change much the resulting optimized shape in Figures 4c and
4d. As can be seen on Figures 4b and 4d, the optimized shapes for linear elasticity or plasticity are very
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Figure 5: Convergence history corresponding to shapes (4b) and (4d)

Figure 6: Plastic zones (γ > 0) at t = 1s computed for shapes (4b) and (4d)

Shape (4b) Shape (4d)

Total Compliance (30) for linear elasticity 89, 131 90, 428
Total Compliance (30) for plasticity (Eiso = 712MPa, H = 105IMPa) 126, 555 123, 172

Table 1: 2D Cantilever shape comparison for force (70)

similar. The only slight di�erence is near the Dirichlet boundary condition, where the bars are thicker for
the plasticity case. It turns out that the displacement for linear elasticity is numerically very close to the one
for plasticity. Although the plastic deformation εp does contribute to the shape derivative for the plasticity
case, it does not induce a di�erent topology, compared to the elasticity case. The convergence history for
the total compliance is depicted in Fig. 5.

To quantitatively compare the two optimized shapes in Figures 4b (elasticity) and 4d (plasticity), we
perform a plasticity computation for both of them with Eiso = 712MPa, H = 105IMPa and the force (70).
The plastic zones (where γ > 0) at time t = 1s along with the mesh are plotted in Fig.6 and the total
compliance (30) is noted in Table 1. In Fig.6, we observe that the plastic zones are slightly smaller for (4d)
compared to (4b). As seen in Table 1, the total compliance for the cantilever beam obtained for plasticity is
2.75% lesser than the one obtained for the linear elasticity case. While this improvement is pertinent, it is
not very impressive. On the other hand, Table 1 con�rms that Figure 4b is (slightly) better than Figure 4d
for the linear elasticity.

Next, we investigate if a few parameters of the previous test-case (external force, optimization criteria or
initialization) results in a drastic change of the plastic zone. Speci�cally we investigate three variations.

1. Increase the external force to

g = (0, 400 min(1.5t, 1))MN/m, t ∈ [0, 1]s (71)

such that the entire shape undergoes a plastic deformation.
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2. Consider two new criteria for minimization: total energy

J(Ω) =

∫ T

0

∫
Ω

1

2

(
Cεe: εe + Hεp: εp + Eisoγ

2
)
dx (72)

and energy due to kinematic hardening

J(Ω) =

∫ T

0

∫
Ω

1

2
Hεp: εpdx, (73)

in addition to the total compliance criterion (30).

3. Consider three di�erent initializations (as shown in Fig.7) for total compliance minimization.

(a) Periodically distributed big holes (b) Optimized shape, initialized from (7a)

(c) Periodically distributed small holes (d) Optimized shape, initialized from (7c)

(e) Shape obtained by minimizing compliance for linear
elasticity

(f) Optimized shape, initialized from (7e)

Figure 7: Von Mises stress at t = 1s for the initial shapes (on the left) and optimized shapes for total
compliance (30) (on the right), with Vt = 0.7m2, Eiso = 712MPa, H = 105IMPa and force (71).

The shapes obtained for the three di�erent initializations are plotted in Fig.7, their corresponding com-
pliances (30) are presented in Table 2, and their convergence histories are depicted in Fig.8. As expected,
we obtained three di�erent topologies. In Fig.7, we observe that plastic deformation occurs everywhere in
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the optimal shapes. This was not expected as yielding should have resulted in a high accumulated plastic
deformation and hence a high total compliance. However what actually happens is that, when the shapes
reach the yield point, hardening occurs. Once the shape hardens, its load bearing capacity increases. Hence
the optimal shapes are the ones that struggle a balance between hardening and plastic deformation. Con-
sequently, it is unrealistic to expect dramatic reduction in the size of plastic zones. As seen in Table 2, the
cantilever beam is best optimized if initialized by the solution obtained for the linear elasticity case (Figure
7c). In Fig.8, we see almost no decrease in the objective function for the shape of Figure 7f. This means
that the shape obtained for the linear elasticity case is almost optimal for plasticity.

The shapes obtained for di�erent objective functions, namely total energy (72) and plastic energy (73),
are plotted in Fig. 9. The shapes 9a and 9b are similar to the previous shapes of Figures 7d and 7f
respectively. In both cases they were initialized with Figure 7c. Again, the size of the plastic zone (where
γ > 0) has not decreased. We believe it is because plastic zones are hardened zones and, as a result, are
necessary for minimizing the total energy or the plastic energy.
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Figure 8: Convergence history for the shapes (7b), (7d) and (7f)

(a) Total energy (72) minimization (b) Plastic energy (73) minimization

Figure 9: Von Mises stress at t = 1s for optimized shapes, initialized from (7c), with Vt = 0.7m2, Eiso =
712MPa, H = 105IMPa and force (71).

Shape (7b) Shape (7d) Shape (7f)

Total Compliance (30) for linear elasticity 423, 424 410, 188 404, 180
Total Compliance (30) for plasticity
(Eiso = 712MPa, H = 105IMPa) 608, 714 578, 630 558, 156

Table 2: 2D Cantilever shape comparison for force (71)
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5.2 2D wedge

We study a 2D wedge (see Fig.10) which is �xed on its leftmost leg, has a vanishing vertical displacement
on its rightmost leg, and is loaded on the middle of its upper boundary. A target volume Vf = 0.2m2 is

Figure 10: 2D wedge boundary conditions

(a) Periodically distributed small holes (b) Optimized shape, initialized from (11a)

(c) Shape obtained by minimizing compliance for linear
elasticity

(d) Optimized shape, initialized from (11c)

Figure 11: Von Mises stress at t = 1s for initialized shapes (on the left), optimized shapes for total compliance
(30) (on the right), with Vt = 0.2m2, Eiso = 712MPa, H = 105IMPa

imposed. As before, the force grows in the beginning and then remains constant

g = (0, 500 min(1.5t, 1))MN/m, t ∈ [0, 1]s.

The parameters of the remeshing tool MMG are �xed to hmin = 0.005m (minimal mesh size), hmax =
0.01m (maximal mesh size). Isotropic hardening combined with kinematic hardening is considered using the
parameters Eiso = 712MPa, H = 105IMPa. Two initializations are considered for the minimization of total
compliance (30): one consisting of periodically distributed holes (see Figure 11a), the other being the optimal
shape for compliance minimization in linear elasticity (see Figure 11c). The two initializations result in two
di�erent shapes as shown in Figures 11b and 11d. The corresponding convergence histories are plotted in
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Fig.12. As can be checked on Fig.12, the shape optimized for linear elasticity performs better in terms of
total compliance than the shape optimized for plasticity (Figure 11d), starting from a periodically perforated
initialization. Once again, it stresses the importance of the initialization. In all cases, the optimized shapes
undergo plastic deformation everywhere in the solid.
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Figure 12: Convergence history for the shapes (11b) and (11d).

Finally we consider the case of a force whose direction changes in time, de�ned as

g =

(
80 cos

(
πt

2

)
|sin (3πt)| ,−80 sin

(
πt

2

)
|sin (3πt)|

)
MPa for t ∈ [0, 1]s. (74)

To get an intuitive idea of the direction of forcing, we also plot the force vectors for a few time steps in Fig.13.
Only for this test-case, the time step for plasticity is taken smaller, δt = 0.01s. It implies that there are at
least 100 time steps for solving the plasticity equations and the adjoint system. The initial shape is the same
as in Fig.11a. We minimize the total compliance (30) for plasticity as well as for linear elasticity. For the
linear elasticity case, the displacement vector u is computed for the force (74) at every time-step assuming
quasi-static evolution. Because of this assumption, there is no dependence of u on the forcing trajectory (this
could also be seen as a multiple loading test-case). However in the case of plasticity, the forcing trajectory
plays an important role in in�uencing u as the shape undergoes plastic deformation at every time-step. This
test-case is thus indicative of the role, the forcing trajectory plays in shape optimization for plasticity. The
shape optimized for the force (74) in linear elasticity is plotted in Fig.14a and for combined hardening in
Fig.14b. Table 3 compares the two shapes (14a) and (14b). As anticipated, the shape of Figure 14b performs
better for plasticity.

Shape (14a) Shape (14b)

Total Compliance (30) for linear elasticity 19, 566 19, 915
Total Compliance (30) for plasticity (Eiso = 712MPa, H = 105IMPa) 24, 094 23, 313

Table 3: 2D wedge shape comparison for force (74)

5.3 3D Cantilever

We now consider the minimization of the total compliance (30) for a 3D cantilever beam of dimensions
5m × 2.4m × 3m, as shown in Fig.15. The cantilever beam is �xed on its leftmost side, loaded downwards
on a circular region of radius 0.1m on its rightmost side with g = (0, 5000t, 0)MN/m where t ∈ [0, 1]s.
For this test-case we consider combined hardening with Eiso = 712MPa, H = 105IMPa and a target
volume Vf = 12m3. The parameters of MMG are set to hmin = 0.04m, and hmax = 0.12m. We initialize the
shape optimization with a perforated shape as in Fig.16a. Learning from the previous test-cases, we also
also initialize with the shape obtained after minimizing compliance for linear elasticity (see Fig.16c). The
optimization from initialization in Fig.16a is run for longer, 250 iterations instead of 200 iterations as in the
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Figure 13: Rotating force (74) applied to the wedge

(a) Linear elasticity (b) Plasticity, Eiso = 712MPa, H = 105IMPa

Figure 14: Von Mises stress at t = 1s for the shape optimized for total compliance (30), force (74), Vf =
0.2m2.
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ΓD ΓN
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Figure 15: 3D cantilever boundary conditions

other test-cases. This is because an initialization with holes is far from the optimum and it take longer to
converge to a form with plate-like features (which is known to be optimal for maximizing rigidity). As seen in
Fig.16, the two initializations result in the same shape (see Fig.16b-16d). Their corresponding convergence
histories are plotted in Fig.17. The shapes (16b), (16c) and (16d) are compared quantitatively in Table 4.
As seen in Fig.17, it takes a long time for the shape (16a) to converge, whereas the shape (16c) converges in
the �rst few iterations. Consequently, we conclude that it is often advantageous to �rst optimize the shape
for linear elasticity, and then use the optimized shape as initialization to minimize for plasticity.

5.4 3D wedge

We now consider a 3D wedge of dimensions 1.2m × 0.6m × 0.6m as shown in Fig.18. The geometry is
supported on four square surfaces each being 0.05m× 0.05m, three of which can be seen in the Fig.18. The
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(a) Periodically distributed big holes (b) Optimized shape, initialized from (16a)

(c) Shape obtained by minimizing compliance for linear
elasticity

(d) Optimized shape, initialized from (16c)

Figure 16: Von Mises stress at t = 1s for the initial shapes (on the left) and the optimized shapes for total
compliance (30) (on the right), with Vt = 12m3, Eiso = 712MPa, H = 105IMPa.
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Figure 17: Convergence history for shapes (16b) and (16d)

Shape (16c) Shape (16b) Shape (16d)

Total Compliance (30) in linear elasticity 453, 774 456, 363 451, 848
Total Compliance (30)
in plasticity (Eiso = 712MPa, H = 105IMPa) 515, 452 515, 246 507, 319

Table 4: 3D Cantilever shape comparison
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ū

0.6m

0.25m

1.2m

0.6m

0.05m

0.1m

Y

ZX

Figure 18: 3D wedge boundary conditions

wedge is clamped along all the three axes on one surface and only along y-direction on the remaining three
surfaces. The wedge is forced on a square surface on the topmost plane with g = (0,−500t, 0)MN/m where
t ∈ [0, 1]s. The parameters of MMG are set to hmin = 0.012m, and hmax = 0.032m. We consider combined
hardening with Eiso = 712MPa,H = 105IMPa and impose a target volume of Vf = 0.07m3. Optimized
shapes for linear elasticity and plasticity are displayed in Fig.19. Again, we consider two initializations: one
with periodically distributed holes and one obtained by minimizing compliance for linear elasticity. It yields
two topologically di�erent optimized shapes as shown in Fig.19d. As can be seen in Table 5, the shape (19d)
outperforms the shape (19b) in terms of (30) in plasticity as well as in linear elasticity.

(a) Periodically distributed big holes (b) Optimized shape, initialized from (19a)

(c) Shape obtained by minimizing compliance for linear
elasticity

(d) Optimized shape, initialized from (19c)

Figure 19: Von Mises stress at t = 1s for the initial shapes (on the left) and the optimized shapes for total
compliance (30) (on the right), with Vt = 0.07m3, Eiso = 712MPa, H = 105IMPa.
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Shape (19b) Shape (19d)

Total Compliance (30) in linear elasticity 4, 843 4, 387
Total Compliance (30) in plasticity (Eiso = 712MPa, H = 105IMPa) 5, 092 4, 547

Table 5: 3D wedge shape comparison
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7 Replication of results
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Appendices

This appendix is devoted to the proof of previous convergence theorems for our penalization and regulariza-
tion approach. We shall need the following technical lemma at several places.

Lemma 6. The functionals
∫ T

0
jε(·)dt,

∫ T
0
j1(·)dt,

∫ T
0
j2(·)dt are weakly lower semi-continuous in L1([0, T ], Z).

Proof. Since
∫ T

0
jε(·)dt,

∫ T
0
j1(·)dt,

∫ T
0
j2(·)dt are lower semi-continuous in L1([0, T ], Z) and convex, they

are weakly lower semi-continuous in L1([0, T ], Z).

A Proof of Theorem 3

We prove that the sequence wε of solutions to (23) weakly converges to the solution w of (21) as ε goes
to 0. We discretize the time interval [0, T ] in 0 = t0 < t1 < t2 < · · · < tn = T with tn − tn−1 = δt. For
lt ∈ Z∗(de�ned in (18)), let ln = ltn , ∆ln = ln − ln−1. Starting from w0 = 0 we construct a sequence
wn+1 = wn + ∆wn and a function wδt

ε ∈ C0([0, T ],K) such that wδt
ε (t) = wn + (t − tn)/δt∆wn for

t ∈ [tn, tn+1], where ∆wn ∈ Z is the solution of

a(∆wn, z −∆wn) + jε(z)− jε(∆wn) ≥ ln(z −∆wn)− a(wn, z −∆wn) ∀z ∈ Z. (75)

The above is a time-discretized version of (23). The problem (75) is a variational inequation of the second
kind and admits a unique solution [19]. Lemma 4.1 in [21] gives the bound

‖∆wn‖Z ≤ C ‖∆ln‖Z∗ ,

where the constant C is independent of ε and δt. Then, using Lemma 4.2 in [21], one deduce that as δt −→ 0,

wδt
ε
∗
⇀ wε in L∞([0, T ], Z) and ‖wε‖L∞([0,T ],Z) ≤ C1 and ‖ẇε‖L2([0,T ],Z) ≤ C2, where the constants C1

and C2 are independent of ε and δt. These two bounds imply the existence of a subsequence wε and a limit

32



w∗ ∈ H1([0, T ], Z) such that wε
∗
⇀ w∗ in L∞([0, T ], Z) and ẇε ⇀ ẇ∗ in L2([0, T ], Z). Since T is �nite, this

implies that ẇε ⇀ ẇ∗ in L1([0, T ], Z). It remains to show that this limit w∗ is equal to the solution w of
(21). For that, we integrate (23) from t = 0 to T and take z = z0 ∈ K (an arbitrary element) to obtain for
all ε > 0,∫ T

0

jε(ẇε)dt ≤
∫ T

0

(a(wε, z0 − ẇε) + jε(z0)− lt(z0 − ẇε)) dt

=

∫ T

0

(a(wε, z0 − ẇε) + j(z0)− lt(z0 − ẇε)) dt

≤
(
‖wε‖L∞([0,T ],Z) + ‖lt‖L∞([0,T ],Z∗)

)(
‖z0‖Z T + ‖ẇε‖L2([0,T ],Z)

√
T
)

+ C0 ‖z0‖Z
≤C,

where C is a constant independent of ε. Using Lemma 6 and the non-negativity of j1 and j2 (de�ned in
(24)), we have

∫ T

0

j2(ẇ∗)dt ≤ lim inf
ε→0

∫ T

0

j2(ẇε)dt ≤ lim
ε→0

ε

(∫ T

0

(jε(ẇε)− j1(ẇε)) dt

)

≤ lim
ε→0

ε

(
C −

∫ T

0

j1(ẇε)dt

)
≤ lim
ε→0

Cε = 0.

Thus,
∫ T

0
j2(ẇ∗)dt = 0, so that j2(ẇ∗) = 0 a.e. in [0, T ] and �nally ẇ∗(t) ∈ K. Since wε ∈ L∞([0, T ], Z) ⊂

L2([0, T ], Z) and ẇε ∈ L2([0, T ], Z), the solution wε ∈ H1([0, T ], Z). Using the injection H1([0, T ], Z) ↪→
C0([0, T ], Z) and the bounds on wε, we get wε ⇀ w∗ in C0([0, T ], Z) and wε(T ) being well de�ned. We then
use wε(0) = 0 to obtain

1

2
a(wε(T ),wε(T )) =

1

2

∫ T

0

d

dt
a(wε,wε)dt =

∫ T

0

a(wε, ẇε)dt.

The bilinear form w → a(w,w)(T ) is convex, proper and lower semi-continuous on C0([0, T ], Z) → R, thus
weakly lower semi-continuous in C0([0, T ], Z). This allows us pass to the limit ε −→ 0 in the above and
obtain∫ T

0

a(w∗, ẇ∗)dt =
1

2
a(w∗(T ),w∗(T )) ≤ lim inf

ε−→0

1

2
a(wε(T ),wε(T )) = lim inf

ε−→0

∫ T

0

a(wε, ẇε)dt. (76)

Now we consider (23) for z ∈ K,

0 ≤
∫ T

0

(a(wε, z − ẇε) + j(z)− jε(ẇε)− lt(z − ẇε)) dt∫ T

0

j1(ẇε)dt ≤
∫ T

0

jε(ẇε)dt ≤
∫ T

0

(a(wε, z − ẇε) + j(z)− lt(z − ẇε)) dt∫ T

0

j1(ẇ∗)dt ≤ lim inf
ε→0

(∫ T

0

j1(ẇε)dt

)
≤ lim
ε→0

∫ T

0

(a(wε, z − ẇε) + j(z)− lt(z − ẇε)) dt (using (6))

∫ T

0

j1(ẇ∗)dt ≤
∫ T

0

(a(w∗, z − ẇ∗) + j(z)− lt(z − ẇ∗)) dt (using (76) and ẇε ⇀ ẇ∗).

Since ẇ∗(t) ∈ K, we have j1(ẇ∗) = j(ẇ∗) and∫ T

0

(a(w∗, z − ẇ∗) + j(z)− j(ẇ∗)− lt(z − ẇ∗)) dt ≥ 0 ∀z ∈ K.

By a standard procedure of passing to the pointwise inequality [17], we �nd from the above inequality that
w∗ satis�es (21). Since the solution to (21) is unique, we have that the solution w∗(t) = w(t) and the entire
sequence converges.
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Next we prove that this sequence wε actually converges strongly to w in L∞([0, T ], Z) and not merely
weakly-star. For any time t0 ∈ [0, T ], we have

1

2
‖w −wε‖2Z (t0) +

∫ t0

0

j1(ẇε)dt ≤
∫ t0

0

(
1

2

d

dt
‖w −wε‖2Z + jε(ẇε)

)
dt

=

∫ t0

0

(a(w −wε, ẇ − ẇε) + jε(ẇε)) dt

=

∫ t0

0

(a(wε, ẇε) + jε(ẇε)− a(wε, ẇ)− a(w, ẇε) + a(w, ẇ)) dt

≤
∫ t0

0

(a(wε, z) + jε(z)− lt(z − ẇε)− a(wε, ẇ)− a(w, ẇε) + a(w, ẇ)) dt

=

∫ t0

0

(a(wε, z − ẇ) + jε(z)− lt(z − ẇε)− a(w, ẇε) + a(w, ẇ)) dt ∀z(t) ∈ Z.

Choosing z(t) ∈ K ⊂ Z yields the bound

1

2
‖w −wε‖2Z (t0) +

∫ t0

0

j1(ẇε)dt ≤
∫ t0

0

(a(wε, z − ẇ) + j(z)− lt(z − ẇε)− a(w, ẇε) + a(w, ẇ)) dt.

Passing to the limit ε→ 0, with wε ⇀ w and w ∈ K, Lemma 6 leads to∫ t0

0

j(ẇ)dt =

∫ t0

0

j1(ẇ)dt ≤ lim inf
ε→0

∫ t0

0

j1(ẇε)dt

≤ lim
ε→0

(∫ t0

0

(a(wε, z − ẇ) + j(z)− lt(z − ẇε)− a(w, ẇε) + a(w, ẇ)) dt− 1

2
‖w −wε‖2Z (t0)

)
≤
∫ t0

0

(a(w, z − ẇ) + j(z)− lt(z − ẇ)) dt− 1

2
lim
ε→0
‖w −wε‖2Z (t0).

Therefore,

lim
ε→0

1

2
‖w −wε‖2Z (t0) ≤

∫ t0

0

(a(w, z − ẇ) + j(z)− j(ẇ)− lt(z − ẇ)) dt.

Taking z = ẇ shows that the above limit is zero, establishing the strong convergence wε −→ w in
L∞([0, T ], Z).

B Proof of Theorem 4

We have to prove that problem (27) admits a unique solution wε,η ∈ H1([0, T ], Z). One cannot apply
directly Theorem 1 because the functional jε,η is not positively homogeneous. Therefore, we modify the
original proof of Theorem 4.3 in [21] to cover this new case. Again, the time interval [0, T ] is discretized in
0 = t0 < t1 < t2 < · · · < tn = T with tn − tn−1 = δt, su�ciently small, given by (81). For lt ∈ Z∗ (de�ned
in (18)), de�ne ln = ltn , and ∆ln = (ln − ln−1) ∈ Z∗. For any δt ∈ R+ de�ne jδtε,η : Z → R as

jδtε,η(z) = δtjε,η

( z
δt

)
. (77)

Since jε,η(z) is convex, jδtε,η(z) is convex. Starting from w0 = 0 we construct a sequence wn+1 = wn + ∆wn
and a function wδt

ε,η ∈ C0([0, T ],K) such that wδt
ε,η(t) = wn + (t − tn)/δt∆wn for t ∈ [tn, tn+1], where

∆wn ∈ Z is the solution of

a(∆wn, z −∆wn) + jδtε,η(z)− jδtε,η(∆wn) ≥ ln(z −∆wn)− a(wn−1, z −∆wn) ∀z ∈ Z (78)

Since a(wn−1, ·) de�nes a continuous linear form on Z, the right hand side of the above is a continuous linear
form on Z. With jδtε,η(·) being convex and lower semi continuous, (78) is indeed a variational inequation of
the 2nd kind and admits a unique solution ∆wn ∈ Z [19]. In order to obtain a bound on ∆wn, we substitute
z = 0 in (78) to obtain

a(∆wn,∆wn) ≤ ln(∆wn)− a(wn−1,∆wn)− jδtε,η(∆wn) + jδtε,η(0). (79)
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Using de�nitions (25) and (77), we get

jδtε,η(0) = δtjε,η(0) =

√
2

3

σ2
Y δtη

TE

(
1 +

1

2ε
(1 +

√
2)

)
≤ CY δtη

(
1 +

k

ε

)
where CY =

√
2/3σ2

Y /(TE) and k = (1 +
√

2)/2. Then substitute z = ∆wn + ∆wn−1 in (78), written for
index n− 1, to get

0 ≤ jδtε,η(∆wn + ∆wn−1)− jδtε,η(∆wn−1)− ln−1(∆wn) + a(wn−1,∆wn−1). (80)

Adding (79) and (80), and using the convexity of jδtε,η(·), leads to

a(∆wn,∆wn)−CY δtη
(

1 +
k

ε

)
≤ ln(∆wn)− jδtε,η(∆wn) + jδtε,η(∆wn+ ∆wn−1)− jδtε,η(∆wn−1)− ln−1(∆wn)

≤∆ln(∆wn)+
1

2

(
jδtε,η(2∆wn)+jδtε,η(2∆wn−1)

)
−jδtε,η(∆wn)−jδtε,η(∆wn−1)

= ∆ln(∆wn) +
(
jδtε,2η(∆wn) + jδtε,2η(∆wn−1)

)
− jδtε,η(∆wn)− jδtε,η(∆wn−1)

≤∆ln(∆wn)+
(
jδtε,2η(∆wn)−jδtε,η(∆wn)

)
+(jδtε,2η(∆wn−1)−jδtε,η(∆wn−1)).

Using the fact that

|jδtε,2η(w)− jδtε,η(w)|≤ CY δtη
(

1 +
k

ε

)
∀ w ∈ Z,

and that α ‖wn‖2Z ≤ a(wn,wn), we obtain the bound

α ‖∆wn‖2Z ≤ ∆ln(∆wn) + 3CY δtη

(
1 +

k

ε

)
≤ ‖∆ln‖Z∗ ‖∆wn‖Z + 3CY δtη

(
1 +

k

ε

)
≤ 1

2α
‖∆ln‖2Z∗ +

α

2
‖∆wn‖2 + 3CY δtη

(
1 +

k

ε

)
from which, choosing a time step δt su�ciently small, compared to η, ε, such that

δt <
ε ‖∆ln‖2Z∗

6CY η (ε+ k)
, (81)

we deduce

‖∆wn‖Z ≤
√

2

α
‖∆ln‖Z∗ .

Summing these bounds over the index n leads to

N∑
n=1

‖∆wn‖2Z ≤
2δt2

α2

N∑
n=1

‖∆ln/δt‖2Z∗ and max
1≤n≤N

‖wn‖Z ≤
√

2

α
δt

N∑
n=1

‖∆ln/δt‖Z∗ . (82)

Now it remains to prove that the interpolation wδt
ε,η of the discrete solutions wn admits a limit wε,η, solution

to (27), as δt goes to 0. In (78) we replace z by δtz, de�ne δwn = ∆wn/δt and divide by δt to arrive at

a(wn, z − δwn) + jε,η(z)− jε,η(δwn) ≥ ln(z − δwn) ∀z ∈ Z. (83)

Starting from (83), one can follow exactly the same steps as in the proof of Theorem 1 in [21] and arrive at

(84)
0 ≤

∫ T

0

(
a(wδt

ε,η, z − ẇδt
ε,η) + jε,η(z)− jε,η(ẇδt

ε,η)− lδt(z − ẇδt
ε,η)
)
dt

− δt

2
jε,η(z1) + Cδt

∫ T

0

∥∥∥l̇δt∥∥∥2

Z∗
dt+ CY δtη

(
1 +

k

ε

)
,
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where lδt(t) = ln−1 + ∆ln (t− tn−1) /δt is the interpolation of the source term for t ∈ [tn−1, tn]. Substituting
l̇δt to ∆ln/δt and ẇ

δt
ε,η to ∆wn in (82) leads to∥∥ẇδt

ε,η

∥∥
L2([0,T ],Z)

≤ C1 and
∥∥wδt

ε,η

∥∥
L∞([0,T ],Z)

≤ C2. (85)

These uniform bounds imply the existence of a subsequence δt −→ 0 such that

wδt
ε,η

∗
⇀ wε,η in L∞([0, T ], Z) and ẇδt

ε,η ⇀ ẇε,η in L2([0, T ], Z).

Again, we have that ẇδt
ε,η ⇀ ẇε,η in L1([0, T ], Z). Since jε,η(·) is convex and weakly lower semi continuous,

we can pass to the limit in (84) to get

0 ≤
∫ T

0

(a(wε,η, z − ẇε,η) + jε,η(z)− jε,η(ẇε,η)− lt(z − ẇε,η)) dt.

Consequently, wε,η is a solution of problem (27). Uniqueness of the solution wε,η of (27) is classical.

C Proof of Theorem 5

In the proof of Theorem 4 the bounds (85) imply

‖wε,η‖L∞([0,T ],Z) ≤ lim inf
δt→0

∥∥wδt
ε,η

∥∥
L∞([0,T ],Z)

≤ C1 and ‖ẇε,η‖L2([0,T ],Z) ≤ lim inf
δt→0

∥∥ẇδt
ε,η

∥∥
L2([0,T ],Z)

≤ C2,

with the constants C1 and C2 being independent of ε, η, δt (provided that δt is su�ciently small). Thus one
can extract a subsequence wε,η and there exists a limit w∗ε such that, as η −→ 0,

wε,η
∗
⇀ w∗ε in L∞([0, T ], Z) and ẇε,η ⇀ ẇ∗ε in L2([0, T ], Z).

Using the above two weak convergences, the same arguments as for (76) leads to∫ T

0

a(w∗ε , ẇ
∗
ε )dt =

1

2
a(w∗ε (T ),w∗ε (T )) ≤ lim inf

ε−→0

1

2
a(wε,η(T ),wε,η(T )) = lim inf

ε−→0

∫ T

0

a(wε,η, ẇε,η)dt. (86)

In order to establish the equality between w∗ε and wε, we re-write (27) as∫ T

0

(a(wε,η, z − ẇε,η) + jε,η(z)− lt(z − ẇε,η)) dt ≥
∫ T

0

jε,η(ẇε,η)dt ≥
∫ T

0

jε(ẇε,η)dt,

where we use Lemma 2 in the last inequality. The �rst inequality in (26) implies the convergence jε,η(z) −→
jε(z) as η −→ 0 for all z ∈ Z. Letting η go to 0, the weak convergence wε,η ⇀ w∗ε and (26) leads to∫ T

0

jε(ẇ
∗
ε )dt ≤ lim inf

η→0

(∫ T

0

jε(ẇε,η)dt

)
(by Lemma 6)

≤ lim
η→0

(∫ T

0

(a(wε,η, z − ẇε,η) + jε,η(z)− lt(z − ẇε,η)) dt

)

=

∫ T

0

(a(w∗ε , z − ẇ∗ε ) + jε(z)− lt(z − ẇ∗ε )) dt (using (86)).

Since the solution to (23) is unique, we deduce w∗ε = wε and the entire sequence converges.
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