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Nowadays, we are witnessing an increasing demand in both corporates and academia for exploiting Deep
Learning (DL) to solve complex real-world problems. A DL program encodes the network structure of a
desirable DL model and the process by which the model learns from the training dataset. Like any software, a
DL program can be faulty, which implies substantial challenges of software quality assurance, especially in
safety-critical domains. It is therefore crucial to equip DL development teams with efficient fault detection
techniques and tools. In this paper, we propose NeuraLint, a model-based fault detection approach for DL
programs, using meta-modelling and graph transformations. First, we design a meta-model for DL programs
that includes their base skeleton and fundamental properties. Then, we construct a graph-based verification
process that covers 23 rules defined on top of the meta-model and implemented as graph transformations to
detect faults and design inefficiencies in the generated models (i.e., instances of the meta-model). First, the
proposed approach is evaluated by finding faults and design inefficiencies in 28 synthesized examples built
from common problems reported in the literature. Then NeuraLint successfully finds 64 faults and design
inefficiencies in 34 real-world DL programs extracted from Stack Overflow posts and GitHub repositories. The
results show that NeuraLint effectively detects faults and design issues in both synthesized and real-world
examples with a recall of 70.5 % and a precision of 100 %. Although the proposed meta-model is designed
for feedforward neural networks, it can be extended to support other neural network architectures such as
recurrent neural networks. Researchers can also expand our set of verification rules to cover more types of
issues in DL programs.

CCS Concepts: • Software and its engineering→Model-driven software engineering; Software test-
ing and debugging.
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1 INTRODUCTION
Many developers, entrepreneurs, and researchers are showing an increasing enthusiasm in devel-
oping and using Deep Learning (DL) in a variety of domains. The core of DL programs is deep
neural networks. After building a desirable DL model, it should be trained by executing a learning
algorithm on a dataset. Easy-to-use libraries such as TensorFlow or Keras have been developed
to simplify the development process. However, leveraging these libraries to implement a training
program is still challenging, in particular for developers who are not experts in machine learning
and neural networks. Like any software, a DL program often contains design issues and bugs. For
example, let us consider the program in Figure 1 which is extracted from Stack Overflow (SO) post
#44322611 and is reported to have a low accuracy.

Fig. 1. Simplified example DL program from SO_44322611.

This program which implements a Convolutional Neural Network (CNN) has three issues. The
first issue (i.e., 1○) is a bug due to the incompatibility between the softmax as output activation and
binary_crossentropy as loss function. In fact, developers should have chosen categorical_crossentropy
because it works with one-hot encoding labels and softmax activation to solve multi-label clas-
sification problems (including binary labels problems)1. This kind of API misuse error can be
identified by verifying the consistency of the involved mathematical operations. For instance, error
1○ induces an inconsistency between the loss function and the last layer activation. The other
two errors are 2○ decreasing filters count 224 > 55 > 13 and 3○ decreasing filtering spatial size
(11, 11) > (5, 5) > (3, 3), which represent poor structural CNN choices that violate the common
design patterns of effective and optimal CNN architectures [26, 53]. These structural errors are
often detected through manual code reviews which is time consuming. A static code analysis

1We refer the reader to [59] for more practical use cases about how to choose the last layer activation and loss function
when using the Keras Library.
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using automated tools can significantly speed up this process. In this paper, we examine common
structural errors and design inefficiencies occurring in DL programs and propose NeuraLint, a
model-based verification approach for their detection. To design NeuraLint, we first propose a
meta-model for DL programs that includes their base skeleton and fundamental properties. This
meta-model captures their essential properties independent of available DL libraries. Considering
the proposed meta-model, we specify for each fault or design issue, a verification rule that can
be used to detect its occurrence. Finally, we propose a checking process to verify models of DL
programs that are conforming to the meta-model. We employ graph transformations to imple-
ment NeuraLint. We present a type graph for the meta-model and graph transformations for the
verification rules.

We evaluate our approach NeuraLint by finding various types of faults and design issues in 28
synthesized examples built from common problems reported in the literature [31] and 34 real-world
DL programs extracted from GitHub repositories and SO posts. The results show that NeuraLint
effectively detects faults and design issues in both synthesized and real-world examples. This paper
makes the following contributions.
• We propose a meta-model for DL programs;
• We describe 23 common errors and poor design practices of DL training programs and provide
rules for their detection;
• We propose a model-based verification approach for DL programs, using meta-modelling
and graph transformation rules.
• We provide a concrete implementation of the approach as a tool that DL developers can use
to detect errors and design issues in their DL training programs.

The remainder of this paper is organised as follows. Section 2 provides background infor-
mation about graph transformation systems, and deep neural networks. Section 3 presents our
meta-modeling of DL programs. Section 4 introduces the studied issues and rules for their detection.
Section 5 presents our proposed approach NeuraLint. Section 6 reports the empirical evaluation
of NeuraLint. Section 7 discusses the related literature. Finally, Section 8 concludes the paper and
discusses future work.

2 BACKGROUND
In this section, we introduce background knowledge about graph transformation systems, and deep
neural networks.

2.1 Graph Transformation Systems
Graph transformation system (GTS) [30] (also called graph grammar) is a formal language for
the specification of software systems, in particular those with dynamic structures. The definition
of an attributed GTS consists of a triplet (TG, HG, R) in which TG is a type graph, HG is a host
graph, and R is a set of rules for graph transformation. TG is defined by four components, 𝑇𝐺 =

(𝑇𝐺𝑁 ,𝑇𝐺𝐸, 𝑠𝑟𝑐, 𝑡𝑟𝑔). 𝑇𝐺𝑁 and 𝑇𝐺𝐸 includes all node types and edge types respectively. src and trg
are two functions 𝑠𝑟𝑐 : 𝑇𝐺𝐸 → 𝑇𝐺𝑁 and 𝑡𝑟𝑔 : 𝑇𝐺𝐸 → 𝑇𝐺𝑁 , that determine the source/destination
nodes of an edge, respectively. The initial configuration of a system specified by GTS is presented by
the host graph which is an instance of the type graph. Therefore, each component of the host graph,
node or edge, must have a component type in the type graph. A host graph HG may instantiate from
a type graph TG using a graph morphism function 𝑡𝑦𝑝𝑒𝐺 : 𝐻𝐺 → 𝑇𝐺 , in which the components of
HG are instantiated from TG. Other configurations or states of a system are generated by successive
applications of transformation rules on the host graph. A transformation rule r in R is defined by a
triplet (𝐿𝐻𝑆𝑟 , 𝑅𝐻𝑆𝑟 , 𝑁𝐴𝐶𝑟 ) in which 𝐿𝐻𝑆𝑟 (left-hand side) represents the preconditions of the rule
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whereas 𝑅𝐻𝑆𝑟 (right-hand side) describes the postconditions. Moreover, there may be a Negative
Application Condition (NAC) for the rule r, meaning that the rule r can be applied only when
𝑁𝐴𝐶𝑟 does not exist in the host graph. By applying the rule r to the host graph HG, which is an
instance model of the meta-model or type graph, a matching of the 𝐿𝐻𝑆𝑟 in HG is replaced by 𝑅𝐻𝑆𝑟 .
Formally, a graph morphism exists between 𝐿𝐻𝑆𝑟 and the instance model HG. The application of a
rule is performed in four steps: (1) find a matching of 𝐿𝐻𝑆𝑟 in HG, (2) check 𝑁𝐴𝐶𝑟 that forbid the
presence of certain nodes and edges, (3) remove a part of the host graph that can be mapped to
𝐿𝐻𝑆𝑟 but not to 𝑅𝐻𝑆𝑟 , and (4) add new nodes and edges that can be mapped to the 𝑅𝐻𝑆𝑟 but not to
the 𝐿𝐻𝑆𝑟 .

2.2 Deep Learning Software Development
In this section, we first introduce the architectures of Deep Neural Networks (DNNs) supported by
our meta-model and verification approach. Then, we present the state-of-practice regarding the
software implementation of these DNNs.

2.2.1 Feedforward Neural Network (FNN). FNN [23] is the principal neural network architecture
used for solving classification and regression problems, where the task is to learn a mapping
function capable of converting input data to a target output. FNN consists of many, and sometimes
diverse, sequences of layers of computational units. These computational layers are trained to
extract features hierarchically (i.e., starting from low-level to high-level features), then, detect
discriminative and informative patterns, which serve the FNN to derive either the class label
(classification problems) or continuous outcome (regression problems). It is called feedforward
because the information flows in a forward manner from the input layer, through the hidden layers
(if any) and to the output layer, e.g., a class probability or a predicted real value.

Computational Layers. FNN layers are constructions of neurons, where each performs:(i) A
linear calculation that consists of a weighted sum of all the signals from the previous layer with
addition of a constant (i.e., bias); (ii) A non-linear activation that consists of a gate function, filtering
out the computed quantities, to derive the input signals for the neurons of the next layer. The
initialization of layers’ parameters (i.e., weights and biases) and the choice of activation functions
represent essential parts of the FNN design that have a crucial impact on the performance of the
training procedure [27].

Parameters Training. Starting from a random initialization, the training process consists in
updating iteratively the model parameters, towards minimizing the loss of DNN’s predictions as
regards to the training labeled data. Indeed, a loss/cost function is defined to estimate the average
distance between predicted and actual outcomes. The training pass over FNN’s parameters is
performed by backpropagation that makes the loss gradients flow over the neurons defined in
the network but in the opposite direction, in order to update the parameters of each layer. The
update quantities are mostly approximated using a first-order optimization algorithm such as SGD,
Momentum, and Adam. Thus, the training procedure resides in fulfilling several training passes on
i.i.d batches sampled from training data (independent and identically distributed) until reaching a
local or the global minimum of the loss. Commonly, the best-fitted FNN is found after multiple
epochs (i.e., passes over all the training data).

RegularizationMethods. The regularization is required to improve the convergence and gener-
alizability of the above-mentioned parameters training procedure. For DNNs, many regularization
techniques have been proposed and the most used ones are dropout and batch-normalisation
(batchnorm). Dropout [56] masks at every training iteration a random subset of units (i.e., nullify
them). The stochasticity injected into the inference calculation, only during the training, prevents

, Vol. 1, No. 1, Article . Publication date: June 2021.



Automatic Fault Detection for Deep Learning Programs Using Graph Transformations 5

the co-adaptation of feature detectors and encourages the DNN to learn robust patterns against
partially-hidden information. Batchnorm [34] acts differently on activations by normalizing their
values using statistics (i.e., mean and variance) of the current batch of data during the training.
During the testing, it updates internally, the population statistics of all batches for each level
of activations in order to switch to normalizing against population, rather than batch, statistics.
This normalization of intermediary input data has shown its effectiveness in smoothing the loss
landscape, which ensures faster and safer training convergence with high potential to escape weak
local minima.

Dense and Convolutional Architectures. The basic FNN architecture consists of stacking
dense layers, where all the neurons of two consecutive layers are fully-connected. In this paper,
we consider convolutional architectures which represent a particular type of FNN designed for
multi-dimensional input data, such as 2D images and audio spectrograms, or 3D videos. The benefit
of CNNs lies in their ability to take into account the spatial information in their feature extraction
process. To do that, CNNs stack, earlier, two specialized layers: convolutional layer and pooling
layer. (1) Convolutional layer applies spatial filters over the input data and each filter’s weights are
learned to detect relevant features supporting the network’s task. Thus, it yields a feature map
for each learned filter, where each unit is connected to a local region (i.e., size of spatial filtering
window) in its previous layer’s feature maps and (2) pooling layer performs spatial pooling over
the computed feature map to reduce its dimensionality and retain the most relevant information.
The spatial pooling can be either average or max aggregation that computes, respectively, the
average or max of all the units in the specified spatial window. Conventionally, a CNN architecture
incorporates a bundle of convolutional layers with increasing filter count and separated by pooling
layers to shrink gradually the feature map area. Hence, the extracted feature space tends to become
deeper and narrower throughout the network until it becomes ready to be flattened and fed to the
dense layers in charge of mapping the features into the target output.

2.2.2 DL Software Development. DL libraries encode the DNN as a Directed Acyclic Graph (DAG),
where nodes and edges represent, respectively, operations and data paths. This computational
graph represents a high-level of abstractions to organize the components and their relations. Thus,
the internal calculations can be decentralized where each component performs its local computa-
tion and communicates the result via data paths to its connected components. Besides, the DAG
abstraction allows the DL library’s graph compiler to optimize the computations’ execution for a
target hardware architecture.
Leveraging DL libraries to implement a training program for a designed DNN is not straightforward
and it can be error-prone. DL libraries often have to trade off between the coverage of novel DL
functionalities and the ease of rapid implementation and extension of DNN software prototypes.
As a compromise solution, they uniformly include, for each newly-implemented DL functionality,
a bundle of automated steps and default settings following its common usage trends in the com-
munity. This enables quick prototyping of regular DNNs while keeping the flexibility to try other
configurations with the tweakable setting options available for every provided DL routine. As a
consequence, DL developers should be aware of the intricacies of these DL libraries to choose the
appropriate configurations and avoid breaking their implicit assumptions in regard to the usage of
their built-in routines.

3 META-MODELING DL PROGRAMS
With the proliferation of libraries supporting the development of DL programs, a fundamental
question emerges: is there any generic representation of DL programs that is independent from
these libraries? In other terms, can we define a meta-model of DL programs and how can we model
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Fig. 2. The proposed meta-model (type graph) for DL programs.

a DL program? Answering this question would pave the way for the application of model-driven
engineering techniques to the detection of errors in DL programs. In [25], researchers proposed a
meta-model for meta-learning. They presented an overview of the meta-learning concepts –on
a meta-modelling level– with possible variabilities and discussed how their meta-model could
be integrated into existing modelling frameworks and tools. However, while their meta-model
includes "Learning Block", "Learning Algorithm", "Optimizer" and "Hyperparameters", no further
details like specifications of learning algorithms or blocks are presented and they did not explore
the possibility of identifying errors in machine learning models. In this section, we present a
particular meta-model for DL programs and our approach for meta-modeling of such programs
to perform static analysis of DL programs. We describe possible variabilities of the meta-model
and how concrete DL programs can be generated from it. We think that a generic meta-model
for DL programs can significantly facilitate the use of DL in various applications and would be
helpful for understanding DL programs written by developers using third-party DL libraries. In
fact, model-driven engineering is a perfect tool to make this idea come to life and ease the process
of developing and debugging DL programs.

3.1 A Meta-Model for Deep Learning Programs
A DL program has different components. The core of each DL program is a DNN. For the sake
of simplicity, we only consider the feedforward multilayer perceptron (MLP) architecture. Like
other computational models, DNN attempts to find a mathematical mapping from the input into
the output during a learning phase. Usually, a set of inputs and desired outputs (or targets) is
provided for learning, which is called Dataset. Therefore, our meta-model includes three main
parts: Architecture of DNN, Learner, and Data. Since we have used GTS for modeling DL programs,
our proposed meta-model is represented by a type graph. The proposed type graph is illustrated
in Figure 2. The node representing the DL program has three edges to Architecture, Learner
and Data nodes indicating its main components. In the following, we describe the meta-model in
detail. It should be noted that our aim of meta-modeling is the detection of faults in DL programs;
therefore the most relevant components have been incorporated into the meta-model.
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3.1.1 Architecture of deep neural network. An architecture starts with the input layer, continues
with some hidden layers and ends with the output layer. We have considered a distinctive node for
the InputLayer because of its importance but all other successive layers are modelled as Layer.
Each layer has a size indicating the number of neurons in that layer. There are specific properties
among nodes that are modelled as edges. For example,Architecture starts by Input Layer, Input
Layer is followed by other Layers, each Layer may have next layers and each Layer has a Type
as an attribute. There are different types for a layer in DL, e.g., dense, 1D and 2D convolution,
pooling or data processing layers like flatten. There may be other attributes for a layer like Bias,
Weights. An architecture ends with Labels, the desired outputs of DNN that are used to calculate
the error of the network in Loss function. Actually, Labels is a part of Data associated with the
DL program.

3.1.2 Learning algorithm. A DL program normally employs a learning algorithm, Learner in our
meta-model, to learn the mapping from inputs to outputs. A Loss function is used to calculate
the error of a neural network in matching the target (desired) and output value during training.
The goal of learning is minimizing the loss by modification of the network’s parameters (weights)
by an Optimizer, e.g., Adam or stochastic gradient descent (SGD). The overall performance of
the network is measured using a Metric. Moreover, there are some Hyperparameters like the
number of epochs or batch size.

3.1.3 Data. This node contains Labels, meta-data, features, and related information about the
data set, like shuffling and batching.

3.2 DL programs modeling
A model of a DL program includes components that form its source code. There are two ways to
build a model of DL programs: configure an arbitrary model directly or transform a DL program to
a model. One may design a model for a DL program that conforms to the proposed meta-model by
configuring each component of the meta-model. Starting from an empty model, layers are added
one by one to Architecture; making a chain of layers that starts by InputLayer node, follows
by other Layer and ends with output. Each layer is configured separately to set Parameters,
Weights, etc, and once a layer is configured completely, the model will proceed to the next layer.
Other components of DL programs like Learner andData are configured respectively. This process
is similar to what a developer does when developing a DL program using popular DL frameworks.
Therefore, the meta-model and resulting models would be realistic from a practitioner point-of-view
and sufficiently flexible in representing plenty of DL programs.
On the other hand, a model could be configured according to a DL program that has already

been developed by a programmer. The source code of a DL program is converted to a model,
which is an attributed graph. Dedicated convertors are programmed in NeuraLint to convert a DL
program written by different DL libraries to its model. The source code of a program is parsed to
extract relevant information that is necessary to configure the model. The meta-model is generic
enough to be independent of any specific DL library. Hence, we can have a model of a DL program
that conforms to the meta-model; making possible further investigations on the model, such as
verification. Apart from the work and analysis that are presented in the rest of this paper, we believe
that this meta-model can be very useful to understand DL programs written by third parties. It will
be helpful in understanding the development activities of DL practitioners; the way they write DL
programs and the type of faults that they experience.
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DL programs with 
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Fig. 3. The adopted methodology for extracting rules from different sources.

4 MODEL-BASED VERIFICATION RULES
In this section, we present the proposed rules for detecting faults in DL programs. First, we report
the adopted methodology for extracting rules. The rules are then described in Subsection 4.2.
Afterward, we present a discussion on the application scope of rules. Finally, we describe the
approach adopted to implement the rules using graph transformations.

4.1 Methodology
Figure 3 illustrates the adopted methodology for extracting the rules. We have explored three
main sources: datasets of buggy DL programs (including bug repairs), relevant research papers
and official DL libraries’ tutorials. In the first step, we manually inspected the labeled bugs in the
public datasets of buggy DL programs released by former research studies [31, 35, 61] collected
from SO and GitHub with the objective of discovering finer root causes of bugs. Zhang et al. [61]
published the first empirical study on real-world DL bugs occurring in Tensorflow-based software
systems including their high-level root causes and symptoms. Then, Islam et al. [35] extended the
investigated cases to include DL software systems written using other competitive DL libraries
such as Pytorch and Caffe, and studied the relationship and the evolution of different DL bug types.
Last, Humbatova et al. [31] refined the former bug investigation [35, 61] into a taxonomy of real
faults that occur in DL software systems. In the second step, we have inspected bug fixes suggested
in accepted answers of SO posts and fix patterns adopted in GitHub samples to identify patterns
followed to fix the reported bugs.
We reviewed research studies on DL bugs [31, 35, 61] and fundamental DL design principles
[22, 26, 46, 53] in the third step. Regarding the former, the aim was finding rules for validating
the correctness of model structure and configuration choices through the DL program’s model
drawn from the code. We build on these previous works to specify rules that can be used to
detect occurrences of different types of issues in DL programs and validate the conformity of
the DNN design to common patterns through static code inspection. However, most of the DNN
design patterns and principles have been deduced from state-of-the-art CNN architectures [16, 45]
that have shown their effectiveness on public computer vision datasets and competitions such
as ImageNet classification [18] or COCO object detection [44]. Thus, we aim to report warnings
to the user whenever a poor design choice is spotted with respect to these empirical research
studies on DNN design principles. This would likely steer the user to redesign his model in order
to avoid the performance degradation either at the training or at the inference mode. Finally, to
support practitioners in their DL program debugging, we also proceed with a dual analysis over
the commonly reported APIM bugs and the official DL libraries’ tutorials.
In the end, we have come up with 23 rules for detecting bugs and issues in DL programs. The rules

, Vol. 1, No. 1, Article . Publication date: June 2021.



Automatic Fault Detection for Deep Learning Programs Using Graph Transformations 9

are organized into different high-level root causes as initially introduced in [61], namely Incorrect
Model Parameter or Structure (IPS), Unaligned Tensor (UT), API Misuse (APIM), and Structure
Inefficiency (SI).

4.2 Rules
4.2.1 Incorrect Model Parameter or Structure (IPS). IPS bugs are related to modeling faults that arise
from either an inadequate model parameter like learning rate or an incorrect model structure like
missing or redundant layers [61]. The major symptom of IPS bugs is anomalous training behaviors
leading to low effectiveness such as low precision and a huge loss.

Rule 1: Asymmetric Units Initialization. The initialization of weights should not be constant to
break the symmetry between neurons [22]. For instance, a common mistake is to start with null
weights, which eliminates asymmetry between the neurons (i.e., all the neurons would output the
same value, and then, would receive the same gradients).
Rule 2: Null Biases Initialization. The initialization of biases is preferred to be zeros [22]. It is a
common practice to expect that the outputs could be totally explained by the input features. Indeed,
no custom initial bias provided a consistent improvement, but it may weaken the learning.
Rule 3: Non-Linear Activation Requirement. Activations for learning layers (i.e., convolution
and fully-connected layer) should be a non-linear function. This key attribute is needed to enhance the
ability of DNN to model highly nonlinear mappings and draw complex shape decision boundaries
[46].
Rule 4: Unnecessary Activation Removal. Multiple and redundant connected activations are not
allowed. Since all activation functions are designed to transform real values into a restricted interval
[46], successive activations applied to the same features can make their last activation unable to
produce its full output range.
Rule 5: Class Probability Conversion. A last layer activation is required to transform the log-
its into probabilities for classification problems. In detail, sigmoid (𝜎 (𝑧) = 1

1+𝑒−𝑧 ) and softmax
(𝜎 (𝑧)𝑖 = 𝑒−𝑧𝑖∑𝐿

𝑗=1 𝑒
−𝑧𝑗 , for 𝑖 = 1, ..., 𝐿 and 𝑧 ∈ R𝐿) are, respectively, needed to normalize outputs

with single unit (𝑧 ∈ R) and multiple units (𝑧 ∈ R𝐿). A common mistake is to use softmax instead
of sigmoid for binary classification without one-hot encoding beforehand, which totally obstructs
the learning because the outcome is always equal to 1 = 𝑒−𝑧1/𝑒−𝑧1 , 𝑧 ∈ R1.

Indeed, the above-mentioned rules show that static DL code analysis can help detect earlier
structural bugs and misconfigurations, however, incorrect parameters like learning rate or neural
network size (width and depth) could be identified through empirical evaluation of the model on
the underlying data.

4.2.2 Unaligned Tensor (UT). The computational units in a DNN graph are mostly tensor-based
operations, where each one receives and returns tensors (i.e., multi-dimensional arrays). Their
connections can hide issues related to the compatibility of tensors’ shapes. DL developers often fail
to express and manipulate the shapes of tensors properly [39] because DL libraries mask all the
algebra computations and dynamic shapes’ inference details. A bug triggered during the DNN graph
construction when the shapes of one operation’s tensors do not match is called an Unaligned Tensor
(UT) [61]. The major symptom of UT bugs is runtime errors because the underlying tensor-based
operation could not run on two incompatible tensors. However, the dynamic shape inference
included in most DL libraries often makes the exception of incompatible shapes triggering far from
its localization in the DL code; so the error message can be misleading. In the following, we describe
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various DNN layers’ connectivity and configuration rules that can be checked on the DL model to
identify the UT bug type and localization.

Rule 6: Consecutive Layers Compatibility. A processing layer that operates on a N-dimensional
tensor, should receive a valid input tensor with exactly N-dimensional shape. For instance, a Conv2D
layer works on 4-D tensors, i.e., [𝑠𝑎𝑚𝑝𝑙𝑒𝑠, ℎ𝑒𝑖𝑔ℎ𝑡,𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠], but a Dense layer works on 2-D,
i.e., [𝑠𝑎𝑚𝑝𝑙𝑒𝑠,𝑢𝑛𝑖𝑡𝑠], which means a reshape layer is needed to flatten the convolutional feature
space before starting the dense layers’ inference.
Rule 7: Spatial Size Agreement. A processing layer should receive sufficient-sized feature space
to perform its spatial filtering or pooling. For instance, 2-D processing layers like Conv2D and
MaxPooling2D require a size of feature space greater or equal to their local window size, i.e.,
(𝑤𝑖𝑛𝑑𝑜𝑤_ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 𝑖𝑛𝑝𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 ) and (𝑤𝑖𝑛𝑑𝑜𝑤_𝑤𝑖𝑑𝑡ℎ ≤ 𝑖𝑛𝑝𝑢𝑡_𝑤𝑖𝑑𝑡ℎ).
Rule 8: Reshaped Data Retention. A reshape layer should preserve the total data elements. More
specifically, we verify that the product of original tensor dimensions equals the product of reshaped
tensor dimensions.
Rule 9: Separate Item Preservation. A reshape layer should never alter the size of elements (i.e.,
first dimension). Otherwise, the reshape would provoke an overlap between data items (i.e., points
in the feature space), and as a consequence, invalidate the following layers designed to process
each data item, independently.

4.2.3 API Misuse (APIM). APIM bugs are the ones introduced by practitioners who misunderstand
some essential assumptions made by the used DL APIs [61]. Indeed, most DL libraries encode the
DNN as an acyclic computational graph where the edges are tensors and the nodes correspond
to operations. The operations include all the supported computational units that form the linear
computations, activations, gradient estimations, etc. Programmatically, practitioners describe their
designed DL program by inserting and configuring built-in DL routines, and connecting them by
putting the outputs of one operation as inputs to another. When these routines are added without
fulfilling their usage conditions or without context alignment, the DL program would not reflect
the designed DL model or cannot be successfully executed by the DL core framework, which leads,
respectively, to low effectiveness or runtime exceptions. Below, we detail the verification rules that
should be executed on the generated static analysis-based graph model to confirm the existence of
essential DL program’s components and their consistency with API assumptions and recognized
application context.

Rule 10: Valid Loss Linkage. The loss should be correctly defined and connected to the last layer
activation in accordance with its input conditions (i.e., shape and type). For instance, the input type
for cross-entropy based losses could be either logits or probabilities. Indeed, numerically stable
implementations regarding the cross-entropy based losses require merging both loss and last activa-
tion functions together to rewrite the join formula carefully without any risk of log(0) or exp(∞).
However, ignoring this difference between theoretical loss functions and their numerically-stable
implementations gives rise to a common mistake in the development of DNN programs, as passing
activated output to this logit-based loss would cause redundant activations.
Rule 11: Valid Optimizer Linkage. The optimizer should be correctly defined and connected to the
computational graph. Depending on the DL library, it could be either connected to the loss (e.g.,
TensorFlow) or the learnable parameters (e.g., Pytorch).
Rule 12: Single Global Initialization. The learnable parameters should be totally initialized once
at the beginning of the training. For some DL libraries (e.g., TensorFlow), this mandatory condition
should be carried out by the developer.
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Rule 13: Zero Gradients Reset. The gradients should be re-initialized after each training iteration.
This clears old gradients from the last step; otherwise accumulating the gradients hinders the
optimization process. Some DL libraries (e.g., Pytorch) delegate this necessary reset step to their
users.
Rule 14: Iterative Training Procedure. The loss minimization problem should be solved iteratively
with continuous update of parameters. Depending on the granularity level of the API used, it could
be a native loop of optimization routine calls or a single call of a configurable fit function.

4.2.4 Structure Inefficiency (SI). SI issues reflect a misconfiguration in the DNN design and its
structure that leads likely to performance problems, contrary to IPS bugs that leads to functional
incorrectness [61]. SI issues may result in performance inefficiencies (like long time of model
training/inference) or poor predictions (like low classification accuracy). As an example, large
feature-maps, especially in the early layers, provide more valuable information for the CNN to
utilize and improve its discriminative power. Therefore, it is crucial to avoid prematurely down-
sampling and excessive appliances of pooling. Otherwise, the model will lose some information
extracted in early layers resulting in poor performance. Since the best trained model cannot guar-
antee 100% of accuracy, it is challenging to detect design issues by assessing the performance of the
obtained models. Indeed, some misconfigurations and poor design choices may definitely introduce
inefficiencies on the internal functioning of the DNN or one of its components, which can hinder
the expressiveness of mapping functions, memory and compute consumption. For example, when
increasing the depth of a DNN, it is important to control both the model size and the computational
cost (regarding the specific task); otherwise, stacking a high number of layers can worsen the
performance.

Rule 15: Effective Neurons Suspension. The dropout layer must be placed after the maximum
pooling layer to be more effective. Considering the case studies with max-pooling layers [56], the
dropout has been applied on the pooled feature maps, which becomes a heuristic followed by
the state-of-the-art CNN architectures [16, 45]. The intuitive explanation is that dropping out
the activation before the pooling could have no effect except in cases where the masked units
correspond to maximums within input pooling windows because the max-pooling would keep only
these maximums as inputs for next layers.
Rule 16: Useless Bias Removal. A learning layer should no longer include a bias when it is followed
by batchnorm. Batchnorm applies, after the normalization, a linear transformation to scale and
shift the normalized activations 𝑎𝑖 = 𝛼𝑎𝑖 + 𝛽 , where 𝛼 and 𝛽 are learnable parameters. This allows
DNN to compensate for any loss of information by the value distortions in order to preserve its
expressive power. Since, batchnorm already adds a 𝛽 term fulfilling the same role of bias, so “its
effect will be canceled” [34] in the presence of a bias.
Rule 17: Representative Statistics Estimation. Batchnorm layer should be before the dropout.
Otherwise, batchnorm computes non-representative global statistics (i.e., moving average and
moving variance) on the dropped outputs of the layer. Li et al. [43] discussed the reason behind
this disharmony between dropout and batchnorm and showed experimental results reinforcing
their explanation.
Rule 18: Pyramid-shapedConstruction. The area of featuremaps and the width of fully-connected
units should be progressively decreasing over the layers. It has been shown [24] that the progressive
size reduction of activations implicitly forces the neural network to find and learn more robust
features. Hence, it significantly improves its predictions, since the network decisions are based on
more discriminative and less noisy features.
Rule 19: Maximum Pooling Domination. Max-pooling is the preferred down-sampling strategy.
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In fact, down-sampling [55] can be done by max- or average-pooling or strided convolution (strides
greater than 1). Nevertheless, max-pooling operation has been shown [50] to be extremely supe-
rior for capturing invariances in data with spatial information, compared to other downsampling
operations.
Rule 20: Gradual Feature Expansion. The number of feature maps should be gradually expanded
while the feature map area is retracted. The growth of feature maps count is recommended [42] to
compensate for the loss of representational expressiveness caused by the continuous decreasing of
the spatial resolution of the learned feature maps. Throughout the layers, the feature space becomes
synchronously narrower and deeper until it gets ready to be flatten and fed as input vector to the
dense layers.
Rule 21: Local Correlation Preservation. The local window size for spatial filtering should gen-
erally increase or stay the same throughout the convolutional layers. It makes sense that by using
CNNs, the locality of information is crucial for performing the task. Thus, it is important to pre-
serve locality throughout CNN to guarantee its success in detecting various features and relations
between them [41]. Furthermore, early convolutional layers learn lower level features while deeper
ones learn more high-level and domain specific concepts. It is recommended [52, 57] to start with
small spatial filtering to collect much local information and then gradually increase it to represent
more compound information.
Rule 22: Maximum Information Utilization. Deep CNN should not apply pooling after every
convolution. For instance, we use, as approximations, the minimum of 10 layers to consider a CNN
deep and 1/3 as threshold for the proportion of pooling layers with respect to the total of convo-
lutional layers (convolution + pooling) to pinpoint a high amount of pooling. In fact, it has been
shown [28, 33, 57] that larger feature-maps, especially in the early layers, provide more valuable
information for the CNN to utilize and improve its discriminative power. Therefore, it is crucial to
avoid prematurely down-sampling and excessive appliance of pooling.
Rule 23: Strive for Symmetry and Homogeneity. Deep CNN should favor blocks of 2, 3 or even
4 homogeneous convolutional layers with similar characteristics. Indeed, going deeper does not
refer to simply maintaining stacking a series of convolution and pooling layers. Advanced CNN
architectures [29, 32, 38] have shown the benefit of having several homogeneous groups of layers,
where each one is specialized to achieve a particular goal. Indeed, building blocks of convolutional
layers with similar characteristics (i.e., the same number of feature maps and feature map sizes)
increases the homogeneity and the structure symmetry within the CNN. Hence, larger kernels
can be replaced into a cascade of smaller ones, which enhances the nonlinearity and yields better
accuracy [52]. For instance, one 5 × 5 can be replaced by two 3 × 3 or four 2 × 2 kernels. Moreover,
spatial filtering with reduced size decreases massively the computation power requirement because
recent NVIDIA cuDNN library (version 5.x or higher) is not optimized for larger kernels such as
5 × 5 and 7 × 7, whereas CNN [52] with entirely 3 × 3 filters achieved a substantial boost in cuDNN
performance.

4.3 Application scope
The rules are defined to support the debugging of DL programs through static analysis-based graph
models. On the first hand, we have been limited to the information that could be parsed from
the source code of a DL program. For instance, there are some model parameters that should be
experimentally tested to assess their adequacy for the underlying problem, particularly for IPS bugs.
Thus, the bugs related to data (type, format, and preprocessing steps) and hardware issues (GPU
configuration and required memory) are excluded from the rules and debugging scope because the
information needed to diagnose the issue and identify those bugs are mostly out of the static DL
code scope. In fact, these types of bugs could be better detected using Python and GPU firmware
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native debugging tools that help inspect step by step the executed statements at runtime. On the
other hand, we have defined a high-level meta-model that could be instantiated to represent any
DL program; so, bugs and intricacies that are related to specific DL libraries or APIs are discarded
from the verification routines. Referring to the identified high-level root causes of DL bugs [61], we
did not consider API Change (APIC), which reflects anomalies by a DL program upon a new release
of the used library and Confusion with Computation Model (CCM), which includes bugs arising
from misunderstanding the DL library computation model such as DAG and deferred execution of
Tensorflow, and bugs which are related to regular programming mistakes like for any traditional
software.
According to the categories in the most recent taxonomy of DL faults [31], we mention the type of
faults that could be covered by the proposed rules: Wrong Tensor Shape, Wrong Shape of Input Data,
Model Properties, Layers, and Loss Function. Based on the count of manually-analyzed real-world
buggy programs in [31], we found that the covered DL bugs/issues in NeuraLint represents 51.7%,
of all reported DL buggy samples in the taxonomy. In the following, we report a prevalence ratio
for each type of bugs, i.e., the number of buggy DL programs assigned to the underlying category
divided by the total number of buggy DL programs in [31]:

• Wrong Tensor Shape (14.1%). It refers to errors leading to unexpected tensor shape and
mismatch between operations’ shapes of tensors.
• Wrong Shape of Input Data (14.8%). It assembles the bugs caused by invalid shapes of input
data for a computational layer including input layer, hidden layers, and output layer, as well
as the shape of math function’s inputs.
• Model Properties (2.7%). It comprises improper modeling choices that can dramatically degrade
the DNN’s performance such as missing, wrong model initialization, or sub-optimal model
structure.
• Layers (15.4%). It contains the bugs related to layers including missing, redundant, misconfig-
ured and wrong neural network layers.
• Loss Function (4.7%). It covers different issues in relation with the loss component such as
missing, inadequate and wrong loss function.

4.4 Representing Rules as Graph Transformations
In this paper, the meta-model is presented as a type graph and each model is a graph, instantiating
the type graph. Each DL program is converted to a graph, as well. As a straightforward approach,
graph transformations are chosen to implement the verification rules. Each verification rule is
implemented as one or some graph transformations or graph processing operators. In fact, graph
transformations are used to detect possible faults in a model, faults that are caused by violating
the verification rules. Consequently, a transformation is applicable where the conditions of the
corresponding rule are violated. In other words, if conditions of a verification rule are violated
representing a fault in a model then the graph operation(s) of that rule will be applicable. Graph
transformations are very flexible to find violation of some conditions in a graph. Recalling that a
graph transformation r is defined by a triplet of (𝐿𝐻𝑆𝑟 , 𝑅𝐻𝑆𝑟 , 𝑁𝐴𝐶𝑟 ), a specific condition would
be checked by finding a match of 𝐿𝐻𝑆𝑟 in the graph and/or the absence of 𝑁𝐴𝐶𝑟 . Once a graph
operation is applied, i.e., detecting a fault in a part of the graph, a specific fault code is added to the
node or edge in which the violation occurred. This action is represented by the right hand-side of
the rule 𝑅𝐻𝑆𝑟 .

Figure 4 illustrates one of verification rules implemented as a graph transformation, showing LHS,
RHS, and NAC. The transformation is an implementation of Rule 4 which asserts that: Multiple and
redundant connected activations are not allowed. Developers usually add activations after learning
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Fig. 4. An Example of Graph Transformation Rules: Implementation of Rule 4.

layers (like convolution and dense layers) to produce proper output signals. LHS shows a learning
layer with the type of ‘dense’, ‘conv1d’, ‘conv2d’ or ‘conv3d’ in its Parameters node, followed
by two consecutive layers containing the type of ‘activator’ and the nonLinear as True in their
parameters. A positive closure is used on the label of incoming edges to activation layers (next+).
This states that activations may appear in any Layer node on the path beginning from the learning
layer and including multiple next edges (≥ 1). To be sure that another learning layer would not
appear on this path, e.g., false detection of the next learning layer followed by its only activation,
NAC forbids the existence of any learning Layer node on the subpath leading to activation nodes.
If such a match is found in a model (graph of DL program), Rule 8 is violated. Therefore, RHS just
adds a Faults node with relevant fault code to the faulty component, i.e., learning layer. Because of
space limitation, we cannot present in the paper all the graph transformations implemented for our
model verification. We refer interested readers to the source code of NeuraLint which is available
online [11].

5 A MODEL-BASED VERIFICATION APPROACH FOR DL PROGRAMS
In this section, we describe our approach, NeuraLint for detecting faults in DL programs. NeuraLint
is a model-based automated approach that performs a static analysis of a DL program to detect faults
and design inefficiencies. Algorithm 1 shows the pseudocode of NeuraLint. The inputs are a DL
program and a graph grammar, i.e., a set of graph transformations rules. As presented in Algorithm
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1, NeuraLint has three main steps: extract a graph from the DL program, perform graph checking
and generate a report from the resultant graph. At first, the DL program is modeled as a graph
that conforms to the proposed meta-model, i.e., type graph. Then, a checking process runs to find
bugs/issues in the model. This process attempts to apply rules to the graph and stops when further
rule application becomes impossible. Then, NeuraLint traverses this graph to generate a report for
the user, containing a description of the faults and design issues found for each component. Except
graph checking and graph transformations, all other parts of NeuraLint are implemented in Python.
We discuss details of each step in the rest of this section. The source code, developer’s guide and
some examples are available online [11].

5.1 Modeling DL Program as Graph
In our graph-based approach, a DL program is modeled by a graph instance conformed to the type
graph, i.e., meta-model. To fulfill this primary step, we implement the graph generation relying
on static code analysis that examines the source code and extracts the valuable code units and
segments the information needed to instantiate the type graph’s components. This analysis is
performed without executing programs to extract the structure of the DL model from the code.
Based on the OMG (Object Management Group) taxonomy of software analysis types [54], our
graph generation process belongs to the category of technology-level software analysis because
the code inspection routines are further customized to consider the interactions between identified
units and connect them to the internals of the used technology (DL library). This provides a more
holistic and semantic view of the analyzed DL program, that allows detecting faults related to either
DL library’s API misuse or DL algorithm implementation requirements. Hence, a specific graph
generator should be implemented for each supported DL library. Without loss of its generality,
NeuraLint currently supports DL programs written using TensorFlow and Keras as two well-known
and popular libraries. It should be noted that NeuraLint can be extended to detect bugs/issues in
DL programs developed by other DL libraries (like PyTorch), as well. The only necessary step is
extending the parser to cover specific APIs of each DL framework. Moreover, by employing static
analysis we are limited to the information available prior to the runtime, in contrast to dynamic
analysis performed on programs while they are executing. Hence, we cannot detect bugs/issues
depending on information introduced in the runtime environment, like dynamic types or dynamic
constructions. However, we believe that the current approach can detect a significant amount of
bugs/issues since DL programming is usually simple, and much useful information on DL models
can be extracted by static analysis. In the following, we describe steps of modeling of DL programs
as attributed graphs.
Our approach consists in parsing the DL routines called in the DL program line by line to extract
the components related to both the DNN model and the DL training algorithm, as well as their
configurations. The identified components are independent of the context of the parsed program.
We used Abstract Syntax Tree (AST) to parse the DNN program script. AST represents the abstract
synthetic structure of the scripts as a tree. This tree represents the abstract syntactic structure
of the source code of the DL program. Each node of the tree denotes a construct or statement
in the source code of a DL program. Arguments of function calls or assignment statements are
extracted and stored in subtrees of the node. As we process the code line by line according to AST,
the graph is constructed gradually by appending nodes and edges. In each DL library, there are
specific built-in routines for defining various layers, configuring them (e.g., adding dropout and
activations), connecting layers to each other, feeding input, calculating output, and training the
network. In this way, the most important parts in the DL program for constructing its model like
layers, dimensions, loss and optimizer functions could be identified by the parser. Algorithm 2
illustrates this process. Based on the information extracted by AST, for any line in the code of a DL
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Algorithm 1: NeuraLint
Input: A DL program, program, and rules as a graph grammar
Output: List of bugs or warnings to improve the program
𝑔𝑟𝑎𝑝ℎ ← extractGraphFromProgram(program) (Algorithm 2)
𝑓 𝑖𝑛𝑎𝑙 ← graphChecker(graph, rules) :
(1) starting by graph, apply enabled rules.
(2) apply enabled rules recursively.
(3) terminate when further application of rules becomes impossible.
(4) return final.

𝑟𝑒𝑝𝑜𝑟𝑡 ← extractReportFromGraph(final)
return report

program that indicates an assignment statement, we build a dictionary to store its value for further
usage. For API calls that add or configure a layer, we firstly extract the related properties like type
and number of units (neurons) from AST or dictionary of variables. Since the current version of
NeuraLint is designed to handle DL programs developed using TensorFlow or Keras libraries, we
have covered the API of these frameworks. Sometimes, a computation phase is required for each
layer to process its attributes and attach it to other layers in the graph correctly. For instance,
the dynamic shapes of the layer’s tensors (i.e., input and output data layer) should be computed.
In such cases, the required properties are computed before adding the node to the graph. If an
API call relates to compiling or training the model (building the DNN, adding loss and optimizer
functions), the optimizer and loss nodes are added to the graph. At the end, we will check all the
interconnected layers to verify the coherence of the datashapes flowing throughout the DNN’s
computational layers and apply the required corrections. Afterward, the generated graph, including
all relevant components (nodes/edges and their properties) based on the extracted and computed
information is returned.

5.2 Model-based Verification using Graph Transformations
The verification rules are implemented as graph transformations to process and verify the graph.
Each graph transformation applies to the graph if conditions of the rule are violated. Once the
DL source code is modeled as a graph, the violations of rules can be detected with a graph trans-
formation tool that executes the sequence of rules over the model of the DL program. In this
paper, we have used the GROOVE toolset [49] to perform graph operations. GROOVE is a tool for
implementing, simulating, and analysis of graph transformation systems. It is capable of exploring
recursively and collecting all possible rule applications over a host (start) graph. This is referred
to as the exploration of the state space of a graph grammar. GROOVE explores the state space by
applying a slightly modified version of standard graph traversal algorithms, like depth-first search
(DFS) or breadth-first search (BFS). Furthermore, it has a graphical interface for editing graphs and
rules, and for exploring and visualising the GTS which could be called via command line, as well.
The output of GROOVE is called the final graph on which no further rule application is possible.
For more information about GROOVE’s internal mechanism and its capabilities for modeling and
simulating GTS, the interested reader may refer to [21].
In order to find which rules are violated, the graph transformation system must be simulated. The
simulation performed by GROOVE automatically applies the matching transformation rules over
the graph of the DL program. Actually, this process generates a state space, in which the model of
the DL source code (graph) is the start state and the transitions are the applied transformation rules.
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Algorithm 2: Extracting graph from DL program
Input: A DL program in Python developed by TensorFlow or Keras
Output: A graph indicating program’s DL model with respect to the meta-model
𝑔𝑟𝑎𝑝ℎ ← empty
𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← empty
for each line of DL program do

if line encodes an assignment statement then
extract left-hand (variable) and right-hand side (value) of the statement
add the statement to the 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦

end
if line encodes a layer then

extract properties of layer (type, size, kernel, padding, ...)
look up values of variables in 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
add the corresponding node(s) and edge(s) to the 𝑔𝑟𝑎𝑝ℎ

end
if line encodes compilation of the model then

extract properties of compilation (loss and optimizer function)
look up values of variables in 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
add the corresponding node(s) and edge(s) to the 𝑔𝑟𝑎𝑝ℎ

end
end
return graph

It explores the state space of all graphs that are reachable from graph. In certain states, no more
transformation rules can be applied; these states are called final states. A path starting from the start
state and leading to a final state, consists of applied transformations indicating the detected faults
or violation of verification rules. Moreover, this path indicates the type and location of detected
faults. A specific code for each type of fault has been associated with the faulty component when
the rule has rewritten the graph.
The rules are implemented in such a way that starts from the first layer and proceeds to the next
layers one by one. At first, the general structure and connectivity of deep neural networks is tested
assuring that input, hidden and output layers are well-formed and connected. These transformation
rules mark the graph components (nodes and edges) with relevant flags to indicate the performed
tests. Then, each graph operation checks specific conditions that are asserted in its rule using the
information provided in the graph. A transformation should be fired if a rule violation is observed
in the model of a DL program. If there are multiple rule violations or various instances of a violation
in the considered model, all of them will be detected by applying multiple enabled rules. At last, a
parser is developed to process the final graph and extract information about detected issues/bugs
to generate a report for the user.

6 EMPIRICAL EVALUATION
In this section, we report an empirical evaluation that aimed to assess the effectiveness of NeuraLint.

6.1 Studied Programs
We have evaluated the effectiveness and efficiency of NeuraLint in detecting bugs/issues on a set
of synthetic and real-world faulty DL programs. To create realistic synthetic examples, we also

, Vol. 1, No. 1, Article . Publication date: June 2021.



18 Nikanjam et al.

need some real-world DL programs to imitate the faults occurring in them. To find a proper set
of real-world faulty DL programs, we have used two main sources: 1) samples found by directly
searching over SO with keywords related to the categories of bugs covered by NeuraLint, and 2)
public datasets of buggy DL programs (from SO and GitHub) released by previous research studies.
For the former, we chose SO because it is the most popular Q&A forum for software development.
As of May 2020, it has collected more than 19 million questions and 29 million answers. It has been
also leveraged by previous studies on DL software systems [35, 60, 61]. Since NeuraLint currently
supports both TensorFlow and Keras, we searched SO posts tagged by one of these libraries with the
objective of collecting buggy DL code including multi-granularity levels such as a single function
call, a snippet (few lines) of code or a whole DL program. In fact, we found that SO assembles 57,104
and 27,008 questions, tagged respectively with TensorFlow and Keras, that comprise diverse issues
encountered by DL practitioners when dealing with these libraries. Hence, we refined our search
queries with keywords related to the categories of bugs covered by NeuraLint that are described in
Section 4 resulting in 255 posts. We manually inspected, for each type of bug, the top-10 relevant
SO posts (i.e., according to built-in SO relevance criterion) mentioning one or more of its associated
keywords. We consider SO posts, containing full code script or code snippets that are related to
one or multiple bugs belonging to the above-mentioned categories. This process left us with 18
faulty DL programs.
Regarding public datasets of buggy DL programs (from SO and GitHub), we consider three publicly
available datasets/replication packages [31, 35, 61]. Also we consider another dataset from a recent
research on bug fix patterns in DL programs developed by five popular DL libraries including
Tensorflow and Keras [36]. They have studied several repair patterns in DL programs. All these
studies investigated various faulty DL programs from SO and GitHub. We have manually inspected
all artifacts they have used in their study to find relevant faulty examples to evaluate NeuraLint.
Actually, finding proper samples for evaluating our tool is not an easy task. We explain the
methodology followed and encountered difficulties in the rest of this section. Some DL programs
were developed by libraries other than Tensorflow/Keras which are out of scope of the current
version of NeuraLint. In total, we had 733 SO posts and 682 samples from GitHub from all these
sources where 622 programs were developed by TensorFlow and 793 by Keras. Among DL programs
developed by Tensorflow/Keras, we have excluded programs containing types of faults that are not
covered by the current version of NeuraLint, for example those related to recurrent neural networks.
So, we were left with 566 faulty DL programs. In the next round, programs developed with older
versions of Tensorflow/Keras were discarded if the API related to the fault was not supported in
later versions. Many of the remaining samples (89 from SO and 126 from GitHub), especially those
from GitHub, were actually libraries (not DL programs) that have been developed on the top of DL
libraries for particular problems or domains, e.g. image/speech processing, reinforcement learning,
or natural language processing. We also discarded these libraries which were 86. Although their
implementation contained bugs that led to buggy DL models, when the libraries were used to build
DL models, we discarded them because they do not build a model explicitly using Tensorflow/Keras
APIs. For example, they get a specific configuration file or a code written by their own high-level
APIs as input, and use it to construct a DL model. Therefore, it is impossible to use those examples
since the scope of NeuraLint is defined to cover DL programs developed directly by employing
Tensorflow/Keras built-in APIs. It should be noted that customized parsers can be developed to
extract DL models from any configuration file or high-level code that is not currently covered by
NeuraLint and then use our tool to find bugs/issues in them. After processing all these artifacts, we
ended up with 26 buggy DL programs shared on SO (18 from our direct search and 8 from public
datasets) and 8 from GitHub.
Since NeuraLint requires a full DL program to construct a graph on which the model verification is
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performed, we decided to prepare synthetic examples by a mix of synthetic code and reproduced
real DL programs for the evaluation of NeuraLint. The reproduction of buggy DL programs from
the SO posts is quite difficult when a major part of the code is not provided in the post. Anyway,
to reproduce real buggy DL programs, we proceed as follows: (1) we first implement two well-
known CNN applications, LeNet [40] on MNIST data [39] and VGG-16 [52] on Imagenet data
[18], as base programs. To enhance diversity at technology level as well, we use both of our
supported DL libraries, Tensorflow for LeNet and Keras for VGG-16 following, respectively, the
official implementations [10] and [9] published on GitHub; (2) regarding implementation-related
bugs, we inject each fault found, to one of the base DL programs; (3) regarding design-related
issues, we poorly re-designed the structure of the base program’s model to include inefficiencies
violating the common patterns and best practices mentioned in Section 4. Finally, we constructed
a total of 28 buggy synthetic programs which corresponds to one or two examples per detection
rule. We constructed two faulty examples for a rule when there are two contexts in which the rule
can be triggered, one example for each of these contexts. For instance, Rule 10, which validates
the loss linkage, has been evaluated against both contexts of binary cross-entropy (used for binary
class problem) and categorical cross-entropy (used for multi-class problem). For injecting bugs,
we followed fault patterns observed in real buggy samples during our rule extraction process
(illustrated on Figure 3). Hence, the injected bugs are realistic reproductions of faults. Our goal
for evaluating NeuraLint using synthetic examples is debugging, i.e., making sure of its accuracy
and effectiveness prior to evaluating it on real-world examples. For more details, please see our
replication package containing all samples and implemented synthetic code [11].
Based on DL bug symptoms defined in [35], we found three bug symptoms in our studied DL
programs: i) Bad performance. Bad or low performance is a common effect of conceptual issues
related to design structure inefficiency or poor choices, misconfiguration of DL components; ii)
Incorrect Functionality. This symptom refers to situations where the DL program behaves in an
unexpected way without any runtime or compilation error. For instance, the DNN outputs only one
label among class labels; iii) Program Crash: This bug effect is common for all software programs,
it means that the program stopped running and raised an exception. Regarding the recommended
fixes, we examined the accepted or endorsed answers of SO users to determine the bug-fixing repair
(i.e., accepted) or recommendations provided to guide the user who asked the question towards
finding the root cause of the error (i.e., open question).

6.2 Results
First, we have evaluated NeuraLint using 28 synthesized examples to investigate the correctness
and preliminary effectiveness of the proposed approach. NeuraLint has successfully detected the
bugs and issues in all synthetic examples. It should be noted that NeuraLint extracts the DL model
from a DL program and employs graph transformations to apply the proposed rules on the model,
not the code, to detect possible bugs/issues. For extracting the model from the code, NeuraLint
relies on TensorFlow/Keras APIs and not on any particular patterns in the code. Moreover, we have
not limited our experiments to these synthetic samples and have tested NeuraLint on real-world
faulty DL programs. In other words, the tool is evaluated on faulty DL programs with bug patterns
that were not considered when creating the tool or synthetic examples.
To evaluate practical effectiveness and accuracy of NeuraLint, 34 real-world DL programs from SO
posts and GitHub repositories are used. Results are presented in Table 1 and Table 2. Table 1 reports
results over DL programs extracted from SO posts. For each DL program, we report the ID of the
post over SO, reported symptoms of buggy programs by the developer, fixes recommended by other
users, output of NeuraLint (violated rules), number of true positive cases and false negative cases
respectively. True positives are reported as a+b where a is the number of bugs/issues reported by
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SO users that are detected by NeuraLint, and b is the number of bugs/issues detected by NeuraLint
that are not mentioned by SO users. For b, two of the authors independently have checked each
program and the output of NeuraLint manually to ensure that the output is correct. The total
number of false positive cases is zero, so we do not report them. It is well-known that the best
practice is analyzing SO posts with accepted answers (No. 1 to 20 in Table 1) ensuring the proposed
solution is a real fix and addresses the mentioned problem. In our searching process for faulty
samples, however, we have encountered 6 posts in SO without accepted answers (No. 21 to 26 in
Table 1) containing relevant DL buggy programs or code snippets. Although none of the provided
answers in these posts were accepted by the user who asked the question, we found at least one
helpful and correct answer in the posts after a careful analysis. Specifically, one of the authors has
manually inspected answers to make sure that SO users pointed out a right solution to the problem
according to our verification rules. This process has been verified by another author assuring that
we have a correct assessment and that the output of NeuraLint is accurate. Regarding samples from
GitHub, the results are reported in Table 2. True positives are again reported as a+b where a is the
number of bugs/issues that are successfully detected by NeuraLint according to reported problems
in GitHub or a previous research study as mentioned in Subsection 6.1. On the other hand, b is
the number of bugs/issues detected by NeuraLint but not reported in GitHub or a previous study.
Similar to what we have done for SO posts, we have checked each program and the output of
NeuraLint manually to ensure that the output is correct. In all tables, the rules which detect the
bug/issue as reported by the developer are highlighted in bold letters. Detailed information of each
sample including the link to GitHub repositories are available in our replication package [11].
In total, 31 out of 44 bugs/issues are detected correctly by NeuraLint, so the recall is evaluated as
70.5 %. All of these bugs/issues were identified by users/developers or previous research studies.
The recall for SO posts with accepted answers is 76.9 % (20 out of 26), for SO posts without
accepted answers is 75 % (6 out of 8), and for GitHub samples is 50 % (5 out of 10). The precision
is 100 % meaning that we do not observe any false positive case in our evaluation. Moreover,
NeuraLint correctly detected 33 additional bugs/issues that were not reported by users/developers
who commented on the SO posts or GitHub repositories. Most of them, 29 out of 33, are design
issues. NeuraLint has successfully detected 64 bugs/issues in 34 real DL programs in overall.
While fewer bugs are detected by NeuraLint in GitHub samples compared to SO posts, more design
inefficiencies are detected by NeuraLint in GitHub samples (14 in 8 samples). Also, since NeuraLint
is based on a static analysis, being able to detect half of the faults contained in the studied Github
projects is already an interesting feat, since it allows developers to catch them early on, before
they have to run their programs. Based on these results, we can report that the performance of
NeuraLint is noteworthy; about three-quarters of known bugs are successfully detected (recall)
and a significant number of hidden bugs and design inefficiencies of DL programs. Moreover, its
precision is 100 % meaning that while the tool may miss some faults in the evaluated DL programs
(overall recall is 70.5 %), it never detects bugs/issues wrongly. The reason is that our detection
process is based on proposed verification rules and we report their violations in DLmodels extracted
from DL programs.
We have performed the experiments using a machine with Intel i7-9750H CPU and 16GB of main
memory running Windows 10. The average execution time of NeuraLint for the studied TensorFlow
and Keras samples are 1.800 and 2.049 seconds, respectively. It should be noted that graph checking
(performed by GROOVE) consumes the main portion of the execution time, about 99.7 %. Our
preliminary analysis revealed that the running time mainly depends on the number of layers of the
DL model. Details of the execution time of NeuraLint for five real DL programs with different sizes
are reported in Table 3. According to these results, the execution time of extracting and checking
the graph increases as the number of layers grows. Extracting the graph is accomplished by single
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Table 1. Results of validating NeuraLint using real DL programs selected from StackOverflow.

No. SO # Symptom Recommended Fix Violated Rules TP FN
1 44399299 Program Crash Change the shape of the input layer 7 1+0 0
2 43464835 Program Crash Change the shape of the input layer - 0+0 1
3 42913869 Program Crash Change the number of units for the out-

put layer
3 0+1 1

4 48518434 Program Crash Reduce spatial size of both Conv. filtering
and pooling widows

7 1+0 0

5 40857445 Program Crash Adding a flatten layer 6 1+0 0
6 50555434 Bad Performance Use softmax activation instead of sig-

moid and categorical_crossentropy loss
instead MAE

10 1+0 0

7 46177505 Program Crash Change spatial size of Conv. filtering and
pooling widows

5, 10 0+2 1

8 50426349 Program Crash Change the shape of the input layer 19, 20 0+2 1
9 38584268 Program Crash Adding a flatten layer 6, 21 1+1 0
10 45120429 Program crash Change the number of units for the out-

put layer, Adding a flatten layer
6, 19, 10 2+1 0

11 45378493 Incorrect Function-
ality

Use a sigmoid for last layer activation 5, 10, 16, 19, 20 2+3 0

12 45711636 Program Crash Use channels_last format for input data 7 1+0 0
13 34311586 Bad Performance Remove the last layer activation 5, 10, 19 2+1 0
14 50079585_1 Bad Performance Use softmax activation instead of sig-

moid and categorical_crossentropy loss
instead binary_crossentropy

- 0+0 1

15 50079585_2 Incorrect Function-
ality

Change the number of units for the out-
put layer

10 1+0 1

16 51749207 Bad Performance Use of sigmoid activation instead of soft-
max

5, 10, 19 2+1 0

17 53119432 Program Crash Adding a flatten layer 6, 19 1+1 0
18 55731589 Program Crash Use of ’same’ instead of ’valid’ for layer

padding type
7 1+0 0

19 58844149 Bad Performance Use of sigmoid as last layer activation 5, 10, 21 2+1 0
20 61030068 Program Crash Adding a flatten layer 6 1+0 0
21 33969059 Bad Performance Change the number of units for the out-

put layer
10 1+0 0

22 44184091 Program Crash Fix the limit size for input sequence data 15 0+1 1
23 44322611 Bad Performance Prune the DNN, use RMSprop instead

SGD
10, 20, 21 0+2 1

24 49117607 Program Crash Reduce spatial size of both Conv. filtering
and pooling widows

16 0+1 0

25 55776436 Bad Performance Try Data augmentation, Regularization,
filtering spatial size reduction, and DNN
Depth Increase

7, 16, 17, 20 4+0 0

26 60566498 Bad Performance Try Data augmentation and Hyperpa-
rameters Tuning

15, 16 1+1 0

or multiple passes through the code. Hence, the execution time grows linearly by the number of
layers as adding/configuring each layer needs a few API calls in TensorFlow/Keras. On the other
hand, GROOVE supports priority-based rule application as well as various search strategies to
explore the full state space, i.e., checking and applying all applicable rules in each state [21]. We
have used BFS and priority-based rule application to improve the efficiency. However, the execution
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Table 2. Results of validating NeuraLint using real DL programs selected from GitHub.

No. Symptom Recommended Fix Violated Rules TP FN
1 Bad Performance [4] Changing the last layer activation 19, 20, 21 0+3 1
2 Bad Performance [2] Changing layer dimensions 19, 20, 21 0+3 1
3 Bad Performance [5] Changing layer dimensions (padding) 4, 19, 21 1+1 1
4 Bad Performance [6] Adding a pooling layer 5, 16, 20, 21 1+3 1
5 Bad Performance [3] Changing layer dimensions 19, 16, 20, 21 1+3 0
6 Bad Performance [7] Adding ReLU activation to the last layer 3 1+0 0
7 Bad Performance [8] Adding ReLU activation to the last layer 3 1+0 0
8 Program Crash [1] Changing layer dimensions 19 0+1 1

time of graph checking grows faster than extracting the graph as the number of layers of the DL
model increases. The running time of NeuraLint can be improved which is left for future work.

6.3 Limitations and Discussion
GitHub samples were developed by advanced developers and are more complex than SO posts.
While the scope of NeuraLint is defined to cover convolutional architecture as a particular type of
FNN designed mainly for classification of 2D images, audio spectrograms, or 3D videos, some of
studied GitHub samples have used convolutional architecture for data generation (e.g., extraction
of structural lines of images1) or text classification2. In another sample3, developers concatenated
outputs of multiple convolutional architecture, each layer taking all preceding feature-maps as
input, which is not frequent in popular CNNs. Using popular convolutional architectures such
as VGG, ResNet, or MobileNet as a part of a DL model or modifying them for particular tasks is
also observed in studied samples from GitHub4. Although the proposed meta-model is capable of
representing these models as FNNs, particular rules must be proposed to find faults and improve the
accuracy of NeuraLint on these samples. The developer added a dropout layer after dense layers to
fix the problem in one of GitHub samples5. Although, as mentioned in Subsection 2.2, regularization
methods are required to improve the convergence and generalizability of DL models, we need more
investigations for proposing a rule to detect lack of enough or proper regularizations.
The focus of the design and implementation of NeuraLint, is on faults that relate to structural
(architectural) properties of DL programs rather than their dynamic properties that need the
programs to be executed. In other words, there are some frequent types of bugs/issues in DL
programs that could be detected without dynamic analysis of the DL program [31]. However, the
lack of dynamic analysis of DL programs is a limitation of our approach. Such analysis would allow
for the detection of runtime bugs and bugs/issues in training/inference of DL models. For example,
in program No. 22 in Table 1, the mismatch shapes is caused by the size of loaded input size during
the execution, it is a runtime bug and could not be detected by the current version of NeuraLint.
Some other bugs in DL programs need in-depth runtime analysis. For example, using dropout
before batchnorm makes the behavior of DNN different during training and evaluation phases.
This is the case for program No. 15 in Table 1. In another sample6, batch size has been modified to
improve the performance of the learning phase which cannot be investigated without analyzing the
learning performance during runtime. Detecting these faults is currently out of scope of NeuraLint

1https://github.com/hepesu/LineDistiller
2https://github.com/bwallace/rationale-CNN
3https://github.com/cmasch/densenet
4https://github.com/mateusz93/Car-recognition/commit/94b36ea
5https://github.com/dishen12/keras_frcnn/commit/38413c6
6https://github.com/taashi-s/UNet_Keras/commit/b1b6d93
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Table 3. Execution time of NeuraLint for five real DL programs with different sizes (times are in seconds).

No. Number of layers Running time of Running time of
Graph extraction Graph checking

1 6 0.003 1.757
2 8 0.003 1.787
3 12 0.002 1.836
4 13 0.003 1.906
5 38 0.004 3.111

and to cover them, DL programs must be experimentally tested to assess their performance for the
underlying problem and then detect it.
Another challenge that we faced is related to the multiple releases of TensorFlow library that
significantly changed the API functions; which makes the graph generator mainly designed and
implemented in regards to the 1.15 version, incapable of detecting some of the required components
for versions other than 1.15.
Lack or limited access to real DL programs annotated with possible bugs, design inefficiencies and
recommended fixes to evaluate DL testing approaches accurately and effectively could be regarded
as a barrier in this line of research. Finally, the current version of NeuraLint could find problems in
FNNs, particularly CNNs. Other neural network architectures, like recurrent neural networks are
out of the scope of this version. NeuraLint could be applied to detect bugs/issues in such neural
networks by extending the meta-model to capture their properties, i.e., possibility of connections
between the nodes that form a cycle. Also, new rules could be defined to detect specific problems
in each architecture according to frequent observed bugs/issues or best practices.

7 RELATEDWORKS
The current work on model verification of DL programs using meta-modeling and graph transfor-
mations is related to a number of approaches in the literature.
Meta-modeling and deep learning: Perez has introduced the idea of meta-model for deep learn-
ing in [48]. After sketching a model for deep learning by noting UML meta-modeling, he argued
that entities like Layers, Objectives, Activations, Optimizers, Metrics in high-level DL libraries
are meta-models for deep learning. However, the paper keeps its interesting ideas in a high-level
of abstraction. A meta-model for meta-learning is presented in [25], alongside a discussion of
its possible integration into state-of-the-art modelling frameworks. Meta-learning or automatic
machine learning is a recent approach that applies learning algorithms on metadata about machine
learning experiments to automatically improve the learning process. The concept of meta-learning
is viewed from a meta-modeling point of view and its variabilities are described. Although the
presented meta-model has similarities with our meta-model, the scope is different: while they
focused on meta-learning, in this paper, we present a meta-model of DL programs. Moreover, [25]
did not explore the possibility of identifying bugs in learning programs through model verification.
Graph representation and transformations for program verification: Ciraci et al. have pro-
posed a graph-based automatic process for verification of static program constraints on elements
like macros and comments [17]. Their main contribution is introducing a meta-model which is called
Source Code Modeling Language (SCML) to express constraints over program elements. NeuraLint
also employs meta-modelling and a graph-based approach while it focuses on detecting bugs and
bad practices in DL programs. Hoppity is a tool to detect and fix bugs in Javascript programs [19].
The researchers formulate the problem as learning some consecutive graph transformations. The
buggy program is modelled by a graph structure, and then Hoppity predicts the location and type
of bugs and some graph edits to fix the detected bugs. Hoppity employs the abstract syntax tree
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(AST) to model the buggy program as a graph while we have used a meta-model and then extract
relevant information from AST to build the model. Moreover, we propose the graph transforma-
tions for localization and detection of bugs in NeuraLint without adoption of a learning algorithm.
Researchers have proposed other approaches [12, 37] that have learned graphs from the source
code of programs (as proper representations of program semantics) for bug detection. However, in
NeuraLint we do not use learning algorithms to find or configure graphs/graph transformations.
Testing Different Aspects of DL Software Systems: Over the last few years, researchers have
developed multiple testing approaches for DL software systems [15]. While the larger part of
these approaches test the exactness of the model predictions against instances from the input data
distribution [13, 47, 58], a few other approaches [14, 20, 51] focused on the validation that DL
training programs are bug-free. Dwarakanath et al. [20] have proposed high-level metamorphic
relations that can detect bugs altering substantially the program behavior, but they do not provide
guidance to identify the root causes and have not studied real buggy DL software. In contrast,
NeuraLint is able to detect common DL software bugs and to steer the developer towards identifying
and fixing the root cause. Selsam et al. [51] leverage machine-checkable proofs to validate the math
consistency of the DNN training program. However, a proof-based approach could be difficult
to adopt in practice because it requires code written using low-level mathematical libraries, and
nowadays, DL practitioners mostly use third-party DL libraries to construct reliable and scalable
DL software systems. On the contrary, NeuraLint is quite extensible and can cover any API by
constructing a new graph generator dedicated to the target library. Braiek and Khomh [14] pro-
posed, TFCheck, a property-based testing method for DNN training programs, which continuously
collects metrics on training dynamics and performs rule-based assertions to validate that a DNN
program behaves properly. Nevertheless, it requires a running DNN training program, which is
unfortunately not always available. For instance, an error of mismatched shapes leads the graph
construction to fail and cause the crash of the DNN program. To fill-in the gap, NeuraLint detects
issues in the DL software program through its written code without even a single run.

8 CONCLUSION
In this paper, we have introduced NeuraLint, a model-based verification approach for DL programs.
As a model-driven approach, a meta-model has been proposed for DL programs at first. We have
defined a set of verification rules for DL programs based on the meta-model. A model of each
DL program is configured by parsing its code to extract relevant information. Afterward, a graph
checking process is performed to verify the model and detect potential bugs or design inefficiencies.
Graph transformation systems are used to implement the verification rules and modeling approach.
The meta-model is represented by a type graph, DL programs are modeled as host graphs, and
graph transformations execute the verification rules. NeuraLint has been evaluated using synthetic
and real DL programs. The results show that NeuraLint effectively detects faults and design issues
in both synthetic and real-world DL programs with a recall of 70.5 % and a precision of 100 %.
Refining (or even redesigning) the meta-model and graph transformations are required to improve
the accuracy and detect false negative cases. The proposed meta-model is designed for FNNs but
can be extended to support other neural network architectures such as recurrent neural networks.
Another direction of research for the future is expanding our set of verification rules to cover
more types of issues occurring in DL programs. While NeuraLint currently supports DL programs
developed by TensorFlow/Keras, it can be extended to detect bugs/issues for other DL libraries (like
PyTorch) by extending its parser to cover specific APIs of each DL library.
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