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Suppliers of tourist services continuously generate big data on ask prices. We suggest using this information, in the form of a price index, to forecast the occupation rates for virtually any time-space frame, provided that there are a sufficient number of decision makers "sharing" their pricing strategies on the web. Our approach guarantees great transparency and replicability, as big data from OTAs do not depend on search interfaces and can facilitate intelligent interactions between the territory and its inhabitants, thus providing a starting point for a smart decision-making process. We show that it is possible to obtain a noticeable increase in the forecasting performance by including the proposed leading indicator (price index) into the set of explanatory variables, even with very simple model specifications. Our findings offer a new research direction in the field of tourism demand forecasting leveraging on big data from the supply side.

Introduction

The task of demand forecasting is often based on dynamic statistical modelsmainly involving time series analysisor model-free machine learning techniques. Such models present one main drawback that limit their application in long term forecasting: the need to identify informative variables at very large lags or to accept increasingly wider confidence intervals in the case of dynamic forecasting. Predicting the sectoral demand is not simple even in the short term, when small area or high frequency details are requested. In fact, official statistics are not usually published with high time-space detail orwhen availablethey are neither complete nor timely.

In this paper, we explore the possibility to exploit public big data to partially overcome these problems in all those industries where online dynamic pricing is spreading as a marketing-management practice. In particular, we focus on the accommodation sector, as it is important for the economies of many locations worldwide and, above all, characterized by a huge number of decision makers interested in making daily forecasts about arrivals for circumscribed periods like summer, weekends, or days when fairs or other relevant events are held. [START_REF] Buono | Big data types for macroeconomic nowcasting[END_REF] highlight the potential of online price data in nowcasting and forecasting inflation, though this kind of big data has not been extensively studied in macroeconomics. In the field of tourism, according to [START_REF] Li | Big data in tourism research: A literature review[END_REF], big data are drawn from three primary sources: social media, devices and operations. They originate mainly from the behaviour of customers (even potential), while online sales prices are among the few operations generated by the supply side. Surprisingly, big data analytics have not yet considered hotels' pricing strategiesi.e. the whole set of prices that an hotel publish on an Online Travel Agency (OTA) at different advance bookings. As we further argue, these data represent one of the most effective examples of shared knowledge regarding businesses' expectations about future demand, allowing for high-frequency prediction, even in a small geographic area.

In fact, given the strong connection between accurate forecasting of guest arrivals (occupancy rates) and successful pricing [START_REF] Weatherford | A comparison of forecasting methods for hotel revenue management[END_REF], we argue that hoteliers calibrate and apply a subjective inverse demand function when they price rooms across the advance booking period. The shape of this inverse demand function is quite complex, as prices in the booking window (for a given target date) depend on both the observable (i.e. hotel's past and actual occupancy rates or seasonality/special events) and the unobservable (i.e. hotelier's expectations about future demand). Monitoring price dynamics is therefore akin to conduct a continuous survey on corporate sentiment; like thousands of virtual questionnaires revealing managers' forecasts for occupancy rates in the advance booking window, conditioned by their observations on their own past and present reservations.

We suggest to employ a synthesis of these supply-side big data to estimate an aggregate demand function. As our focus is on forecasting, we constrain the function to employ only a set of predetermined information, e.g. deterministic variables, in addition to prices. This approach allows to make static forecasts of the daily occupancy rates, even in small areas (municipalities or neighbourhoods), atvirtuallyany horizon, provided that the number of decision makers who share their pricing strategies on the web is sufficient.

We believe that our approach has great potential in research on tourism demand forecasting. It can be easily generalized to all the empirical settings covered by at least one OTA; it is operable (and effective) with linear statistical models, even though we show that a more general parametrization which admits non-linearity yields better results. In addition, it guarantees transparency and replicability, as big data from OTAs are raw data less dependent on changes in user behaviour and search interfaces when compared to the big data from search engines [START_REF] Lazer | The parable of Google Flu: traps in big data analysis[END_REF]. Finally, even if we focus only on the hotel segment, a similar methodology could be employed using prices scraped from platforms promoting private accommodations.

Our findings highlight the value of on-line prices as publicly available and reliable data which can link the stakeholders of tourism services to the digital environment. The remainder of the paper is organized as follows: Section 2 provides a review of the existing literature on forecasting and big data; in Section 3, we describe the dataset and the modelling/evaluation framework; in Section 4, we present the estimation and model evaluation results. In Section 5, we discuss our findings, linking them to managerial implications that show how our approach can facilitate intelligent interactions between a geographic area and its inhabitants by providing a "smart" place to start the decision process.

Literature review

Predicting day-to-day tourist numbers is a very important task, as it enables public administrators to better manage both the issues of crowding/tourism sustainability [START_REF] Cheung | Understanding visitor-resident relations in overtourism: developing resilience for sustainable tourism[END_REF] and the net economic contribution tourists provide local businesses [START_REF] Voltes-Dorta | An initial investigation into the impact of tourism on local budgets: A comparative analysis of Spanish municipalities[END_REF]). These issues are increasingly important in mature destinations in light of growing anti-tourism movements [START_REF] Seraphin | Over-tourism and the fall of Venice as a destination[END_REF] and serious space problems between visitors and residents that are also on the rise in developing countries (Huang et al 2017a). The transient visitor population creates a surge in demand for assets that tourists share with residents, which also implies the non-sustainability of tourism on an economic level. Looking at the smallest and largest municipalities in Spain, [START_REF] Voltes-Dorta | An initial investigation into the impact of tourism on local budgets: A comparative analysis of Spanish municipalities[END_REF] show that revenue generated by tourism does not usually match the increased expenditures required to service the floating visitor population.

In agreement with [START_REF] Sánchez-Galiano | Temporary population estimates of mass tourism destinations: The case of Benidorm[END_REF], we believe that the lack of specific data on the transient population is one of the main factors preventing local administrators from efficiently managing public services and residents' attitudes towards tourism. An accurate and timeliness prediction of seasonal (daily) peaks would improve the scenario for sustainable development, while also limiting the negative effects of overcrowding (Martinez-Garcia et. al. 2017).

In European Countries, three main official investigations cover the monitoring system of tourist flows (UNWTO 2010). These show limits in terms of completeness, timeliness and accuracy [START_REF] Guizzardi | Measuring underreporting in accommodation statistics: Evidence from Italy[END_REF], as they do not provide data that are actually useful to the authorities in managing local tourism (i.e. prompt sub-monthly data at municipal level). This information gap led many researchers to look at indirect indicators of tourism demand, and/or search for the digital tracks left by tourists and tour operators in the form of big data [START_REF] Liu | Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model[END_REF]. Regarding indicators, Tang et al. (2016) demonstrate the value of using readily available OECD economic climate indicators to estimate hotel occupancy trends in Hong Kong, while [START_REF] Guizzardi | Real-time forecasting regional tourism with business sentiment surveys[END_REF] show the value of business sentiment indicators to improve forecasting performance on tourism flows. However, big data analytics is certainly the approach offering greater opportunities to scholars [START_REF] Buhalis | Progress in information technology and tourism management: 20 years on and 10 years after the Internet-The state of eTourism research[END_REF]. Big data support the decision making process, allow for a better understanding of many tourism issues [START_REF] Xiang | What can big data and text analytics tell us about hotel guest experience and satisfaction[END_REF], are inexpensive (compared to consultant inputs), very territorially detailed and without the limitations in terms of sample size and timeliness shown by official information. The tourism literature focuses on three primary big data sources [START_REF] Li | Big data in tourism research: A literature review[END_REF]: user-generated content (social media), devices (GPS, mobile roaming, Bluetooth etc.), and operations (web searching and other transaction data).

Data generated by social media provide details about individual experiences and expressions with timestamped, demographic and evidence-based insights [START_REF] Yang | Forecasting Chinese tourist volume with search engine data[END_REF]. Social media activity largely relies on geo-tagged data sources, microblogging services and review platforms. Among others, [START_REF] Giglio | Using social media to identify tourism attractiveness in six Italian cities[END_REF] used photographs uploaded on Flickr to determine the attractiveness of various tourism sites, while [START_REF] Miah | A big data analytics method for tourist behaviour analysis[END_REF] apply the same data to decision support. [START_REF] Chua | Mapping Cilento: Using geotagged social media data to characterize tourist flows in southern Italy[END_REF] and [START_REF] Brandt | Social media analytics and value creation in urban smart tourism ecosystems[END_REF] used Twitter posts to assess users' mobility patterns on a regional scale, while [START_REF] Xiang | A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism[END_REF] focus on review platforms, showing discrepancies in the representation of hotel products. GPS, Wi-Fi Bluetooth and beacon functionalities have been employed to track tourist movements, providing considerable spatio-temporal big data [START_REF] Hardy | Comparing techniques for tracking: the case of Tourism Tracer in Tasmania, Australia[END_REF]. Automatic weather station sensors have helped collecting a rich mine of meteorological data [START_REF] Guo | Application of meteorological big data[END_REF], which in turn can be exploited to gain knowledge about tourist arrivals in locations offering weather-sensitive activities. For example, [START_REF] Falk | A dynamic panel data analysis of snow depth and winter tourism[END_REF] investigates the relationship between the number of overnight stays and the snow depth at 28 Austrian ski resorts.

Web search data were mainly used as exogenous information to improve accuracy in the prediction of tourist flows and hotel demand [START_REF] Li | Big data in tourism research: A literature review[END_REF]. [START_REF] Choi | Predicting the present with Google Trends[END_REF]'s seminal work improved the forecasting accuracy of ARIMA models using travel-related Google search data. [START_REF] Pan | Forecasting hotel room demand using search engine data[END_REF] obtain the same results with multivariate ARMA models, while Bangwayo-Skeete and Skeete (2015) implement an AR-MIDAS regression. [START_REF] Rivera | A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data[END_REF] use Google Trends data in a dynamic linear model to forecast arrivals to Puerto Rico, while [START_REF] Gunter | Forecasting city arrivals with Google Analytics[END_REF] are among the few authors focusing on a micro area (the city of Vienna). A more recent strand of literature focuses on the most effective ways to include web search data in an econometric model to limit overfitting and multicollinearity issues. We recognize three main statistical approaches the principal component analysis [START_REF] Li | Identifying emerging hotel preferences using Emerging Pattern Mining technique[END_REF], data shift and combination of different types of search query data, [START_REF] Yang | Forecasting Chinese tourist volume with search engine data[END_REF], and the generalized dynamic factor models [START_REF] Li | Forecasting Tourism Demand with Composite Search Index[END_REF].

Other transaction data have been introduced into tourism research in very few related articles, possibly because most transaction data are difficult to obtain due to privacy concerns [START_REF] Li | Big data in tourism research: A literature review[END_REF]. Among them, Zervas et al. (2018) show the effect of Airbnb on the hotel market, while [START_REF] Saito | Optimal room charge and expected sales under discrete choice models with limited capacity[END_REF] analyse visitors' choices by using online booking data from four major hotels near the Kyoto station. [START_REF] Sobolevsky | Money on the move: Big data of bank card transactions as the new proxy for human mobility patterns and regional delineation. the case of residents and foreign visitors in Spain[END_REF] demonstrated the applicability of bank card transactions in analysing tourist mobility patterns, while [START_REF] Huang | Carbon emission flow from self driving tours and its spatial relationship with scenic spots. A traffic-related big data method[END_REF] measure the carbon emissions of self-driving tourism and the spatial relationship with scenic spots, using an ArcGIS-Network analysis. Even though we only cite a few examples, it is important to emphasize that few papers consider a daily time dimension (e.g. Brant et. al., 2017).

Analytics of the pricing behaviour of hotels, as it appears on the OTAs, are expected to be informative about daily tourism demand. In fact, these supply-side big data directly reflect expected occupancy rates as managers' forecast of occupancy rates is one of the major inputs for most revenue management systems producing recommendations about pricing and availability (Tang et al., 2016). More complex approaches also consider customers' price sensitivity, and cancellation probabilities [START_REF] Talluri | The theory and practice of revenue management[END_REF][START_REF] Antonio | Big Data in Hotel Revenue Management: Exploring Cancellation Drivers to Gain Insights Into Booking Cancellation Behavior[END_REF] or variables reflecting subjective reactions to unexpected events by customers and hoteliers [START_REF] Yang | Predicting hotel demand using destination marketing organization's web traffic data[END_REF]. Overall, scholars report a strong correlation between good forecasting of occupancy rates and (successful) pricing along the advance booking period [START_REF] Tse | Analyzing the use of an advance booking curve in forecasting hotel reservations[END_REF][START_REF] Koupriouchina | On revenue management and the use of occupancy forecasting error measures[END_REF]. On the basis of these findings, it seems possible to employ the information provided by revenue managers through the OTAs to improve the forecasting accuracy of models for daily occupancy rates, even for small areas such as municipalities or neighbourhoods, provided that the number of decision makers sharing their pricing strategies on the network reaches a minimum level.

To the best of our knowledge, only a very recent paper by [START_REF] Tsang | Gaussian processes for daily demand prediction in tourism planning[END_REF] considers the pricing behaviour of hotels to forecast daily tourism demand at a city level with a time series approach. They exploit Gaussian processes and machine learning algorithms, with orthogonalized variables as regressors. We show that our leading indicator approach is worth as it doesn't require multi-step dynamic forecast to predict, is more robust to missing data bias and allows to obtain good forecasting performances.

Data and Methods

In order to explain the variability observed in daily demand, we construct a dataset from the Best Available Rates (BARs) published on Expedia.com every day at 00:00 AM for a one night stay (one adult). We consider a panel of 107 hotels in Milan, over a time interval of 274 days, from January 1st to September 30 th , 2016. In the following, arrival dates are denoted by an index t. For each arrival date t, 29 BARs were recorded, corresponding to the lowest offered price along a four-week advance booking period (i.e. from 28 to 0 days). The booking process was simulated from December 4 th , 2015, collecting 893,664 BARs observations. The data source is Rate Tiger, a market intelligence service which monitored the pricing activity of the selected hotels (on demand and for a fee).

As a proxy of the realized tourist demand in the hotel sector, we consider the time series of daily average occupancy rates for hotels in the city of Milan over the same period provided by the STR Share Center. Milan is a business destination in the North of Italy which, in 2017, registered 10.1 million overnight stays in the 27,519 rooms offered by 467 hotel structures (Municipality of Milan, 2019). It represents an optimal empirical setting for our purposes, given both the high hotel market share (86%) and a noticeable daily seasonality. Thus, we include dummy variables to control for the arrival day of the week, bank holidays, and a selection of fairs and events between late winter and spring, (the periods in which Milan experiences the highest occupancy rates and price changes).

As we aim to assess whether the inclusion of advanced booking prices for a set of hotels in a destination improves the prediction of the occupation rate for the same destination, the choice of the advance booking lag is a core aspect. A priori, we expect a trade-off between different benefits provided by large and small advance booking horizons. The former provides policy makers with a larger degree of freedom, for example, more time to manage resources to avoid a surplus or deficit of the assets that tourists share with residents. On the contrary, predictions leveraging the last-minute pricing behaviour should be more accurate in light of both the progressive reduction of uncertainty for new bookings/cancellations and the increasing importance of pricing tactics over strategies [START_REF] Guizzardi | Advance booking and hotel price variability online: Any opportunity for business customers?[END_REF]. In order to operationalize the choice, we should also consider that, for our purpose, any single advance booking is sub-optimal respect to a price index. In fact, particularly with events inducing peaks of demand, we observed that many hotels decide to temporarily avoid offering rooms on the OTA distribution channels: in this case, the data scraping process provides many failures producing inconsistent sample sizes at certain advance bookings. Moreover, online dynamic pricing is associated with irregular price variability over the booking horizon [START_REF] Guizzardi | Advance booking and hotel price variability online: Any opportunity for business customers?[END_REF]. For this reason, we suggest considering a price index obtained as a moving average of the BARs posted over a week. In particular, we consider four weekly non-overlapping windows along the advance booking as we aim to measure the extent that forecasting performance changes using price indices calculated on different advance booking windows.

More formally, we denote weeks along the observed advance booking with an index 𝑖 = 1,2,3,4 starting from the day before the arrival date and counting backwards. The advance booking price index Pi,t is a moving average of all the prices, for a stay on day t, posted on-line by the 𝑁 𝑎 = 107 hotels from day (𝑡 -7𝑖) to day [𝑡 -7(𝑖 -1) -1]. Then each advance booking price index Pi,t is computed as follows:

𝑃 𝑖,𝑡 = 1 7𝑁 𝑎 ∑ ∑ 𝑝 𝑗,𝑡,𝑎 𝑁 𝑎 𝑎=1 7𝑖 𝑗=7(𝑖-1)+1 (1)
where pj,t,a is the BAR posted on Expedia by the hotel a, for the arrival date t on the day t-j. We highlight that, chosen a week i, it is possible to calculate the index 𝑃 𝑖,𝑡 at time [𝑡 -7(𝑖 -1) -1]. Moving the time reference forward to the present (t), we can use the price index in equation ( 1) as a leading indicator to forecast the occupancy rate at time [𝑡 + 7(𝑖 -1) + 1]. Note that, when more than the 33% of the expected pj,t,a are missing -at least in one of the four weeks -we do not calculate the index and the days corresponding to these values are excluded from the sample which, consequently, reduces from 274 to 262 observations. The statistics in Table 1 show that both mean level and price variability increase with the approaching the arrival date. This reflects a typical pricing behaviour [START_REF] Mauri | Hotel revenue management: Principles and practices[END_REF] aimed at hindering cancel-and-rebook strategies, while allowing for increasing discounts/surcharges of the offered BAR as the target date approaches. BARs variability is in fact being increasingly used as a tool to control customers' Internal Reference Price [START_REF] Choi | The effects of internal and external reference prices on travelers' price evaluations[END_REF] and booking propensity or, ultimately, to help managers meeting their goals in terms of occupancy rate.

The sampled hotels are primarily 4-star establishments. The 54% are independent, while the remaining 46% are affiliated with a chain or franchise. They are mainly located in the city centre (75% are less than 3 km from the city centre) and they are mostly business hotels specialized in hosting MICE events. The hotels have an average of 110 rooms, much higher than both the Milan and the Italian national average. The fairs dummy variable has a value of 1 for the most visited fairs/events (detail available upon request). 

Modelling and evaluating framework

In this section we discuss how to employ the price index 𝑃 𝑖,𝑡 𝑖 = 1,2,3,4 to estimate an aggregate demand function for day t. In order to keep the approach relatively inexpensive and easy to use for policy makers, we limit exogenous variablesother than prices -to deterministic variables that can be constructed with a simple information retrieval (such as noting bank holidays and choosing a set of possibly relevant events in the chosen location, such as the fairs in our case). We also avoid using month dummies to model seasonality, since our sample is shorter than one year, making monthly statistics inconsistent.

Our main goal is to provide an effective forecasting of the daily occupancy rate over a relatively long (i.e. a few weeks) time horizon, without the need to collect every day the actual occupancy rate, as it would be required in a dynamic forecasting framework. However, for the sake of completeness, we also investigate the performance of dynamic time series models, with and without exogeneous regressors. In the following two sub-sections, we first describe leading indicator regression modelsnot relying on lags of neigher the dependent or independent variableand then we consider a dynamic forecasting experiment using linear time series models. where 𝑃 𝑖,𝑡 , denotes the price index in eq. ( 1) calculated averaging the prices posted during the i-th week of advance booking for a stay in day t. Thus 𝑀2 𝑖 and 𝑀3 𝑖 exist in four versions each, which differ because they use as explicative variable a price index computed considering different advance booking. This way, we point to separately assess possible differential effects of longer/shorter horizons in the prediction of demand.

Leading indicator models

M1 considers only seasonal and calendar effects (day of week, holidays, fairs), while M2 and M3 incorporate information about prices posted in the advance booking window i. In particular, M1 and M2 are standard linear regression models, and the parameters can then be estimated using ordinary least squares (OLS). The choice of a non-linear transformation follows the inspection of the scatterplots of Occt against Pi,t shown in Fig 1 .  The logarithm is a common transformation applied to prices in economic and econometric modelling, but in this case it is not optimal as the residuals of models M2 are not normal and heteroskedastic, which underscores the idea that a more complex specification could provide better results.

Figure 1: Non-linear relation between average occupancy rate in Milan at day t (y axis) and the price index, calculated considering short (i=1) and long (i=4) advance booking.

Finally, we specify M3 as a Generalized Additive Model (GAM, see Hastie, 2017 for a comprehensive description of this class of models) including the same explanatory variables as in M2. Formally, the structure of a GAM is akin to an ordinary linear regression. However, the relationship between the response variable and the covariates can be more complex than linear, or linear in a simple transformation, such as the natural logarithm of the price index in M1 and M2. The term 𝑠(𝑃 𝑖,𝑇 ) in the expression of M3 denotes a nonlinear smooth function of the regressor, represented by a penalized regression spline, whose estimation is carried out via restricted maximum likelihood [START_REF] Wood | Package 'mgcv[END_REF]. The spline transformation of the independent variable allows for a much more flexible modelling compared to traditional and even generalized linear models. As a result, GAMs allow us to take care of the effects of (possibly multiple) seasonality, non-Gaussianity and non-linearity between dependent and independent variables, in a setting characterized by a small number of parameters. In practice, we use the standard R function lm() to obtain estimates of the parameters of M1 and M2 via OLS , and the gam() function from the R package mcgv [START_REF] Wood | Package 'mgcv[END_REF] for the smoothing parameter in M3.

Once we have estimated the models M1, 𝑀2 𝑖 and 𝑀3 𝑖 , a (static) forecast on the horizon h can be easily computed as follows: We note that specification M1 allows to perform forecasts of occupancy rates without limits in the value of h, as it considers only calendar and deterministic variables (provided the dummy for fairs is known up to time t+h). The only limitation to the use 𝑀2 𝑖 and 𝑀3 𝑖 specification for forecasting purposes is that the horizon h has to be less or equal than [7(𝑖 -1) + 1] with (𝑖 ≥ 1) the maximum number of advance booking weeks available. This horizon limitation do not apply to pure time series models, as showed in section 3.1.2.

𝑀1: 𝑂𝑐𝑐 ̂𝑡+ℎ = 𝛼
We assess and compare the predictive performance of each model using a Monte Carlo (or repeated random sub-sampling) cross-validation. We perform K = 3000 repetitions; each time, we randomly draw a test sample with size 𝑇 1 estimating model parameters on the remaining T-T1 observations. We perform the cross validation twice, for 𝑇 1 = 30 and 𝑇 1 = 50. Then, we predict for the observed occupancy rate, implying that correctly predicting the lower occupancy rate is equally important as predicting higher values.

As we simulate K=3000 random test samples, we are able to draw the distributions of the considered loss functions. We rank rival models using the expected value, identifying the "best predictor" with the one associated to the lowest. Looking at the whole distribution (shape and the size of the overlapping areasif any), we are also able to assess the relative strength or weakness in forecasting extreme values. Finally, we more formally assess, the significance of differences in the expected performance between two specifications with a Kolmogorov-Smirnov test comparing the cumulative distributions of the loss functions associated to two rival models by means of the supremum function 𝑠𝑢𝑝 of their distance 𝐷 1,2 = 𝑠𝑢𝑝 𝑥 |𝐹 1 (𝑥) -𝐹 2 (𝑥)|.

Dynamic models

Time series modelling has been popular in tourism demand forecasting for a long time. In a recent review, [START_REF] Song | A review of research on tourism demand forecasting[END_REF] summarize 211 key studies in the field of tourism economics, finding that Seasonal Auto-Regressive Moving-Average (SARIMA) models have been employed since the 1970s [START_REF] Geurts | Comparing the Box-Jenkins approach with the exponentially smoothed forecasting model application to Hawaii tourists[END_REF] until the present to forecast tourism expenditure, revenue and, particularly in the most recent decades, demand. It is worth mentioning than the majority of these studies rely on monthly or quarterly data, as opposed to the daily frequency in our case.

Building on this literature, we test a set of different SARIMA specifications. Giving a comprehensive review of these models is beyond the scope of this article, particularly because they have been a classic forecasting tool for a long time; for technical details we refer to Chapter 6 in [START_REF] Brockwell | Introduction to time series and forecasting[END_REF].

In brief, we say that 𝑂𝑐𝑐 𝑡 follows a SARIMA(p,d,q)(P,D,Q)s, if:

(1 -𝐵) 𝑑 (1 -𝐵 𝑠 ) 𝐷 𝑂𝑐𝑐 𝑡 = ∑ 𝜙 𝑖 𝑂𝑐𝑐 𝑡-𝑖 + ∑ Φ 𝑖 𝑂𝑐𝑐 𝑡-𝑗𝑠 + ∑ 𝜃 ℎ 𝜀 𝑡-ℎ + ∑ Θ 𝑘 𝜀 𝑡-𝑘𝑠 𝑄 𝑘=1 𝑞 ℎ=1 𝑃 𝑗=1 𝑝 𝑖=1
where B is the backshift operator, such that B k 𝑂𝑐𝑐t = 𝑂𝑐𝑐t-k, d is the level of integration, D the level of seasonal integration (respectively, the number of nonseasonal and seasonal differences to take to obtain stationarity), s the period of the seasonal cycle and εt a sequence of independent and identically distributed Gaussian random variables. In our case, d = 0, while we admit that D = 1 and s = 7 days. The two sums including ϕ and θ coefficients represent the autoregressive and moving average part of the process, respectively; the terms involving Φ and Θ introduce analogous terms for the seasonal component.

Results

Leading indicator models

In Table 2 we display the results of the parameter estimation of all models, using the entire sample of 262 days. The price index is always significant (α = 0.05) and clearly increases the goodness of fit of models 𝑀2 and 𝑀3, with values of the adjusted R2 all higher than ~ 0.7 as opposed to the value of 0.56 associated with M1.

As expected, for both 𝑀2 𝑖 and 𝑀3 𝑖 the explanatory power of the index decreases for increasing i. However, the model fit is better than for M1 even with a price index computed at the fourth week of advance booking.

The coefficients of the leading indicator 𝑃 𝑖,𝑡 in models 𝑀2 𝑖 are always positive, and the spline term s() resulting from the estimation of 𝑀3 𝑖 also assumes positive values. In both cases, price "elasticities" increase at decreasing i, pointing to a stronger association between pricing and realised occupancy rate close to the lastminute. This result is expected and reflects an increasing capability of decision makers to correctly predict the occupancy rate at very short advance bookings, when the probability of unexpected cancellations or new reservations decreases. Symmetrically, the coefficients of the other explanatory variables tend to increase in absolute value at larger advance bookings, while the variable Fair is never significant when prices are considered.

Overall, the above results imply that, over short time horizons (up to one month), prices posted by decision makers on the OTAs contains enough information to explain occupation rates even in cases of irregular fluctuation caused by fairs.

However, the differences in the goodness of fit between specifications 𝑀2 and 𝑀3 stress the limits of the simple linear approach being able to represent the dynamics of the occupancy rate in regular patterns. In other words, the better result obtained with a GAM approach points to the existence of a marked non-linearity in the relationship between Occt and 𝑃 𝑖,𝑡 that we believe it is worth considering, notwithstanding the increased complexity of the model. Analogous conclusions follow the assessment of the forecasting performance for all rival models over the K=3000 Monte Carlo simulationsee Table 3 andFigure 2. Since results for T1 = 30 and T1 = 50 are very similar, we only report the case T1 = 30.

M1 shows the lowest performance in terms of all the three considered loss functions, while model 𝑀3 1 displays both the smallest mean value and variability (see Table 3). The overlapping area between the distributions of each loss function for the two models is only 2% for MAE and MSE, and 7% for MAPE. This suggests that the forecasting performance is significantly different between the two models, and allows us to conclude that the inclusion of the price index significantly increases the ability to predict unobserved demand compared to a model that considers only seasonal and calendar effects. The fact that all the specifications including the price index perform better than M1, even with four weeks of advance booking, suggests that hotel managers set prices according to expected and desired demand well in advance. In other words, they have rational expectations on occupancy rates at the arrival date, meaning they could be wrong individually but they are not systematically biased over time. For the sake of readability, we have excluded the results related to the week 3 from the graphs in figure 2; in fact the Kolmogorv-Smirnov test described in Section 3, shows that results related to the week 3 do not differ significantly from the one obtained considering week 4. It is worth noting that all the other distributions are statistically different.

In terms of advance booking effect, the smaller the iand then the booking horizonthe better the forecasting performance of the same specification. For increasing i, we observe both increasing mean value of the distribution of the loss functions (corresponding to decreasing predictive power of the models) and increasing variability and interquartile range. These results suggest that the managers' forecasting process is efficient in the sense that the lower uncertainty -the closer to the arrival date they are -the more accurate the forecast will be. The complex relationship between prices and occupancy rates is better caught by the GAM smoothing term in M3, which allows for a better prediction of the values far from the mean level, a core aspect of forecasting practices [START_REF] Zhang | Improving daily occupancy forecasting accuracy for hotels based on EEMD-ARIMA model[END_REF]. In particular, the GAM model including the information farthest from the arrival date (M34) is associated to distributions of MAE and MSE with lower mean values (and lower variability for the MAPE) than M22, showing that accounting for non-linearity makes up for the loss of information experienced extending the forecasting horizon of two weeks. Consistently the difference is even more evident for M32 and M21, particularly in the tails. 

Dynamic models

The visual analysis of the time plot and of the global and partial autocorrelation functions, suggest that the time series 𝑂𝑐𝑐 𝑡 is stationary and characterized by a cycle with a period of 7 days. Stationarity is corroborated by the Augmented Dickey-Fuller test, which rejects the null hypothesis of a unit root at the level α = 0.05. The test has been augmented including lags up to t-4, which is the autoregressive order suggested by the model selection described below. We also check for possible seasonal unit roots using the Hylleberg, Engle, Granger and Yoo test (Hylleberg et al., 1990), however this test did not provide a clear result due to numerical problems.

We then admit the possibility of seasonal unit root among the considered models, but not of a unit root in the non-seasonal part of the model.

We use the auto.arima function from the R package 'forecast' [START_REF] Hyndman | Automatic time series for forecasting: the forecast package for R (No. 6/07[END_REF] to determine the optimal orders p, P, q, Q. This function estimates several combinations of these parameters and suggests the best fit based on the Akaike Information Criterion (AIC). The suggested model is a SARIMA(4,0,7)(0,0,0), that is stationary and non-seasonal. We consider a further ensemble of models for Occt including seasonality and exogenous variables:

𝑀4: 𝑂𝑐𝑐 𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(0,0,0) 𝑀5: 𝑂𝑐𝑐 𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(0,1,0) 𝑀6: 𝑂𝑐𝑐 𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(1,0,1) 𝑀7: 𝑂𝑐𝑐 𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(0,1,0) + 𝛽 1 𝑡𝑟𝑒𝑛𝑑 + 𝛽 3 ℎ𝑜𝑙 𝑡 + 𝛽 4 𝑓𝑎𝑖𝑟 𝑡 𝑀8 4 : 𝑂𝑐𝑐 𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(0,0,0) + 𝛽 1 𝑡𝑟𝑒𝑛𝑑 + 𝛽 3 ℎ𝑜𝑙 𝑡 + 𝛽 4 𝑓𝑎𝑖𝑟 𝑡 + γ 𝑙𝑜𝑔(𝑃 4,𝑡 )

Time series models allow to calculate dynamic forecasts for any horizon h. However, for reasons of comparison with our linear regression and generalized additive models, we only consider the maximum possible horizon (h=21) fixing i=4. Since in the case of time series modelling, the chronological order of the data must be respected, we split the available information in an estimation set made by the first 253 daily occupancy rates in our time series leaving the last 21 days for forecasting assessment (test set).

We do not report and comment the estimated coefficients of these additional models, since these are of limited interest in the evaluation of the forecasting performance. Results are reported in Table 4. The best goodness of fit (AIC) is associated to 𝑀8 4 , the seasonal time series model with exogenous covariates. However, when the forecasting is assessed, the augmented linear regression and the GAM model including the leading indicator turn to be the best choice. This result was expected, as with models 𝑀2 4 and 𝑀3 4 we are able to perform a static forecast that uses the actual values of the explanatory variable 𝑃 𝑡,4 while time series models use the forecasted values of the dependent variable to perform the 21 step ahead dynamic forecast. Is worth to note that augmenting the specification M7 with 𝑃 𝑡,4 (i.e. 𝑀8 4 ) produces a decrease in the value of all the three loss functions. In Figure 3, we show the observed occupancy rates (black line) compared to the predictions obtained with 𝑀1, 𝑀2 4 , 𝑀3 4 , 𝑀4 and 𝑀8 4 specifications. For the sake of clarity, we only show the simplest and the most complex time series models, as the performances of the others fall in between. We can notice that models 𝑀1, 𝑀2 4 and 𝑀3 4 , provide the visually best forecasting, despite not being dynamical time series models.

Figure 3: Out-of-sample actual and forecasted daily occupancy rates.

While accuracy of M1 is line with Monte Carlo simulated results in table 3, the performances of the models 𝑀2 4 e 𝑀3 4 are definitely better. Therefore, the hoteliers' ability to forecast future occupancy rate -and to reflect their prediction in an on-line price -appears to be much higher than expected. Specifically, the forecasting starts from the second week of September, a very active period in Milan after a minimum in occupancy rate characterising the month of August. This temporary shifts from the long run equilibrium affect the accuracy of time series models that rely on dynamic forecasting to span a horizon of 21 days. As it is clear from figure 3, after a few days, models M4 and M7 are no longer able to follow the trend. Moreover, they are unable to intercept the impact of occasional public events [START_REF] Kamola | Improving Time-Series Demand Modeling in Hospitality Business by Analytics of Public Event Datasets[END_REF]. This aspect highlights another potential problem in evaluating the forecasting results of approaches where the chronological order of the data has to be respected. In fact, the number of demand fluctuations in the chosen test set could condition the assessment, as reported in [START_REF] Tsang | Gaussian processes for daily demand prediction in tourism planning[END_REF].

Conclusion

Traditional forecasting methods use past or present information to forecast future occupancy rate, limiting the accuracy of forecasting when demand fluctuates as a consequence of changes in the economic environment or unexpected events occur [START_REF] Pan | Forecasting hotel room demand using search engine data[END_REF][START_REF] Yang | Predicting hotel demand using destination marketing organization's web traffic data[END_REF]. To improve forecasting accuracy, Zhang et al. (2017) suggest to focus on irregular fluctuation, converting it into regular patterns -a task that is not particularly easy, especially in a high frequency setting. Moreover, such an approach requires the continued observation of demand up to the present, in order to produce a forecast for an established number of steps ahead.

In this paper, we have proposed a completely different approach, presenting a method to forecast tourist demand by improving the set of available information, rather than complicating the modelling strategy. In particular, we show how it is possible to exploit the expectations of hotel managers on occupancy rates made public on OTAs through the prices asked at different advance bookings. In this sense, the diffusion of OTAs has made dynamic pricing strategies, if not transparent, at least understandable through the analysis of data that are public and can be easily collected. This way they become a source of shared knowledge that allows for significantly improved forecasting performance, in particular over small geographic areas and at high frequency (daily). This spatio-temporal scale is, at the same time, the least (realistically not at all) covered by official statistics, and the most important for the majority of tactical decisions about public resource allocation. Thus, it is imaginable that studies concerning other cities and areas -even with a strongly seasonal demandcan take advantage of our methodology by incorporating big data on dynamic pricing it into their forecasting practices.

The core of the paper resides in the use of a leading indicator -constructed using best available rates published on OTAs at different advance bookings by a sample of hotel managers -to predict daily occupancy rates at a fine grain time-space setting. We consider these supply-side big data as originated from a virtual daily surveys regarding the sentiment of the manager about occupation rate at a certain arrival date. In other words, prices are treated as a measure of corporate expectations regarding future demand, given the information set and the pricing model.

As a main conclusion, we find that it is possible to obtain a sensible increase in the forecasting performance by including such a price index into the set of explanatory variables, even with very simple model specifications. This implies that hoteliers have rational expectations on occupancy rates at the arrival date, or in other words they could be wrong individually but they are not systematically biased over time.

Our results also confirm the existence of a trade-off between forecasting accuracy and time horizon. A large horizon (i.e. the forecasting relies on prices posted with large advance bookings) increases the time span over which stakeholders can take informed decisions. Unfortunately, it also results in larger forecasting errors than using data from the week closest to the arrival date, when uncertainty about new reservations and cancellations is lower. We then conclude that managers use information efficiently, in the sense that the more reliable information they have the closer prices offered on the OTA reflect their occupation rate. However, we show that the decrease in forecasting accuracy is limited considering forecasting horizons higher than a week, making it possible to inform stakeholders even on broad forecasting horizons. From a revenue management perspective, the above results provide (indirect) evidence thatin Milan -occupancy rate guessing is an important input to the dynamic pricing algorithms at the firm level.

Moreover, we show that the information on managers' expectations contained in advanced prices is more effective as a predictor of occupancy when we introduce some flexibility to the model specification. The best performance is obtained with a GAM model, indicating that the relationship between occupancy and the price index is complex and nonlinear.

Finally, we compare our method to exploit hotel managers' expectations on occupancy rates with a more standard SARIMA approach -assuming we have access to up-to-date sampling of occupancy rates. The forecasting performance of time series models over a horizon of 21 days is overall worse than the one obtained by static regressions augmented with the price index. We also test if the inclusion of the price index as an explicative variable in a SARIMAX frame may be convenient. While the forecasting performance generally improves compared to time series models not including the leading indicator, these models are still outperformed by the augmented linear and generalized additive models. This may be due to the local irregularities in the time series of occupancies between August and September, a problem that does not affect models that do not rely on lags of the dependent variable.

The possibility of exploiting big data from the supply side to forecast daily tourism demand for limited areas, hints at some managerial implications. In fact, while almost all travel destinations seek to increase tourists, the potential hazards of a massive and uncoordinated influx of tourists to popular destinations worldwide has become a very general problem [START_REF] Butler | Tourism and resilience[END_REF][START_REF] D'alisa | Degrowth: A vocabulary for a new era[END_REF]). An accurate forecasting of daily tourist demand peaks would facilitate short-term operational tactics able to avoid asset shortfalls that tourists share with residents (i.e. transportation, security, water, or urban space), minimizing the impact on the quality of life in the host area and reducing the likelihood of a permanent visitor-resident conflict [START_REF] Andereck | Residents' perceptions of community tourism impacts[END_REF]. Symmetrically, the temporary reduction in volume of services offered can be planned in response to forecasted low daily demand, allowing for a more efficient management of budget and public resources such as water, spaces and utilities. This makes it possible to think about a sustainable territorial management, while improving residents' attitudes towards tourists.

However, we believe that the impact of our findings is not only a matter of forecasting. This paper suggests that public data from OTAs offer policy makers an alternative to acquiring expensive data and/or consultant inputs. As an example, local governments must frequently choose funding allocation for special events, conventions or initiatives. In these circumstances, a framework of economic and social assessment is rarely performed [START_REF] Wood | Measuring the economic and social impacts of local authority events[END_REF]) so there is no systematic and objective manner to determine the extent of support, if any, to be given to alternative events [START_REF] Dwyer | Forecasting the economic impacts of events and conventions[END_REF]. We the merit of online prices as an input for assessing (ex-post) the impact of events and conventions. A system able to record and store BARs at small advance booking, for example, could be used to link a measure of tourist demand to any past event even if its impact is assumed to be constrained in time and space. This indirect measure can also be used to integrate official information (when available), as it suffers less from the under-report bias, sometimes generated by the opportunity of obtaining a tax advantage [START_REF] Guizzardi | Measuring underreporting in accommodation statistics: Evidence from Italy[END_REF].

In summary, we demonstrate that the predictive and descriptive power of big data from the supply side may become a powerful vehicle to link the stakeholders of tourism services with the digital environment. Our methodology could be employed to facilitate intelligent interactions between the city and its inhabitants which is a critical component of the smart city [START_REF] Harrison | Foundations for smarter cities[END_REF]. We transform data from the digital environment into business value-propositions with a clear focus on efficiency, sustainability and experience enrichment. This would enable the delivery of intelligent tourist services, characterized by intensive information sharing and value co-creation: in other words, we provide an asset for a smart tourism ecosystem [START_REF] Gretzel | Conceptual foundations for understanding smart tourism ecosystems[END_REF].

A limitation of these findings lies in the choice of a single destination (a business destination). Other destinations may have a smaller number of high category hotels, and public data from OTAs might not be able to realistically predict expected occupancy. Smaller hotels with no revenue management department may rely on fixed prices, or have little experience in dynamic pricing, which would limit the effectiveness of our approach or recommend a non-random sampling of the structures active on the OTAs. Furthermore, even though the proposed models are simple and can be estimated in just a few seconds with any desktop or laptop computer, acquiring the price dataset requires setting up an algorithm of scraping, which is not immediate and may involve privacy issues or content licencing that is not yet resolved. Moreover, although we believe the choice of log-linear and GAM regression is sufficient to show the efficacy of our price index in forecasting occupancy rates, a future line of research consists of exploring the potential of more complex model specifications, or even machine learning techniques, to better represent the relation between posted prices and tourist demand. Finally, we did not dig deeper into the possible use of different big data sources in increase forecasting accuracy: for example, search engine queries and website traffic data, social media mentions or mobile phone data, could show synergies with our index that could lead to a further increase in forecasting accuracy.

We agree with [START_REF] Brandt | Social media analytics and value creation in urban smart tourism ecosystems[END_REF] that a holistic and integrative perspective on how digitization affects all stakeholders in tourism activities is still in its infancy. However, what we suggest in this paper, adds a new direction of research to the use of big data in the field of tourism demand forecasting.
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 2 Figure 2: Estimated probability density functions of the error measures. Upper panels: increasing mean and variability of the MAE for the GAM model (left) and comparison of the MAE for considered models (right). Lower panels: comparison of the MSE (left) and MAPE (right) for considered models.

  

  

Table 1 :

 1 Descriptive statistics.

	Continuous/discrete variables	median	mean	st. dev.	interq. range
	Occupation Rate (%)		65.3	65.2	16.0		(51.4-77.9)
	Average BARs 1week adv. book. (𝑷 𝟏,𝒕 )	115.0	139.0	114.1		(89.0,153.2)
	Average BARs 2week adv. book. (𝑷 𝟐,𝒕 )	113.4	137.4	106.5		(89.0,153.0)
	Average BARs 3week adv. book. (𝑷 𝟑,𝒕 )	110.5	131.8	95.1		(85.3,149.0)
	Average BARs 4week adv. book. (𝑷 𝟒,𝒕 )	110.0	129.7	88.0		(86.5,145.1)
	# rooms	(nrooms)	89	110	65.2		(65, 143)
	# meeting rooms	(nmr)	2	3.3	4.3		(0, 5)
	# restaurant seats	(nrs)	0	56.2	72.2		(0, 100)
	Km from city centre	(dist)	1	2.6	4.9		(0, 3)
	Km from airport	(dista)	6	8.9	11.1		(0, 10)
	Dummy var. (time related)	frequency Other descriptive Statistics		
	If Bank holiday	(hol)=1	5%	# hotel		107	3stars	13%
	If Main Fairs/Events (fairs)=1	16%	Chain or franchise hotel	46%	4stars	86%
				Independent		54%	5stars	1%

  Bank holidays and fairt a dummy variable indicating whether an important fair is taking place on the arrival date t. We consider three model specifications, M1, M2, M3: 𝑀1: 𝑂𝑐𝑐 𝑡 = 𝛼 + 𝛽 1 𝑡𝑟𝑒𝑛𝑑 + β 2 𝐷𝑜𝑤 𝑡 + 𝛽 3 ℎ𝑜𝑙 𝑡 + 𝛽 4 𝑓𝑎𝑖𝑟 𝑡 + 𝜀 𝑡 𝑀2 𝑖 : 𝑂𝑐𝑐 𝑡 = 𝛼 + γ 𝑙𝑜𝑔(𝑃 𝑖,𝑡 ) + 𝛽 1 𝑡𝑟𝑒𝑛𝑑 + β 2 𝐷𝑜𝑤 𝑡 + 𝛽 3 ℎ𝑜𝑙 𝑡 + 𝛽 4 𝑓𝑎𝑖𝑟 𝑡 + 𝜀 𝑡 𝑖 = 1,2,3,4 𝑀3 𝑖 : 𝑂𝑐𝑐 𝑡 = 𝛼 + 𝑠(𝑃 𝑖,𝑡 ) + 𝛽 1 𝑡𝑟𝑒𝑛𝑑 + β 2 𝐷𝑜𝑤 𝑡 + 𝛽 3 ℎ𝑜𝑙 𝑡 + 𝛽 4 𝑓𝑎𝑖𝑟 𝑡 + 𝜀 𝑡 𝑖 = 1,2,3,4

Let Occt denote the average occupancy rate in Milan at day t, trend a linear trend represented by a vector of indices for the days in the sample (taking value from 1 to 262), Dowt a set of 6 dummies assigning the day of week corresponding to date t (excluding Sundays), holt a dummy variable indexing which arrival dates are

  𝑂𝑐𝑐 𝑡,𝑀𝑗 𝑖 ̂ on the test sample and we compute the forecasting error of the j-th model 𝑒 𝑡,𝑀𝑗 𝑖 = 𝑂𝑐𝑐 𝑡 -𝑂𝑐𝑐 𝑡,𝑀𝑗 𝑖 ̂. Then we calculate the Mean Absolute Error: 𝑀𝐴𝐸 𝑀𝑗 𝑖 =

	∑ |𝑒 𝑡,𝑀𝑗 𝑖 | 𝑇 1 𝑡=1 𝑇 1	and the Mean Squared Error: 𝑀𝑆𝐸 𝑀𝑗 𝑖 =	∑ (𝑒 𝑡,𝑀𝑗 𝑖 ) 2 𝑇 1 𝑡=1 𝑇 1
		∑ 𝑇 1 𝑡=1 |𝑒 𝑡,𝑀𝑗 𝑖 | ⁄ 𝑂𝑐𝑐 𝑡 𝑇 1	100. MAPE weights the errors more in correspondence with low values

which weights the largest forecasting errors, in absolute value, more than proportionally

[START_REF] Clark | Advances in forecast evaluation[END_REF]

. We finally take in to account the fact that occupation rate could display negatively skewed distributions through the Mean Absolute Percentage loss function: 𝑀𝐴𝑃𝐸 𝑀𝑗 𝑖 =

Table 2 :

 2 Model estimates and goodness of fit

					Estimates (%)				
		𝑴𝟏	𝑴𝟐 𝟏	𝑴𝟐 𝟐	𝑴𝟐 𝟑	𝑴𝟐 𝟒	𝑴𝟑 𝟏	𝑴𝟑 𝟐	𝑴𝟑 𝟑	𝑴𝟑 𝟒
	𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕	49.16**	-112.71**	-104.51**	-100.51**	-96.65**	63.90**	61.15**	62.00**	57.72**
	trend	0.02**	0.014**	0.019**	0.020**	0.031**	0.011**	0.014**	0.010**	0.024**
	Monday	14.49**	6.75**	8.72**	9.4**	9.89**		3.56**	3.41**	7.1**
	Tuesday	18.88**	8.4**	11.76**	13.17**	13.54**	1.99*	6.89**	7.49**	10.91**
	Wednesday,	18.12**	8.13**	11.54**	12.78**	13.44**	1.89*	6.37**	7.22**	10.93**
	Thursday	13.68**	5.97**	7.98**	8.79**	9.29**		2.89**	3.13**	6.55**
	Friday,	6.87**	2.92*	3.34*	3.88*	4.39**				3.77**
	Saturday	8.79**	4.14**	5.04*	5.71**	6.33**		2.96**	3.4**	6.09**
	holy	-16.06**	-11.74**	-13.37**	-14.07**	-15.4**	-8.06**	-10.48**	--11.11**	-13.73**
	fairs	19.19**								
	Price Index 𝑃 𝑖,𝑡		35.09**	33.22**	32.31**	31.26**				
	EDF (smooth terms)						6.47**	5.88**	5.90*	4.56**
				Goodness of fit				
	F-test	38.0	108.4	76.8	71.7	66.2				
	[p-value]	[<2.2e-16]	[<2.2e-16]	[<2.2e-16]	[<2.2e-16]	[<2.2e-16]				
	𝒂𝒅𝒋 𝑹 𝟐	0.560	0.787	0.723	0. 709	0.692	0.885	0.811	0.796	0.745
	# of. Obs.	262	262	262	262	262	262	262	262	262
	Res. 1Q	-0.072	-0.041	-0.052	-0.054	-0.050	-0.030	-0.035	-0.043	-0.051
	Res. 3Q	0.072	-0.045	-0.052	0.055	0.053	0.031	0.040	0.040	0.047

Notes: Asterisks ** and * denote statistical significance at 5% and 10% respectively. Estimates reads in %.

Table 3 .

 3 Loss functions distribution statistics over K=3000 random test samples (T1 = 30).

		𝑴𝟏	𝑴𝟐 𝟏	𝑴𝟐 𝟐	𝑴𝟐 𝟑	𝑴𝟐 𝟒	𝑴𝟑 𝟏	𝑴𝟑 𝟐	𝑴𝟑 𝟑	𝑴𝟑 𝟒
	MAE									
	Percentile 10%	7.1%	4.9%	5.5%	5.6%	5.6%	3.4%	4.1%	4.6%	5.0%
	Median	8.6%	5.9%	6.7%	6.9%	6.9%	4.2%	5.2%	5.6%	6.2%
	Mean	8.6%	5.9%	6.7%	6.9%	7.0%	4.2%	5.2%	5.7%	6.2%
	Percentile 90%	10.1%	7.1%	8.1%	8.3%	8.3%	5.1%	6.4%	6.8%	7.5%
	% overlap with M1	100%	20%	40%	44%	47%	2%	11%	16%	28%
	MSE									
	Percentile 10%	8.9%	6.1%	6.9%	7.1%	7.2%	4.4%	5.4%	5.7%	6.4%
	Median	10.7%	7.5%	8.6%	8.8%	9.0%	5.5%	7.0%	7.2%	8.1%
	Mean	10.7%	7.6%	8.6%	8.9%	9.0%	5.5%	7.0%	7.3%	8.1%
	Percentile 90%	12.5%	9.1%	10.4%	10.7%	10.8%	6.7%	8.8%	9.1%	10.0%
	% overlap with M1	100%	23%	45%	51%	55%	2%	18%	23%	36%
	MAPE									
	Percentile 10%	11.7%	7.9%	8.9%	9.2%	9.1%	5.6%	6.8%	7.5%	8.3%
	Median	14.9%	10.2%	11.6%	11.9%	12.0%	7.4%	9.2%	9.7%	10.9%
	Mean	15.1%	10.4%	11.8%	12.1%	12.1%	7.5%	9.4%	9.9%	11.0%
	Percentile 90%	18.7%	13.1%	15.0%	15.2%	15.4%	9.5%	12.3%	12.4%	14.0%
	% overlap with M1	100%	33%	5.5%	56%	57%	7%	24%	26%	42%

Table 4 .

 4 Loss functions comparison on the last 21 observations (regression and time series models).

		𝑴𝟏	𝑴𝟐 𝟒	𝑴𝟑 𝟒	𝑴𝟒	𝑴𝟓	𝑴𝟔	𝑴𝟕	𝑴𝟖 𝟒
	AIC	1926.1	1763.9	1725.3	1798.0	1664.9	1717.2	1651.2	1542.4
	MAE	8.78%	4.85%	2.88%	19.4%	17.5%	21.5%	15.0%	12.0%
	MSE	121.0	30.5	14.6	451.5	353.2	536.7	257.9	167.0
	MAPE	10.7%	5.9%	3.8%	22.7%	20.8%	25.4%	17.9%	14.3%