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Propagation of singularities for subelliptic wave equations

Cyril Letrouit∗

May 4, 2022

Abstract

Hörmander’s propagation of singularities theorem does not fully describe the propagation
of singularities in subelliptic wave equations, due to the existence of doubly characteristic
points. In the present work, building upon a visionary conference paper by R. Melrose
[30], we prove that singularities of subelliptic wave equations only propagate along null-
bicharacteristics and abnormal extremals, which are well-known curves in optimal control
theory. As a consequence, we characterize the singular support of subelliptic wave ker-
nels outside the diagonal. These results show that abnormal extremals play an important
role in the classical-quantum correspondence between sub-Riemannian geometry and sub-
Laplacians.
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1 Introduction

1.1 Motivations

In microlocal analysis, the celebrated propagation of singularities theorem describes an in-
variance property for the singularities of the (distributional) solutions of a general class of
PDEs. The singularities are encapsulated in the C∞-wave-front set (see (5)), whose pro-
jection is the singular support of the solution. Precisely, if u is a distributional solution
to a partial (or pseudo-) differential equation Pu = f and p is the principal symbol of P ,
assumed to be real and homogeneous, this theorem asserts that WF (u) \WF (f) ⊂ p−1(0),
and WF (u) \WF (f) is invariant under the Hamiltonian flow induced by p.

This result was first proved in [11, Theorem 6.1.1] and [18, Proposition 3.5.1]. Its second
part about invariance of the wave-front set is however not totally satisfactory: it does not
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provide any information in the case where the characteristics of P are not simple, i.e., at
points of the cotangent bundle outside the null section for which p = 0 and dp = 0 (since
at these points, the Hamiltonian vector field of p vanishes). In a very short and impressive
conference paper [30], Melrose sketched the proof of an analogous propagation of singularities
result for the wave operator P = D2

t −A when A is a self-adjoint non-negative real second-
order differential operator which is only subelliptic. Such operators P are typical examples
for which there exist double characteristic points.

Despite the potential scope of this result, we did not find in the literature any other paper
mentioning it, although several papers make reference to other results contained in [30]. The
proof provided in [30] is very sketchy, and we thought it would deserve to be written in full
details. This is what we do in the first part of the present work (Sections 2, 3 and 4).

Then, pushing further the computations of [30] in the case where A is a sub-Laplacian (see
Definition 2), we prove in Sections 5, 6 and Appendix A.3 that singularities of subelliptic wave
equations driven by sub-Laplacians only propagate along null-bicharacteristics and abnormal
extremals, which are curves arising as optimal trajectories in control theory.

In summary, the different objects that will be involved in the statements are the following:

• The bicharacteristic flow is the flow induced by the Hamiltonian vector field of p. The
Hamiltonian curves of p are called bicharacteristics.

• The null-bicharacteristics are the bicharacteristics that are included in p−1(0).

• The null-rays are a larger set of trajectories (in the cotangent bundle) along which
the singularities propagate for subelliptic wave equations. Null-bicharacteristics are
special instances of null-rays. When P = D2

t − A with A elliptic, all null-rays are
null-bicharacteristics. However, this is not always the case for A subelliptic. These
null-rays are defined in Definition 9.

• The abnormal extremals, defined when A is a sub-Laplacian, are the only null-rays that
are not null-bicharacteristics. See Section 5.1 for a precise definition.

1.2 Statements

We now state our main results. For the sake of coherence, we borrow nearly all notations
to [30]. A is a self-adjoint non-negative real second-order differential operator on a smooth
compact manifold X without boundary:

∀u ∈ C∞(X), (Au, u) = (u,Au) > 0 (1)

with

(u, v) =

∫
X

u(x)v(x)dν, (2)

where ν is some positive C∞ density. The associated norm is denoted by ‖ · ‖.
We also assume that A is subelliptic, in the following sense: there exist a (Riemannian)

Laplacian ∆ on X and c, s > 0 such that

∀u ∈ C∞(X), ‖(−∆)s/2u‖2 6 c((Au, u) + ‖u‖2). (3)

Finally, we assume that A has vanishing subprincipal symbol.

The assumption (1) implies that A has a self-adjoint extension with the domain

D(A) = {u ∈ D′(X); Au ∈ L2(X)}.

By the spectral theorem, for any t ∈ R, the self-adjoint operator

G(t) = A−1/2 sin(tA1/2)
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is a well-defined operator bounded on L2(X), in fact it maps L2(X) into D(A1/2). Together
with the self-adjoint operator G′(t) = cos(tA1/2), this allows to solve the Cauchy problem
for the wave operator P = D2

t −A where Dt = 1
i ∂t:{

D2
t u−Au = 0 in R×X,

(u|t=0, ∂tu|t=0) = (u0, u1) in X
(4)

by
u(t, x) = G′(t)u0 +G(t)u1.

For (u0, u1) ∈ D(A1/2)× L2(X), we have u ∈ C0(R; D(A1/2)) ∩ C1(R;L2(X)).

For f ∈ D′(Y ) a distribution on a manifold Y (equal to X, R×X or R×X ×X in the
sequel), we denote by WF (f) the usual Hörmander wave-front set (see [17]):

WF (f) = {(y, η) ∈ T ∗Y \ 0, ∃A ∈ Ψ0
phg(Y ), A elliptic at (y, η) and Af ∈ C∞(Y )}. (5)

Here an in all the sequel T ∗Y \0 denotes the cotangent bundle from which the null-section has
been removed. The set Ψ0

phg(Y ) is the set of 0-th order polyhomogeneous pseudodifferential
operators (see Appendix A.2). We also recall that the projection through the canonical
projection onto Y of WF (f) is the singular support of f .

Section 6 in [30] is a sketch of proof for the following statement which characterizes the
propagation of singularities in (4):

Theorem 1. Let A be a self-adjoint non-negative real second-order differential operator
which is subelliptic (3) and has vanishing subprincipal symbol. Let t 7→ u(t) be a solution of
(4). For any t > 0, if (x, ξ) ∈WF (u(0)) then there exists (y, η) ∈WF (u(−t))∪WF (∂tu(−t))
such that (y, η) and (x, ξ) can be joined by a null-ray of length t.

As mentioned above, null-rays will be defined in Definition 9.
An important class of examples of operators A satisfying (1), (2), (3) and with vanishing

sub-principal symbol is given by sub-Laplacians (or Hörmander’s sums of squares, see [38]
or [25]):

Definition 2. A sub-Laplacian is an operator of the form

A =

K∑
i=1

Y ∗i Yi (6)

for some smooth vector fields Yi on X satisfying Hörmander’s condition: the Lie algebra gen-
erated by Y1, . . . , YK is equal to the whole tangent bundle TX. In (6), Y ∗i denotes the adjoint
of Yi for the scalar product (2). The vector fields Yi are not assumed to be independent.

If A is a sub-Laplacian, the null-rays of Theorem 1 have a particularly simple geometric
interpretation. In this case, denoting by a the principal symbol of A and by Ha the associated
Hamiltonian vector field, Theorem 1 can be reformulated as follows (the notions of abnormal
extremal lift, singular curve, and associated length are introduced in Section 5.1):

Corollary 3. Assume that A is a sub-Laplacian as in Definition 2. Let t 7→ u(t) be a
solution of (4). For any t > 0, if (x, ξ) ∈WF (u(0)) then there exists (y, η) ∈WF (u(−t)) ∪
WF (∂tu(−t)) such that (y, η) and (x, ξ) can be joined

• either by an Hamiltonian curve: (x, ξ) = etHa(y, η);

• or by an abnormal extremal lift of a singular curve of length > t.

A weakness of Corollary 3 is that it only describes “from which region of phase space a
singularity possibly comes”, but does not assert that singularities effectively propagate along
abnormal extremal lifts of singular curves. In particular, the inequality > t in the last part
of the statement means that singularities could possibly propagate at any speed between 0
and 1 along singular curves, but does not prove that it is effectively the case. In a joint
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work with Yves Colin de Verdière [9], we give explicit examples of initial data of a subelliptic
wave equation whose singularities effectively propagate at any speed between 0 and 1 along
a singular curve. The sub-Laplacian which we use in [9] is called the Martinet sub-Laplacian
(see Example 26). The propagation at speeds between 0 and 1 along singular curves is in
strong contrast with the propagation “at speed 1” along the integral curves of Ha (as in
Hörmander’s theorem recalled above).

Theorem 1.8 in [30] (given without proof in [30], since the sketch of proof in [30, Section
6] in fact corresponds to Theorem 1), which we provide here only in the context of sub-
Laplacians, concerns the Schwartz kernel KG of G, i.e., the distribution KG ∈ D′(R×X×X)
defined by

∀u ∈ C∞(X), G(t)u(x) =

∫
X

KG(t, x, y)u(y)dy. (7)

Theorem 4. Assume that A is a sub-Laplacian as in Definition 2. Then WF (KG) is
contained in the set of (t, x, y, τ, ξ,−η) ∈ T ∗(R × X × X) \ 0 such that the following two
conditions are satisfied:

(i) τ2 = a(x, ξ) = a(y, η);

(ii) (y, η) and (x, ξ) can be joined

• either by an Hamiltonian curve: (x, ξ) = etHa(y, η);

• or by an abnormal extremal lift of a singular curve of length > t.

Theorem 4 will be deduced from Corollary 3 by considering KG itself as a solution of a
subelliptic wave equation. The projections on M of integral curves of Ha are called normal
geodesics. By an adequate projection, we obtain the following corollary in the spirit of the
Duistermaat-Guillemin trace formula [10]:

Corollary 5. We fix x, y ∈ X with x 6= y. We denote by L the set of lengths of normal
geodesics from x to y and by Ts the minimal length of a singular curve joining x to y. Then
G : t 7→ KG(t, x, y) is well-defined as a distribution on (−Ts, Ts), and

SingSupp(G ) ⊂ L ∪ −L .

Note that this corollary does not say anything about times |t| > Ts.

1.3 Comments, related literature and open questions

Null-rays. The null-rays which appear in the statement of Theorem 1 are generalizations
of the usual null-bicharacteristics, which are the integral curves of the Hamiltonian vector
field Hp of the principal symbol p = τ2 − a of P contained in the characteristic set p−1(0).
Null-rays are introduced in Definition 9, they are paths tangent to a family of convex cones
Γm defined in Section 2.1.

For m ∈ T ∗(R × X) which is not in the double characteristic set {p = 0} ∩ {dp =
0}, Γm is simply the positive (or negative) cone generated by Hp taken at point m, i.e.,
Γm = R+ · Hp(m) (or Γm = R− · Hp(m), depending on whether τ > 0 or τ 6 0). In the
double characteristic set Σ(2) = {p = 0} ∩ {dp = 0} ⊂ M , the definition of the cones Γm is
more involved, and several formulas will be provided in Section 2. We can already say (see
Appendix A.3) that Γm can be recovered as the convexification of the limits of all cones Γmj

for mj → m and mj /∈ Σ(2).

Abnormal extremals. Roughly speaking, Corollary 3, Theorem 4 and Corollary 5
strengthen the idea that properties of general sub-Laplacians may be influenced not only by
the geometry of null-bicharacteristics but also by the presence of abnormal extremal lifts of
singular curves in the corresponding sub-Riemannian geometry; in other words, the latter
curves play a role at the “quantum level” of general sub-Laplacians.

This role was already foreboded in a particular case in the work of Richard Montgomery
[33] about zero loci of magnetic fields, and it is central in the Treves conjecture about
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hypoelliptic analyticity (see [42] for the conjecture and [2] for recent results). To the author’s
knowledge, it is the first result which illustrates this fact for general sub-Laplacians.

Related literature. As a particular case of Theorem 1, if A is elliptic, then we recover
Hörmander’s result [18, Proposition 3.5.1] already mentioned above (see also [19, Theorem
8.3.1 and Theorem 23.2.9] and [27, Theorem 1.2.23]). In case A has only double charac-
teristics on a symplectic submanifold it was obtained in [29] in codimension 2, and by B.
and R. Lascar [23], [24] in the general case, using constructions of parametrices instead of
positive commutator estimates as used in [30] (see also Remark 30). We also mention the
paper [39] where a result about propagation of singularities in the case of “quasi-contact”
sub-Laplacians is proved. The subelliptic wave propagator has also recently been studied in
[28] to prove spectral multiplier estimates, but the construction is restricted to the “elliptic
part” of the symbol where a 6= 0.

In [30], two other results are proved, namely the finite speed of propagation for P and
an estimate on the heat kernel, but it is not our purpose to discuss here these other results,
whose proofs are written in details in [30].

Open questions. Here are a few natural questions that our work could help to answer:

• Is it possible to find explicitly the form of the wave kernel KG (and not only its
singularities as in Theorem 4), even for simple sub-Laplacians? This would generalize
the Hadamard parametrix to subelliptic wave equations. The only known cases are
apparently the Heisenberg case (see [35], [40], [15]), the contact case ([23], [24], [29])
and the quasi-contact case [39].

• The answer to the above question could pave the way towards a better understand-
ing of the subelliptic heat kernel in the presence of abnormal extremals, thanks to
the “transmutation formula” sometimes attributed to Y. Kannai [22] (see also [6]).
Indeed, as proved in [26], the subelliptic heat kernel pt(x, y) enjoys the asymptotics
2tLog(pt(x, y)) → d(x, y)2 as t → 0 where d(x, y) is the sub-Riemannian distance (see
also [21]), but the refinement of this limit into a full asymptotic development of pt(x, y)
is known only in the absence of abnormal extremals minimizing the distance (see [5]).
Note that subelliptic heat kernels have been studied a lot, see for instance [4] for one
of the last major achievements in this field.

• Is it possible to prove an analogue of Egorov’s theorem in the framework of sub-
Riemannian geometry? The usual formulation of Egorov theorem is that the evolution
of a quantum observable Op~(b) is analogous to the evolution of the corresponding
classical observable:

U−tH Op~(b)U tH = Op~(b ◦ ϕtH) +Ot(~), where U tH = e−
itĤh

h , Ĥh = − ~2

2m
∆

and ϕtH is the Hamiltonian flow associated to the principal symbolH of ∆ (see for exam-
ple [37, Theorem IV-10]). Analogues of Egorov’s theorem in the subelliptic framework
have been derived for instance in [8] and [14], but only in cases where there are no
abnormal extremals. Would abnormal extremals play a role in a general subelliptic
version of Egorov’s theorem, as in the present work?

• Is it possible to design a physical experiment with electrons in a magnetic field which
would illustrate the propagation along singular curves as in Corollary 3?1 Indeed, cer-
tain singular curves appear naturally as zero loci of magnetic fields, and high-frequency
quantum particles tend to concentrate on such curves, see [33]. R. Montgomery says
in [33] that “singular curves persist upon quantization”.

1Thanks to R. Montgomery for suggesting this question.
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1.4 Organization of the paper

The goal of this work is to provide a fully detailed proof of Theorem 1, Corollary 3, Theorem
4 and Corollary 5 and to explain how these results are related to sub-Riemannian geometry.

In Section 2, we define the convex cones Γm generalizing bicharacteristics and give explicit
formulas for them, then prove their semi-continuity with respect to m, and finally introduce
null-rays and “time functions”. These functions are by definition non-increasing along the
cones Γm. In this section, there is no operator, we work at a purely “classical” level.

The proof of Theorem 1 is based on a positive commutator argument: the idea, which
dates back at least to [18] (see also [20, Chapter I.2]), is to derive an energy inequality
from the computation of a quantity of the form Im(Pu,Lu), where L is some well-chosen
(pseudodifferential) operator. In Section 3, we compute this quantity for L = Op(Φ)Dt

where Φ is a time function, we write it under the form 1
2 (Cu, u) for an explicit second-order

operator C which, up to remainder terms, has non-positive symbol.

In Section 4, we derive from this computation the sought energy inequality, which in turn
implies Theorem 1. This proof requires to construct specific time functions and to use the
powerful Fefferman-Phong inequality [13].

In Section 5, we prove Corollary 3. This requires to explain basic concepts of sub-
Riemannian geometry, notably we define normal geodesics, singular curves, and abnormal
extremal lifts.

In Section 6, we prove Theorem 4: the main idea is to see KG itself as the solution of a
subelliptic wave equation. We also prove Corollary 5 in the same section.

The reader will find in Appendix A.1 the sign conventions for symplectic geometry that we
use throughout this note, and a short reminder on pseudodifferential operators in Appendix
A.2. Finally, in Appendix A.3, we explain how the cones Γm can be defined in a unified
way as Clarke generalized gradients, thus making a bridge between our computations and
Clarke’s version of Pontryagin’s maximum principle.

Acknowledgments. I am very grateful to Yves Colin de Verdière, for his help at all
stages of this work. Several ideas, notably in Sections 6, are due to him. I also thank him for
having first showed me R. Melrose’s paper and for his constant support along this project,
together with Emmanuel Trélat. I am also thankful to Andrei Agrachev, Richard Lascar and
Nicolas Lerner for very interesting discussions related to this paper. Finally, many thanks
are due to the referee whose suggestions improved the readability of the paper.

2 The cones Γm

At double characteristic points where in particular dp = 0, the Hamiltonian vector field Hp

vanishes, and the usual propagation of singularities result [11, Theorem 6.1.1] recalled in
Section 1.1 does not provide any information. In [30], R. Melrose defines convex cones Γm
which replace the usual propagation cone R+ · Hp at these points, and which indicate the
directions in which singularities of the subelliptic wave equation (4) may propagate. The
cones Γm can be equivalently defined

• symplectically (Section 2.1) - this is the most synthetic definition;

• with analytic formulas (Section 2.2) - very useful for proofs;

• with the Clarke generalized gradient (Appendix A.3) - which gives a clear geometric
insight, although it is not useful in our proofs.

The cones Γm have particularly simple expressions in case A is a sub-Laplacian as in Defi-
nition 2. These expressions are given along the proof of Corollary 3 in Section 5.2, and also
linked with the “Clarke version” of the Pontryagin maximum principle in Appendix A.3.
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2.1 First definition of the cones Γm

In this section, we introduce several notations, and we define the cones Γm.

We consider a ∈ C∞(T ∗X) satisfying

a(x, ξ) > 0, a(x, rξ) = r2a(x, ξ), r > 0 (8)

in canonical coordinates (x, ξ). Also we consider

p = τ2 − a ∈ C∞(M), where M = T ∗(R×X) \ 0.

In the end, a and p will be the principal symbols of the operators A and P introduced in
Section 1, but for the moment we work at a purely classical level and forget about operators.
In a nutshell, at points where p = 0 and dp = 0, the cones Γm are defined thanks to the
Hessian of p.

We set

M+ = {m ∈M, p(m) > 0, τ > 0}, M− = {m ∈M, p(m) > 0, τ 6 0};

in particular, M+ ∪M− = {p > 0}. Let

Σ = {m ∈M ; p(m) = 0, τ > 0}.

The cones Γm for m ∈M+. For m ∈M+, we consider the set

Hm = R+ ·Hp(m) ⊂ TmM,

where Hp is the Hamiltonian vector field of p verifying ω(Hp, Z) = −dp(Z) for any smooth
vector field Z. In this formula and in all the sequel, ω is the canonical symplectic form on
the cotangent bundle M .

We note that
p(m) > 0, dp(m) = 0 ⇒ Hm = {0}

where dp(m) stands for the differential of p taken at point m. We therefore extend the notion
of “bicharacteristic direction” at such m. This will be done first for m ∈ M+, then also for
m ∈M−, but never for m ∈ {p < 0}: the cones Γm are not defined for points m ∈ {p < 0}.

Let
Σ(2) = {m ∈M, τ = a = 0} ⊂ Σ.

Note that
Σ(2) = M+ ∩M− = {m ∈M ; τ = a = p = 0, da = dp = 0}

due to the the positivity (8). Thus, for m ∈ Σ(2), the Hessian of a is well-defined: it is a

quadratic form on TmM . We denote by am = 1
2Hess a the half of this Hessian, and by

pm = (dτ)2 − am

the half of the Hessian of p. For m ∈ Σ(2), we set

Λm = {w ∈ TmM ; dτ(w) > 0, pm(w) > 0} (9)

and, still for m ∈ Σ(2),

Γm := {v ∈ TmM ; ω(v, w) 6 0 ∀w ∈ Λm}. (10)

If m ∈M+ \ Σ(2), we set
Γm = Hm. (11)

In particular, the cones Γm are defined also at points m outside Σ, i.e. for which p(m) 6= 0.
Note also that the relation (11) says that the cones Γm are positive cones.
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The cones Γm for m ∈M−. In order to extend the definition of the cones Γm to M−,
we want this extension to be consistent with the previous definition at points in M+∩M− =
Σ(2). We observe that M− is the image of M+ under the involution sending τ to −τ . For
(t, τ, α) ∈M−, we set

Γm = Γm′ where m′ = (t,−τ, α) ∈M+.

It is clear that at points of M+ ∩M− = Σ(2), the two definitions of Γm coincide. With this
definition in M−, note that for m ∈M− \ Σ(2), there is a sign change:

Γm = −Hm. (12)

In summary, the formulas (10), (11) and (12) define Γm at any point m ∈ M+ ∪M−,
with different definitions for m ∈ Σ(2), m ∈M+ \Σ(2) and m ∈M− \Σ(2). The cones Γm are
not defined for m /∈M+ ∪M−. For any m ∈M+ ∪M−, the cone Γm is closed and convex.

2.2 Formulas for the cones Γm

In this section, we derive a formula for the cones Γm when m ∈ Σ(2) which is more explicit
than (10). It relies on the computation of the polar of a cone defined by a non-negative
quadratic form:

Proposition 6. Let Q be a non-negative quadratic form on a real vector space V , and let

Θ = (ker(Q))⊥ ⊂ V ∗

where ⊥ is understood in the duality sense and V ∗ is the topological dual of V . Let

Λ =
{
ξ = (ξ0, η) ∈ R× V ; ξ0 > Q(η)

1
2

}
and

Λ0 = {ξ′ ∈ (R× V )∗; ∀ξ ∈ Λ, ξ′(ξ) 6 0} .

Then
Λ0 =

{
ξ′ = (ξ′0, η

′) ∈ (R× V )∗; η′ ∈ Θ and − ξ′0 > (Q∗(η′))
1
2

}
(13)

where R∗ is identified with R and

Q∗(η′) = sup
η/∈ker(Q)

η′(η)2

Q(η)
. (14)

Proof. Let ξ′ = (ξ′0, η
′) ∈ (R× V )∗ such that η′ ∈ Θ and −ξ′0 > (Q∗(η′))

1
2 , we seek to prove

that ξ′ ∈ Λ0. Let ξ = (ξ0, η) ∈ Λ. In particular, ξ0 > (Q(η))
1
2 . We have

ξ′(ξ) = ξ′0(ξ0) + η′(η) 6 −(Q∗(η′))
1
2 (Q(η))

1
2 + η′(η) 6 0

hence ξ′ ∈ Λ0, which proves one inclusion.

Conversely, to prove that Λ0 is included in the expression (13), we first note that if η′ /∈ Θ,
then (ξ′0, η

′) /∈ Λ0 for any ξ′0 ∈ R∗. Indeed, if η′ /∈ Θ, there exists η ∈ V such that Q(η) = 0
and η′(η) > 0. Thus, considering ξ = (0, η), which is in Λ by assumption, we get ξ′(ξ) =
η′(η) > 0 for any ξ′0 ∈ R∗ and ξ′ = (ξ′0, η

′), proving that ξ′ /∈ Λ0. Now, if ξ′ = (ξ′0, η
′) ∈ Λ0

with η′ ∈ Θ, we take ξn = (ξ0n, ηn) with ηn /∈ ker(Q) so that η′(ηn)2/Q(ηn) → Q∗(η′), and

η′(ηn) > 0 and ξ0n = Q(ηn)
1
2 . Then ξn ∈ Λ. Therefore, ξ′(ξn) 6 0, which implies that

−ξ′0 > (Q∗(η′))
1
2 . This proves the result.
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Applying the previous proposition to Q = am yields a different definition of the cones
Γm. First, Λm, which has been defined in (9), can be written as

Λm =
{
w ∈ TmM ; dτ(w) > (am(w))

1
2

}
.

Since the definition of Λm does not involve dt, we have v(∂t) = 0 for any v ∈ Λ0
m. Now,

using the notation a∗m to denote (14) when Q = am, Proposition 6 yields that

Λ0
m = R+(−dτ +B0),

B0 =
{
b0 ∈ (ker(am))⊥, a∗m(b0) 6 1

}
.

The duality ⊥ is computed with respect to the space ker(am) ⊂ T (T ∗X), i.e., b0 ∈ T ∗(T ∗X).

Here, we consider am as a quadratic form on T (T ∗X) instead of M = T (T ∗(R × X)).
This is also related to the fact that the Hessian am depends only on the projection π2(m),
where π2 : M → T ∗X is the canonical projection on the second factor, and not on really on
the other components of m. These slight abuse of notations cause no problem, and will thus
be repeated several times in the sequel.

Comparing the definition of Λ0
m as the polar cone of Λm and the definition (10) of Γm,

we see that Γm is exactly the image of Λ0
m through the canonical isomorphism ω(v, ·) 7→ v

between T ∗mM and TmM . Thus,

Γm = R+(∂t +B),

B =
{
b ∈ ker(am)⊥ωX , a∗m(I(b)) 6 1

}
.

(15)

Here, ⊥ωX
designates the symplectic orthogonal with respect to the canonical symplectic

form ωX on T ∗X and

I : T (T ∗X)→ T ∗(T ∗X),

b 7→ ωX(b, ·)
(16)

is the canonical isomorphism between T (T ∗X) and T ∗(T ∗X). Formula (15) plays a key
role in the sequel. An equivalent formula in terms of the so-called “fundamental matrix”
associated to am is derived in Appendix A.3.

Important remark. In case A =
∑K
i=1 Y

∗
i Yi is a sub-Laplacian as in Definition 2, the

expression a∗m(I(b)) which appears in (15) is equal to g(dπ(b)) where π : T ∗X → X is the
canonical projection, and g is the sub-Riemannian metric associated to the vector fields Yi
(see Lemma 28).

2.3 Inner semi-continuity of the cones Γm

Using the formula (15), we can prove a continuity property for the cones Γm.

Lemma 7. Let a ∈ C∞(T ∗X) satisfying (8). The assignment m 7→ Γm is inner semi-
continuous on M+ ∪M− = {p > 0}. In other words, if both conditions

(i) mj ∈M+ ∪M− for any j ∈ N, and mj → m as j → +∞;

(ii) vj ∈ Γmj
for any j ∈ N, and vj → v ∈ TmM as j → +∞,

hold, then v ∈ Γm.

Before proving Lemma 7, let us explain the intuition behind this semi-continuity. Recall
that the cones Γm generalize bicharacteristic directions at points where τ = a = p = 0 and
da = dp = 0. To define the cones Γm at these points, following formulas (9) and (10), we
have first considered directions where p grows (since p = 0 and dp = 0, we consider the (half)
Hessian pm), yielding Λm, and then Γm has been defined as the (symplectic) polar cone of
Λm. This is exactly parallel to a procedure which yields bicharacteristic directions in the
non-degenerate case: the directions along which p grows, verifing dp(v) > 0, form a cone,
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and it is not difficult to check that its (symplectic) polar consists of a single direction given
by the Hamiltonian vector field of p. This is a unified vision of the cones Γm, in the sense
that they are obtained in a unified way, no matter whether m ∈ Σ(2) or not. The proof of
Lemma 7 we give below is however purely analytic, and does not use this geometric intuition.
Note that Appendix A.3 provides still another unified vision of the cones Γm, thanks to the
notion of Clarke generalized gradients.

Proof of Lemma 7. The assignments

Σ(2) 3 m 7→ Γm and M+ ∪M− \ Σ(2) 3 m 7→ Γm

are clearly continuous thanks to formula (10) (resp. (11) and (12)). Therefore, we restrict
to the case where m ∈ Σ(2) and mj ∈M+ ∪M− \ Σ(2).

According to (11) and (12), the cone Γmj at mj = (tj , τj , xj , ξj) is given by:

Γmj
= sgn(τj)R+[2τj∂t −Ha(mj)] (17)

where Ha(mj) is the Hamiltonian vector field of a at mj . Dividing by 2τj 6= 0, we rewrite it
as

Γmj
= R+

(
∂t −

1

2

Ha(mj)

τj

)
(18)

If a(mj) = 0, then Ha(mj) = 0 since a is a quadratic form. Thus Γmj = R+∂t, thus any
limit of elements of Γmj is contained in Γm according to (15) (take b = 0). We thus assume
that a(mj) 6= 0.

In the sequel, we work in a chart near m and ‖ · ‖M denotes a norm in this chart. We
recall that am is half the Hessian of a at m, thus a bilinear form on TmM . When its two
arguments are mj −m (which we can view as an element of TmM now that we are working
in a chart), it is written am(mj −m). Also, in the sequel the notation o accounts for the
j → +∞ limit.

We distinguish two cases.

Firstly, if am(mj − m) = o(‖mj − m‖2M ), then using a Taylor expansion and a(m) =

da(m) = 0, we get a(mj)
1
2 = o(‖mj −m‖M ). Since a is a quadratic form, this implies that

d(a
1
2 )(mj) = o(1), where the notation in the left-hand side stands for the differential of a

1
2

taken at point mj . In turn, we obtain

1

2

da(mj)

τj
=
a(mj)

1
2

τj
d(a

1
2 )(mj) = o(1)

since |τj | > a(mj)
1
2 due to p(mj) > 0. This implies that Ha(mj)/τj → 0 and plugging into

(18), we conclude that the limiting directions of vectors vj of Γmj
as j → +∞ belong to

R+∂t and thus to Γm.

Secondly, if am(mj −m) is not o(‖mj −m‖2M ), then we use the following lemma.

Lemma 8. If am(mj −m) is not o(‖mj −m‖2M ), then for any v ∈ TmM , there holds

1

2

da(mj)(v)

a(mj)1/2
=

am(mj −m, v)

am(mj −m)1/2
+ o(1).

The notation am(mj −m, v) means that we evaluate the bilinear form am at (mj −m, v).

Proof. In a chart, we combine the two expansions

da(mj)(v) = 2am(mj −m, v) + o(‖mj −m‖M )

a(mj) = am(mj −m) + o(‖mj −m‖2M )

to get the result.

10



In view of (18) and (15), the inner semi-continuity at m is equivalent to proving that

a∗m

(
1

2

a(mj)
1
2

τj

da(mj)

a(mj)
1
2

)
6 1 + o(1). (19)

Using |τj | > a(mj)
1
2 and Lemma 8, for any v ∈ TmM \ ker(am), there holds

1

am(v)

(
1

2

a(mj)
1
2

τj

da(mj)(v)

a(mj)
1
2

)2

6
am(mj −m, v)2

am(v)am(mj −m)
+ o(1) 6 1 + o(1)

by Cauchy-Schwarz. Hence, by definition of a∗m (see (14)), (19) holds, which concludes the
proof of Lemma 7.

2.4 Null-rays and time functions

We now define null-rays, which are the integral curves of the cone field Γm. They appear in
the statement of Theorem 1, and they play an important role in the present work.

In this definition, we use the following notation: given a Lipschitz curve γ : I → M+

defined on some interval I ⊂ R, the set-valued derivative γ′(s) for s ∈ I is the set of all
tangent vectors X ∈ Tγ(s)M such that there exists sn → s with sn 6= s for any n ∈ N,

verifying that ∀f ∈ C∞(M), f(γ(sn))−f(γ(s))
sn−s → Xf .

Definition 9. A forward-pointing ray for p is a Lipschitz curve γ : I → M+ defined on
some interval I ⊂ R with (set-valued) derivative γ′(s) ⊂ Γγ(s) for all s ∈ I. Such a ray is
forward-null if γ(s) ∈ Σ for any s ∈ I. We define backward-pointing rays similarly, with γ
valued in M−, and backward-null rays, with γ valued in {m ∈M ; p(m) = 0, τ 6 0}.

Under the terminology “ray”, we mean either a forward-pointing or a backward-pointing
ray; under the terminology “null-ray”, we mean either a forward-null or a backward-null ray.

In particular null-rays live in {p = 0}.
Fixing a norm | · | on TM , the expression (15) implies that near any point m ∈M+, there

is a (locally) uniform constant c > 0 such that

v ∈ Γm ⇒ v = T∂t + v′, |v′| 6 cT (20)

where v′ is tangent to T ∗X. Thus, if γ : I →M+ is a forward-pointing ray (thus a Lipschitz
curve) defined for s ∈ I, (20) implies that dt/ds > c′|dγ/ds|, hence

dγ

dt
=

dγ
ds
dt
ds

is well-defined (possibly set-valued), i.e., γ can be parametrized by t.

We define the length of a ray γ : s ∈ [s0, s1]→M+ by

`(γ) := |t(s1)− t(s0)|.

Remark 10. Thanks to the above parametrization and with a slight abuse in the terminology,
we say that there is a null-ray of length |T | from (y, η) to (x, ξ) if there exists a null-ray (in
the sense of Definition 9) parametrized by t which joins (0, τ, y, η) to (T, τ, x, ξ), where τ
verifies τ2 = a(y, η) = a(x, ξ).

Time functions, which we now introduce, are one of the key ingredients of the proof of
Theorem 1.

Definition 11. A C∞ function φ near m ∈ {p > 0} ⊂ M is a time function near m if in
some neighborhood N of m,

φ is non-increasing along Γm, m ∈ N ∩ {p > 0}.

In particular, φ is non-increasing along the Hamiltonian vector field Hp in M+ but non-
decreasing along Hp in M− (due to (12)).
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Note that outside {p > 0}, there is no constraint on the values of φ. The proof of
Theorem 1 relies on a positive commutator technique (Section 3) applied with a particular
time function (Section 4).

3 A positive commutator

The proof of Theorem 1 is based on a “positive commutator” technique, also known as “mul-
tiplier” or “energy” method in the literature. The idea is to derive an inequality from the
computation of a quantity of the form Im(Pu,Lu) where L is some well-chosen (pseudod-
ifferential) operator. In the present work, the operator L is related to the time functions
introduced in Definition 11.

In the sequel, we use polyhomogeneous symbols, denoted by Smphg, and the Weyl quan-
tization, denoted by Op : Smphg → Ψm

phg (see Appendix A.2). For example, we consider the

operator Dt = 1
i ∂t = Op(τ) (of order 1). The operator A ∈ Ψ2

phg has principal symbol

a ∈ C∞(T ∗X) satisfying (8), and P = D2
t −A has principal symbol p = τ2 − a.

Also, Φ(t, x, ξ) designates a smooth real-valued function on M , homogeneous of degree
α ∈ R in ξ, compactly supported on the base R×X, and independent of τ . In Section 4, we
will take Φ to be a time function. By the properties of the Weyl quantization, Op(Φ) is a
compactly supported selfadjoint (with respect to ν) pseudodifferential operator of order α.

Our goal in Section 3.1 will be to compute C defined by2

Im(Pu,Op(Φ)Dtu) :=
1

2
(Cu, u), (21)

since this will allow us to derive the inequality (49) which is the main ingredient in the proof
of Theorem 1.

3.1 The operator C

Our goal in this section is to compute C defined by (21).

Lemma 12. We have

C = DtOp(Φ′t)Dt −
i

2
([A,Op(Φ)]Dt +Dt[A,Op(Φ)]) +

1

2
(AOp(Φ′t) + Op(Φ′t)A). (22)

where Φ′t = ∂tΦ.

Note that C is of order 2 + α, although we could have expected order 3 + α by looking
too quickly at (21).

Proof. We have
Im(Pu,Op(Φ)Dtu) = I1 − I2 (23)

with
I1 = Im(D2

t u,Op(Φ)Dtu) and I2 = Im(Au,Op(Φ)Dtu).

Noticing that

[Dt,Op(Φ)] = Op(
1

i
Φ′t)

2In [30], C is explicitly defined as Im(Op(Φ)Dtu, Pu) := (Cu, u); however the formulas (6.1) and (6.2) in [30]
are not coherent with this definition, but they are correct if we take the definition (21) for C.
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(see [43, Theorem 4.6]), we have for I1:

I1 =
1

2i

(
(D2

t u,Op(Φ)Dtu)− (Op(Φ)Dtu,D
2
t u)
)

=
1

2i

(
(DtOp(Φ)D2

t u, u)− (D2
tOp(Φ)Dtu, u)

)
= − 1

2i
(Dt[Dt,Op(Φ)]Dtu, u)

= − 1

2i
(Dt

1

i
Op(Φ′t)Dtu, u)

=
1

2
(DtOp(Φ′t)Dtu, u) (24)

Then, we write Op(Φ)Dt = S + iT where

S =
1

2
(Op(Φ)Dt +DtOp(Φ))

T =
1

2i
(Op(Φ)Dt −DtOp(Φ)) =

1

2
Op(Φ′t). (25)

Using that A, S and T are selfadjoint, we compute I2:

I2 = Im(Au, (S + iT )u) = Im((S − iT )Au, u) =
1

2i
([S,A]u, u)− Re((TAu, u))

=
1

2i
([S,A]u, u)− 1

2
((TA+AT )u, u). (26)

Furthermore,

[S,A] =
1

2
([Op(Φ), A]Dt +Dt[Op(Φ), A]). (27)

All in all, combining (23), (24), (25), (26) and (27), we find that C in (21) is given by
(22).

3.2 The principal and subprincipal symbols of C

In this section, we compute the operator C modulo a remainder term in Ψα
phg. All symbols

and pseudodifferential operators used in the computations are polyhomogeneous (see Ap-
pendix A.2); we denote by σp(C), σsub(C) the principal symbol of C and its sub-principal
symbol. We use the Weyl quantization, denoted by Op, in the variables y = (t, x), η = (τ, ξ),
hence we have for any b ∈ Smphg and c ∈ Sm′phg:

Op(b)Op(c)−Op(bc+
1

2i
{b, c}) ∈ Ψm+m′−2

phg (28)

and

[Op(b),Op(c)]−Op(
1

i
{b, c}) ∈ Ψm+m′−3

phg . (29)

Note that in (29), the remainder is in Ψm+m′−3
phg , and not only in Ψm+m′−2

phg (see [19, Theorem
18.5.4], [43, Theorem 4.12]). Finally, we recall that Φ(t, x, ξ) is homogeneous in ξ of degree
α.

Lemma 13. There holds
σp(C) = τHpΦ− Φ′tp (30)

and
σsub(C) = 0. (31)
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Proof. We compute each of the terms in (22) modulo Ψα
phg. We prove the following formulas:

1

2
(AOp(Φ′t) + Op(Φ′t)A) = Op(aΦ′t) mod Ψα

phg (32)

DtOp(Φ′t)Dt = Op(τ2Φ′t) mod Ψα
phg (33)

i

2
([A,Op(Φ)]Dt +Dt[A,Op(Φ)]) = Op(τ{a,Φ}) mod Ψα

phg (34)

Firstly, (32) follows from the fact that A = Op(a) mod Ψ0
phg (since the subprincipal

symbol of A vanishes) and from (28) applied once with b = a, c = Φ′t, and another time with
b = Φ′t and c = a.

Secondly,

Op(Φ′t)Dt = Op(Φ′t)Op(τ) = Op(Φ′tτ +
1

2i
{Φ′t, τ}) + Ψα−1

phg

thanks to (28). Hence, using again (28), we get

DtOp(Φ′t)Dt = Op(τ)Op(Φ′tτ +
1

2i
{Φ′t, τ}) mod Ψα

phg

= Op(τ2Φ′t +
τ

2i
{Φ′t, τ}+

1

2i
{τ,Φ′tτ}) mod Ψα

phg

which proves (33).

Thirdly, thanks to A = Op(a) mod Ψ0
phg and (29), we have

[A,Op(Φ)] = Op

(
1

i
{a,Φ}

)
mod Ψα−1

phg

(note that the remainder is in Ψα−1
phg , not in Ψα

phg). Using (28), we get

[A,Op(Φ)]Dt +Dt[A,Op(Φ)] = Op

(
2τ

i
{a,Φ}

)
mod Ψα

phg

which proves (34).

In particular, we get the principal symbol

σp(C) = τ2Φ′t − τHaΦ + Φ′ta.

Using p = τ2 − a, we can write it differently:

σp(C) = τ2Φ′t − τ{τ2 − p,Φ}+ Φ′ta

= τ2Φ′t − τ{τ2,Φ}+ τHpΦ + Φ′ta

= τ2Φ′t − 2τ2Φ′t + τHpΦ + Φ′ta

= τHpΦ− Φ′tp.

Moreover, the formulas (32), (33) and (34) imply that the subprincipal symbol of C vanishes,
which concludes the proof.

4 Proof of Theorem 1

The goal of this section is to prove Theorem 1. For V ⊂ T ∗X and I ⊂ R, we set

S (I;V ) ={(s, y, η) ∈ I × T ∗X, there exist (x, ξ) ∈ V, τ ∈ R and a ray

from (s, τ, y, η) to (0, τ, x, ξ)}.
(35)
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Most of the time, we will consider I ⊂ (−∞, 0). Also, when I or V is reduced to a single
element, for example I = {t} or V = {(x, ξ)}, we will simplify the notations by dropping out
the brackets in the notation: for example, instead of S ({t}, V ), we write S (t, V ). Finally,
take care that the above notation (35) refers to rays, and not null-rays (see Definition 9).

With the above notations, Theorem 1 can be reformulated as follows: for any t > 0
and any (x0, ξ0) ∈ WF (u(0)), there exists (y0, η0) ∈ WF (u(−t)) ∪WF (∂tu(−t)) such that
(−t, y0, η0) ∈ S (−t; (x0, ξ0)) and one of the rays from (y0, η0) to (x0, ξ0) is null.

First reduction of the problem. If a(x0, ξ0) 6= 0, then Theorem 1 follows from
the usual propagation of singularities theorem [11, Theorem 6.1.1] and the fact that Γm =
R± ·Hp(m) for m /∈ Σ(2). Therefore, in the sequel we assume that a(x0, ξ0) = 0.

Also, note that, to prove Theorem 1, it is sufficient to find T > 0 independent of (x, ξ)
(and possibly small) such that the result holds for any t ∈ (0, T ).

Idea of the proof of Theorem 1. To show Theorem 1, we will prove for T > 0
sufficiently small an inequality of the form

‖Op(Ψ0)u‖2Hs 6 c(‖Op(Ψ0)u‖2L2 + ‖Op(Ψ1)u‖2L2) + Remainder terms (36)

where Ψ0 and Ψ1 are functions of t, x, ξ such that

• the function Ψ0 is supported near t ∈ [−T, 0] and the function Ψ1 near t = −T ;

• on their respective supports in t, the operators Op(Ψ0) and Op(Ψ1) microlocalize re-
spectively near (x0, ξ0) and S (−T ; (x0, ξ0)).

Then, assuming that u is smooth on the support of Ψ1, we deduce by applying (36) for
different functions Ψ0 with different degrees of homogeneity in ξ that u is smooth on the
support of Ψ0.

The inequality (36), written more precisely as (49) below, will be proved by constructing
a time function Φ(t, x, ξ) such that the time derivative Φ′t is equal to Φ′t = Ψ2

1 − Ψ2
0, and

then by applying the Fefferman-Phong inequality to the operator C given by (22) (for this
Φ).

Reduction to Rd. Let us explain how to reduce Theorem 1 to a problem in Rd. We
first notice that it is sufficient to prove Theorem 1 locally, i.e., only for the restriction of u
to some small open subset U ⊂ X. This follows from the two following facts:

• firstly, by the finite speed of propagation of subelliptic wave equations (proved in [30,
Section 3]), for any small t > 0, the value of the solution of (4) at time 0 at x ∈ X only
depends on its values in a small neighborhood of x at time −t.

• secondly, null-rays stay close from their departure points for short times. This follows
from (11), (12), (15).

Theorem 1 is thus a local statement for short times. As a consequence, a first reduction for
its proof consists in fixing a small open subset U ⊂ X and addressing the propagation of
singularities problem in short time for the restriction of u to U .

Then, we consider a coordinate chart ψ : U → Ω ⊂ Rd. The differential operator A
is pushed forward by ψ into a differential operator Ã on Rd which is also real, second-
order, self-adjoint, non-negative and subelliptic. Moreover, we can lift ψ to a symplectic
mapping ψlift : (x, ξ) 7→ (ψ(x), ((dxψ(x))−1)T ξ). Through the differential of ψlift, the cones
Γm (computed with a = σP (A), in X) are sent to the same cones, computed this time with

ã = σP (Ã) in Rd. This follows from the “symplectic” definition of the cones in Section 2.1

and the fact that σP (Ã) is the pushforward of σP (A). Hence, ψlift maps also null-rays to
null-rays. As a consequence, if we prove Theorem 1 in Ω, then pulling back the situation to
U ⊂ X proves Theorem 1 in full generality.

In the sequel, we thus work in Ω ⊂ Rd.
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4.1 Construction of the time function

As explained in the introduction of this section, we construct a time function Φ(t, x, ξ)
which verifies several properties. A time function is also constructed in the classical proof of
Hörmander’s propagation of singularities theorem [18, Proposition 3.5.1], but in the present
context of subelliptic wave equations, the construction is more involved since the cones
Γm along which time functions should be non-increasing contain much more than a single
direction (compare (11) with (15)). The following lemma summarizes the properties that
the time functions we need thereafter should satisfy. The figures below, notably Figure 2,
may help to understand the statement and its proof.

Lemma 14. Let (x0, ξ0) ∈ T ∗Ω \ 0 and V ⊂ V ′ be sufficiently small open conic (in ξ)
neighborhoods of (x0, ξ0) such that V ⊂ V ′. There exists T > 0 such that for any 0 6 δ0 6
T/10 and any α > 0, there exists a smooth function Φ(t, x, ξ) with the following properties:

(1) it is compactly supported in t, x;

(2) it is homogeneous of degree α in ξ;

(3) it is independent of τ ;

(4) there exists δ > 0 such that at any point of M where p > −2δa, there holds τHpΦ 6 0.

(5) its derivative in t can be written Φ′t = Ψ2
1 −Ψ2

0 with Ψ0 and Ψ1 homogeneous of degree
α/2 in ξ;

(6) Ψ0 = 0 outside S ((−T, δ0);V ′) and Ψ1 = 0 outside S ((−T − δ0,−T + δ0);V ′);

(7) Ψ0 > 0 on S ((−T + δ0, 0);V );

(8) Φ is a time function outside S ((−T − δ0,−T + δ0);V ′).

All of the above properties of Φ will be used in Sections 4.2 and 4.4 to prove Theorem 1.
The rest of Section 4.1 is devoted to the proof of Lemma 14.

We fix (x0, ξ0) ∈ T ∗Ω \ 0. As said in the introduction of Section 4, we assume that
a(x0, ξ0) = 0, and we set m = (0, 0, x0, ξ0) ∈ Σ(2) where the first two coordinates correspond
to the variables t, τ . For m near m, the cone −Γm is the cone with base point m and
containing the opposite of the directions of Γm.

We are looking for a τ -independent time function; since any ray lives in a slice τ = const.
(see (11), (12) and (15)), we first construct Φ in the slice τ = 0, and then we extend Φ to
any τ so that it does not depend on τ . If we start from a time function in {τ = 0}, then
its extension is also a time function: indeed, the image of a ray contained in {τ 6= 0, a = 0}
under the map τ 7→ 0 is also a ray, this follows from the fact that R+∂t ⊂ Γm for any
m ∈ Σ(2) (see (15)). Thus, the property of being non-increasing along Γm is preserved under
this extension process. Thus, in the sequel, we work in {τ = 0} and do not care about (3).

We now explain why it is natural to impose condition (2) on time functions. Indeed,
there is a global homogeneity in ξ of the cones Γm and consequently of the null-rays:

Homogeneity Property. If [T1, T2] 3 t 7→ γ(t) = (x(t), ξ(t)) ∈ {a = 0} is a null-ray
parametrized by t, then for any λ > 0, [T1, T2] 3 t 7→ γλ(t) = (x(t), λξ(t)) is a null-
ray parametrized by t. Note that γ(t) and γλ(t) have the same projection on X for any
t ∈ [T1, T2].

This property, illustrated in Figure 1, follows from (10). It will be helpful to find Φ
satisfying Point (2) in Lemma 14.

At this point we should say that since we are working in the slice {τ = 0}, we will use in
the sequel the following convenient abuse of notations: for m = (t, 0, x, ξ) ∈ T ∗R× T ∗Ω, we
still denote by m the projection of m on R×T ∗Ω obtained by throwing away the coordinate
τ = 0. The fact that the whole picture is now embedded in R2d+1 (see Figure 1) is very
convenient: for example, after throwing away the coordinate τ = 0, we see the cones Γm as
subcones of R2d+1 (and not of its tangent space).
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Figure 1: The coordinates and the cones Γm. On the picture, the cone Γm′ has an aperture
which is equal to λ times the aperture of Γm (this is “homogeneity”).

Also, in the sequel, we only consider points for which t > −T for some (small) T > 0.
We take 0 6 δ0 6 T/10.

We will define Φ so that along any ray ending near (t = 0, x0, ξ0), its profile looks like
Figure 2, which is the standard picture for time functions (see [12, Figure E.2]):

Figure 2: Profile of the function Φ along a ray ending near (t = 0, x0, ξ0).
The abscissa is this ray, parametrized by t.

The support of Φ is a conic set of points (due to homogeneity in ξ), namely S ([−T −
δ0, δ0];V ′). To describe the construction of Φ, we will go backwards in time, from right to left
in Figure 2, thus looking for Φ increasing along backward rays (at least up to time −T + δ0).
Recall that backward rays are just integral curves of the field of cones −Γm. All the rays we
consider in the sequel are parametrized by time.

The first important point is that rays enjoy closedness and continuity properties:

Lemma 15. 1. For any closed V ⊂ T ∗Ω and any T > 0, the set S (−T ;V ) is closed.

2. The mapping (T, x, ξ) 7→ S (−T ; (x, ξ)) is inner semi-continuous, meaning that when
(Tn, xn, ξn) → (T, x, ξ), any point obtained as a limit, as n → +∞, of points of
S (−Tn; (xn, ξn)) belongs to S (−T ; (x, ξ)).

Proof. Both properties follow from the locally uniform Lipschitz continuity (20) combined
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with the extraction of Lipschitz rays as in the Arzelà-Ascoli theorem and the fact that the
cones Γm are closed, convex and inner semi-continuous (Lemma 7)

This lemma implies that in the statement of Lemma 14, the set S ((−T +δ0, 0);V ) is just
slightly larger than S ((−T + δ0, 0); (x0, ξ0)) (and similarly for other sets S (·, ·) involved in
the statement of Lemma 14).

The second important point is the following. We recall that we look for Φ homogeneous
of degree α > 0 in ξ; in particular it is increasing in the fibers. To guarantee simultaneously
this homogeneity and the fact that Φ increases along backward rays, we have to consider
the “worst rays”, namely backward rays which are “diving” towards smaller |ξ|: we impose
that even along the rays (parametrized by time) diving most quickly towards small |ξ|, Φ
increases. Then, by homogeneity, Φ is also increasing along any other ray.

We apply this procedure for defining Φ to backward rays emanating from a fixed closed
conic neighborhood V of (x0, ξ0). Point 2 of Lemma 15 implies that

if V is a sufficiently small neighborhood of (x0, ξ0),

Φ is strictly increasing from time 0 to time −T + δ0

along any backward-pointing ray starting from any point (x, ξ) ∈ V .

(37)

We choose V ′ a sufficiently small neighborhood of V , we can impose that Φ vanishes at any
(t, x, ξ) /∈ S ((−T + δ0, δ0);V ′) for t ∈ (−T + δ0, δ0).

Up to now, our construction defines Φ only for times satisfying −T + δ0 6 t 6 δ0. To
complete the constrution, we extend it arbitrarily (but smoothly) in S ([−T−δ0,−T+δ0], V ′)
so that it vanishes for t 6 −T − δ0 (refer again to Figure 2).

Note that with our construction, Φ is decreasing along any backward ray, even along
backward rays coming from the region {Φ = 0} and entering {Φ 6= 0}, and not just along
those emanating from (0, x0, ξ0) or a nearby point. The only place where the behaviour of
Φ is not controlled is S ([−T − δ0,−T + δ0], V ′), and this is why Φ is a time function on
S ([−T + δ0, δ0], V ′) and not on the whole larger set S ([−T − δ0, δ0], V ′) (see Property (8)).

For t > −T + δ0, we have Φ′t 6 0 since ∂t ∈ Γm, and thus we set Ψ0 =
√
−Φ′t. Then,

following the rays backwards in time, we make Ψ0 fall to 0 between times −T + δ0 and −T
(see Figure 2). Similarly, following the rays backward from time −T + δ0 to time −T − δ0,
we extend Φ smoothly and homogeneously (in the fibers in ξ) in a way that Φ is compactly
supported in the time-interval (−T−δ0, δ0) and Φ′t+Ψ2

0 > 0. Finally, we set Ψ1 =
√

Φ′t + Ψ2
0.

In Lemma 14, Properties (1), (2), (3), (5), (6), (8) follow from the construction. Property
(7) follows from (37).

Finally, let us explain why Property (4) holds. It follows from our construction that for
some δ > 0, Φ is decreasing along rays computed with respect to

Γ̃m = R+(∂t + B̃),

B̃ =
{
b ∈ ker(am)⊥ωX , a∗m(I(b)) 6 (1− 2δ)−1/2

}
.

instead of Γm (i.e., integral curves of the field of cones Γ̃m); note that Γ̃m is strictly larger
than Γm due to (15). In fact, for δ > 0 sufficiently small (depending on V ), these new rays
are included in S ((−T + δ0, δ0);V ). Then, in view of the proof of Lemma 7, and notably
(19), this gives Property (4).

4.2 A decomposition of C

When Φ satisfies (2), (3), (4) and (5) in Lemma 14, the operator C given by (22) can be
expressed as follows:
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Proposition 16. If Φ satisfies (2), (3), (4) and (5) in Lemma 14, then writing Φ′t = Ψ2
1−Ψ2

0,
there holds

C = C ′ +R+R′P + PR′ − δ(Op(Ψ0)AOp(Ψ0) +DtOp(Ψ0)2Dt) (38)

where δ > 0 is the same as in (4),

R′ = −δ
2

Op(Φ′t) ∈ Ψα
phg, R = δOp(Ψ1)(D2

t +A)Op(Ψ1) ∈ Ψ2+α
phg ,

and C ′ ∈ Ψ2+α
phg has non-positive principal symbol and vanishing subprincipal symbol.

We start the proof of this proposition with the following improved (and corrected) version
of [30, Lemma 5.3]:

Lemma 17. Let φ be a time function near m ∈ Σ(2) which does not depend on τ and such
that

τHpφ 6 0 on {p > −2δa}. (39)

Then there holds
τHpφ 6 φ′t(p+ 2δa) (40)

in a neighborhood of m.

Note that for any time function, the inequality (39) holds on the smaller set {p > 0}.
Assuming (39) is a stronger requirement.

Proof of Lemma 17. Since φ does not depend on τ , we know that q = τ{p, φ} is a quadratic
polynomial in τ , vanishing at τ = 0:

q = bτ2 − cτ, p = τ2 − a, a > 0.

More explicitly, b = 2φ′t and c = {a, φ}. From (39), we know that bτ2 − cτ 6 0 for τ
sufficiently large, hence b 6 0. Moreover, (39) also implies that if b = 0, then c = 0, hence
φ′t = Hpφ = 0, and (40) is automatically satisfied. Otherwise, b < 0. Since q 6 0 on
τ /∈ [−((1− 2δ)a)1/2, ((1− 2δ)a)1/2] by (39), we get that the other zero of q, τ = c/b, must
lie in [−((1− 2δ)a)1/2, ((1− 2δ)a)1/2]. Thus, c2 6 b2a(1− 2δ). Then,

τ{p, φ} − φ′tp =
1

2
b(τ − c/b)2 + (b2a− c2)/2b 6 baδ = 2φ′taδ

where we used that b < 0.

Proof of Proposition 16. Setting r′ = − δ2Φ′t, we have according to Lemma 17 with φ = Φ:

τ{p,Φ} − Φ′tp− 2r′p 6 2Φ′taδ + Φ′tpδ = Φ′tδ(τ
2 + a) = δ(Ψ2

1 −Ψ2
0)(τ2 + a). (41)

We set R = δOp(Ψ1)(D2
t +A)Op(Ψ1) and R′ = Op(r′). It follows from (41), (30), (31) and

(28) that the operator

C ′ = C −R− (R′P + PR′) + δ(Op(Ψ0)AOp(Ψ0) +DtOp(Ψ0)2Dt) (42)

has non-positive principal symbol and vanishing subprincipal symbol. This proves Proposi-
tion 16.
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4.3 The Fefferman-Phong inequality

The Fefferman-Phong inequality [13] (see also [27, Section 2.5.3]) can be stated as follows:
for any pseudodifferential operator C ′1 of order 2 + α whose (Weyl) symbol is non-positive,
there holds for any u ∈ C∞c (Rn),

(C ′1u, u)L2(Rn) 6 c((Id−∆)α/2u, u)L2(Rn) (43)

where ∆ is a Riemannian Laplacian on Rn. The following lemma is a simple microlocalization
of this inequality. The definition of the essential support, denoted by essupp, is recalled in
Appendix A.2.

Lemma 18. Let α > 0, and let W,W ′ ⊂ T ∗(R × Ω) be conic sets such that W ′ is a
conic neighborhood of W . Let C ′ ∈ Ψ2+α

phg with essupp(C ′) ⊂ W such that σp(C
′) 6 0 and

σsub(C
′) 6 0. Then there exists Cα ∈ Ψ

α/2
phg with essupp(Cα) ⊂W ′ such that

∀u ∈ C∞c (R× Ω), (C ′u, u)L2 6 c(‖Cαu‖2L2 + ‖u‖2L2). (44)

Proof. Taking a microlocal cut-off χ homogeneous of order 0, essentially supported in W ′

and equal to 1 on a conic neighborhood of W , we see that

(C ′u, u) = (C ′(Op(χ) + Op(1− χ))u, (Op(χ) + Op(1− χ))u)

= (Op(χ)C ′Op(χ)u, u) + (Q′u, u) (45)

where Q′ ∈ Ψ−∞ is explicit:

Q′ = Op(1− χ)C ′Op(χ) + Op(χ)C ′Op(1− χ) + Op(1− χ)C ′Op(1− χ).

Since Q′ ∈ Ψ−∞, we have in particular

(Q′u, u) 6 c‖u‖2L2 . (46)

Then, we write C ′ = C ′1 + C ′2 where C ′1 has non-positive full Weyl symbol, and C ′2 ∈ Ψα
phg.

First, we apply (43) with Op(χ)u instead of u: we obtain

(Op(χ)C ′1Op(χ)u, u) 6 c‖Cαu‖2L2 (47)

with Cα = (Id − ∆)α/4Op(χ). Secondly, writing C ′2 = (Id − ∆)α/4C ′′2 (Id − ∆)α/4 with
C ′′2 ∈ Ψ0

phg, we see that

(Op(χ)C ′2Op(χ)u, u) 6 c‖Cαu‖2L2 . (48)

Combining (45), (46), (47) and (48), we get (44).

4.4 End of the proof of Theorem 1

We come back to the proof of Theorem 1. We fix (x0, ξ0) ∈ T ∗Ω\0 and consider u a solution
of (4). For the moment, we assume that u is smooth. We consider a time function Φ as
constructed in Lemma 14.

Using (38), we have

0 = 2Im(Pu,Op(Φ)Dtu)

= (Cu, u)

= ((C ′ +R+R′P + PR′ − δ(Op(Ψ0)AOp(Ψ0) +DtOp(Ψ0)2Dt))u, u).

Hence, using Pu = 0 and applying Lemma 18 to C ′, we get:

(AOp(Ψ0)u,Op(Ψ0)u) + ‖Op(Ψ0)Dtu‖2L2 6 c((Rα +R′P + PR′ + C ′)u, u)

6 cα(‖Cαu‖2L2 + ‖u‖2L2 + (Rαu, u)).
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with cα > 1/δ and Rα = R, just to keep in mind in the forthcoming inequalities that it
depends on α.

But (AOp(Ψ0)u,Op(Ψ0)u) > 1
c ((−∆)sOp(Ψ0)u,Op(Ψ0)u)−‖Op(Ψ0)u‖2 by subelliptic-

ity (3). Hence

‖(−∆)s/2Op(Ψ0)u‖2L2 + ‖Op(Ψ0)Dtu‖2L2 6 cα(‖Cαu‖2L2 + ‖u‖2L2 + (Rαu, u) + ‖Op(Ψ0)u‖2L2)
(49)

which we decompose into

‖(−∆)s/2Op(Ψ0)u‖2L2 6 cα(‖Cαu‖2L2 + ‖u‖2L2 + (Rαu, u) + ‖Op(Ψ0)u‖2L2) (50)

and
‖Op(Ψ0)Dtu‖2L2 6 cα(‖Cαu‖2L2 + ‖u‖2L2 + (Rαu, u) + ‖Op(Ψ0)u‖2L2). (51)

Now, assume that u is a general solution of (4), not necessarily smooth. We have u ∈
C0(R; D(A1/2)) ∩ C1(R;L2(Ω)). We recall that Ω is a subset of Rd. We have the following
definition.

Definition 19. Let s0 ∈ R and f ∈ D′(Ω). We shall say that f is Hs0 at (x, ξ) ∈ T ∗Ω \ 0 if
there exists a conic neighborhood W of (x, ξ) such that for any 0-th order pseudodifferential
operator B with essupp(B) ⊂W , we have Bf ∈ Hs

loc(Ω).
We shall say that f is smooth at (x, ξ) if it is Hs0 at (x, ξ) for any s0 ∈ R.
When we say that u is Hs0 at (t, y, η), we mean that u(t) is Hs0 at (y, η) ∈ T ∗Ω.

Lemma 20. Let V, V ′ be sufficiently small open conic neighborhoods of (x0, ξ0) such that
V ⊂ V ′. Let u be a solution of (4). If u and ∂tu are smooth in S ((−T − δ0,−T + δ0);V ′),
then u is smooth in

U = S ((−T + δ0, 0);V ).

Proof of Lemma 20. We set uε = ρε ∗ u where ρε = ε−(d+1)ρ(·/ε) and ρ ∈ C∞c (Rd+1) is of
integral 1 (and depends on the variables t, x). Recall that d is the dimension of Ω.

Applying Lemma 14 for any α > 0 yields a function Φα which is in particular homogeneous
of degree α in ξ; its derivative in t can be written Φ′α = (Ψα

1 )2 − (Ψα
0 )2 (the upper index

being not an exponent). Then we apply (50) to uε and with α = 0: we get

‖(−∆)s/2Op(Ψ0
0)uε‖2L2 6 c0(‖C0uε‖2L2 + ‖uε‖2L2 + (R0uε, uε) + ‖Op(Ψ0

0)uε‖2L2) (52)

where R0 = δOp(Ψ0
1)(D2

t +A)Op(Ψ0
1) (see Proposition 16) and c > 0 does not depend on ε.

All quantities
‖C0u‖L2 , ‖u‖L2 , (R0u, u), ‖Op(Ψ0

0)u‖2L2

are finite. Therefore, taking the limit ε → 0 in (52), we obtain u ∈ H2s in U . Using
the family of inequalities (50), we can iterate this argument: first with α = 2s, then with
α = 4s, 6s, etc, and each time we replace Ψ0

0, R0, C0 by Ψα
0 , Rα, Cα. At step k, we deduce

thanks to (50) that u ∈ H2ks. In particular, we use the fact that ‖Cαu‖L2 and ‖Op(Ψα
0 )u‖L2

are finite, which comes from the previous step of iteration since Cα is essentially supported
close to the essential support of C ′ (which is contained in the essential support of Φ thanks
to (42)). Thus, u ∈

⋂
k∈NH

2ks = C∞ in U .

Then, using (51) for any α ∈ N with Ψα
0 in place of Ψ0, we obtain that Dtu is also Hα in

U . Since this is true for any α ∈ N, Dtu is C∞ in U , which concludes the proof of Lemma
20.

We conclude the proof of Theorem 1. We assume that

u is smooth in W = S ((−T − δ0,−T + δ0); (x0, ξ0)). (53)

Then, u is smooth in a slightly larger set W ′, i.e., such that W ⊂W ′. By Lemma 15, there
exists V ′ ⊂ T ∗Ω \ 0 an open neighborhood of (x0, ξ0) such that

W ⊂ S ((−T − δ0,−T + δ0);V ′) ⊂W ′.
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Fix also an open set V ⊂ T ∗Ω \ 0 such that

(x0, ξ0) ∈ V ⊂ V ⊂ V ′.

Lemma 20 implies that u is smooth in S ((−T + δ0, 0);V ). In particular,

u is smooth in S ((−T + δ0, 0); (x0, ξ0)). (54)

The fact that (53) implies (54) proves that singularities of (4) propagate only along rays.
Using that singularities of P are contained in {p = 0}, we obtain finally Theorem 1.

5 Proof of Corollary 3

In all the sequel, that is, in Sections 5 and 6, we assume that A is a sub-Laplacian. As
mentioned in Definition 2 (see also [16]), it means that we assume that A has the form

A =

K∑
i=1

Y ∗i Yi (55)

where the global smooth vector fields Yi satisfy Hörmander’s condition.

The principal symbol of A, which is also the natural Hamiltonian, is

a =

K∑
i=1

h2Yi
.

Here, for Y a vector field on X, we denoted by hY the momentum map given in canonical
coordinates (x, ξ) by hY (x, ξ) = ξ(Y (x)).

In this Section, we prove Corollary 3. For that purpose, we introduce in Section 5.1
notations and concepts from sub-Riemannian geometry, which is a natural framework to
study geometric properties of the vector fields Y1, . . . , YK . Our presentation is inspired by
[34, Chapter 5 and Appendix D] (see also [1]).

5.1 Sub-Riemannian geometry and horizontal curves

We consider the sub-Riemannian distribution

D = Span(Y1, . . . , YK) ⊂ TX.

There is a metric g, namely

gx(v) = inf

{
K∑
i=1

u2i | v =

K∑
i=1

uiYi(x)

}
, (56)

which is Riemannian on D and equal to +∞ outside D. The triple (X,D, g) is called a
sub-Riemannian structure (see [34]).

Fix an interval I = [b, c] and a point x0 ∈ X. We denote by Ω(I, x0;D) the space of
all absolutely continuous curves γ : I → X that start at γ(b) = x0 and whose derivative is
square integrable with respect to g, implying that the length∫

I

√
gγ(t)(γ̇(t))dt

of γ is finite. Such a curve γ is called horizontal. The endpoint map is the map

End : Ω(I, x0;D)→ X, γ 7→ γ(c).
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The metric (56) induces a distance d on X, and d(x, y) < +∞ for any x, y ∈ X thanks to
Hörmander’s condition (this is the Chow-Rashevskii theorem).

Two types of curves in Ω(I, x0;D) will be of particular interest: the critical points of
the endpoint map, and the curves which are projections of the Hamiltonian vector field Ha

associated to a.

Projections of integral curves of Ha are geodesics:

Theorem 21. [34, Theorem 1.14] Let γ(s) be the projection on X of an integral curve (in
T ∗X) of the Hamiltonian vector field Ha. Then γ is a horizontal curve and every sufficiently
short arc of γ is a minimizing sub-Riemannian geodesic (i.e., a minimizing path between its
endpoints in the metric space (X, d)).

Such horizontal curves γ are called normal geodesics, and they are smooth.
The differentiable structure on Ω(I, x0;D) described in [34, Chapter 5 and Appendix D]
allows to give a sense to the following notion:

Definition 22. A singular curve is a critical point for the endpoint map.

Note that in Riemannian geometry (i.e., for a elliptic), there exist no singular curves.
In the next definition, we use the notation D⊥ for the annihilator of D (thus a subset of the
cotangent bundle T ∗X), and ωX denotes the restriction to D⊥ of the canonical symplectic
form ωX on T ∗X.

Definition 23. A characteristic for D⊥ is an absolutely continuous curve λ(t) ∈ D⊥ that
never intersects the zero section of D⊥ and that satisfies λ̇(t) ∈ ker(ωX(λ(t))) at every point
t for which the derivative λ̇(t) exists.

Theorem 24. [34, Theorem 5.3] A curve γ ∈ Ω is singular if and only if it is the projection
of a characteristic λ for D⊥ with square-integrable derivative. λ is then called an abnormal
extremal lift of the singular curve γ.

Normal geodesics and singular curves are particularly important in sub-Riemannian ge-
ometry because of the following fact (Pontryagin’s maximum principle):

any minimizing geodesic in (X, d) is either a singular curve or a normal geodesic.

The existence of minimizing geodesics which are singular curves but not normal geodesics
was proved in [32].

Let us mention three examples which are well-known in sub-Riemannian geometry (see
[34] and [1]) where the singular curves and their abnormal extremal lifts can be explicitly
computed. These examples are presented in Rn (n = 3, 4) for simplicity, but they could also
have been written on adequate compact manifolds in order to fit better with the framework
of the present work.

Example 25. When the vector fields are Y1 = ∂x − y
2∂z and Y2 = ∂y + x

2∂z in R3, and the
measure is ν = dxdydz, then

A = −
[(
∂x −

y

2
∂z

)2
+
(
∂y +

x

2
∂z

)2]
is the Heisenberg sub-Laplacian. In this case, the only singular curves are the trivial constant
ones t 7→ q0 for any q0 = (x0, y0, z0) ∈ R3, and the abnormal extremal lifts are given by
(q0, p0) ∈ T ∗R3 where p0 6= 0 annihilates Y1(q0) and Y2(q0) and is thus proportional to
dz + y0

2 dx−
x0

2 dy.

Example 26. When the vector fields are Y1 = ∂x and Y2 = ∂y+x2∂z in R3, and the measure
is ν = dxdydz, then

A = −
[
∂2x +

(
∂y + x2∂z

)2]
is the Martinet sub-Laplacian. Apart from the trivial constant ones, the singular curves are
of the form t 7→ q(t) = (0, t, z0) for any z0 ∈ R and the abnormal extremal lifts are given by
(q(t), p(t)) ∈ T ∗R3 where p(t) 6= 0 annihilates Y1(q(t)) = ∂x and Y2(q(t)) = ∂y. Note that
many other parametrizations of these curves are possible.
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Example 27. When the vector fields are Y1 = ∂x− y
2∂z, Y2 = ∂y + x

2∂z and Y3 = ∂w in R4,
and the measure is ν = dxdydzdw, then

A = −
[(
∂x −

y

2
∂z

)2
+
(
∂y +

x

2
∂z

)2
+ ∂2w

]
is the quasi-contact (or even contact) sub-Laplacian. Apart from the trivial constant ones,
the singular curves are of the form t 7→ q(t) = (x0, y0, z0, t) for any x0, y0, z0 ∈ R, and
their abnormal extremal lifts are given by (q(t), p(t)) ∈ T ∗R4 where p(t) 6= 0 annihilates
Y1(q(t)), Y2(q(t)) and Y3(q(t)), and is thus proportional to dz + y0

2 dx −
x0

2 dy. Again, many
other parametrizations of these curves are possible.

5.2 End of the proof of Corollary 3

The basic facts of sub-Riemannian geometry recalled in Section 5.1 now allow us to deduce
Corollary 3 from Theorem 1.

We recall a few notations already used: π denotes the canonical projection π : T ∗X → X,
and I is the canonical isomorphism between T (T ∗X) and T ∗(T ∗X) introduced in (16). The
notation am stands for half the Hessian of the principal symbol of A at m, and a∗m is then
defined as in (14).

The expression (15) of the cones Γm can be simplified thanks to the following lemma.

Lemma 28. When A is a sub-Laplacian, there holds a∗m(I(b)) = g(dπ(b)) for any b ∈
(ker(am))⊥ωX ⊂ T (T ∗X).

Proof. We consider a frame Z1, . . . , ZN which is g-orthonormal at the (canonical) projection
of m on X. In particular, the Zj are independent, and the HhZj

are also independent. We

have am =
∑N
j=1(dhZj )2. Hence, HhZ1

, . . . ,HhZN
span (ker(am))⊥ωX since

ker(am) =

N⋂
j=1

ker(dhZj ) = {ξ ∈ T (T ∗X), dhZj (ξ) = 0, ∀1 6 j 6 N}

= {ξ ∈ T (T ∗X), ω(ξ,HhYN
) = 0, ∀1 6 j 6 N}

= span(HhY1
, . . . ,HhYN

)⊥ωX .

We fix b ∈ (ker(am))⊥ωX and we write b =
∑N
j=1 ujHhZj

. By definition, I(HhZj
) = −dhZj

and dπ(HhZj
) = Zj for any j, so there holds

a∗m

I
 N∑
j=1

ujHhZj

 = a∗m

 N∑
j=1

ujdhZj

 = sup
η/∈ker(am)

(∑N
j=1 ujdhZj

(η)
)2

∑N
j=1 dhZj

(η)2

= sup
(θj)∈RN

(∑N
j=1 ujθj

)2
∑N
j=1 θ

2
j

=

N∑
j=1

u2j = g

 N∑
j=1

ujZj


= g

dπ
 N∑
j=1

ujHhZj


where, to go from line 1 to line 2, we used that the dhZj

are independent.

From Lemma 28, we deduce the following expression for Γm:

Γm = R+(∂t +B),

B =
{
b ∈ ker(am)⊥ωX , g(dπ(b)) 6 1

}
.

(57)

Recall that M = T ∗(R ×X) \ 0, and let π2 : M → T ∗X be the canonical projection on
the second factor.
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Proposition 29. Let γ : I → M be a null-ray, as introduced in Definition 9. Then, τ is
constant along this null-ray, and necessarily:

(i) if τ ≡ c 6= 0, then γ is a null-bicharacteristic;

(ii) if τ ≡ 0, then γ is contained in Σ(2) and tangent to the cones Γm given by (57).
Moreover, π2(γ) ⊂ T ∗X is a characteristic curve, and its projection on X (a singular
curve) is traveled at speed 6 1.

Proof. First, we note that τ is constant along null-rays since τ is preserved along integral
curves of Hp, and dτ(v) = 0 for any v ∈ Γm when Γm is given by (57).

If τ ≡ c 6= 0, then Γm = R± · Hp(m) for m ∈ γ(I). Thus γ is a null-bicharacteristic,
which proves (i).

We finally prove (ii); we assume that τ ≡ 0 along γ. Let s ∈ I. We set n(s) = π2(γ(s)).
According to (57), we can write γ̇(s) = c(s)(∂t + b(s)) with b(s) ∈ Tn(s)D⊥ since a ≡ 0 along

the path. There holds ker(an(s)) = Tn(s)D⊥ where an(s) is half the Hessian of a at point

n(s). Plugging into the above formula, we also get b(s) ∈ (Tn(s)D⊥)⊥ωX . It follows that

b(s) ∈ Tn(s)D⊥ ∩ (Tn(s)D⊥)⊥ωX = ker(ωX(n(s))).

This implies that π2(γ) is a characteristic curve. Its projection on X is a singular curve, by
definition. Moreover, the inequality g(dπ(b)) 6 1 in (57) exactly means that this projection
is traveled at speed 6 1.

Proposition 29 directly implies Corollary 3. To sum up, singularities of the wave equation
(4) when A is a sub-Laplacian propagate only along integral curves of Ha and characteristics
for D⊥ (at speed 6 1).

Comments. The propagation of singularities at speeds < 1 along singular curves is not
excluded by Corollary 3. If such a slow propagation effectively exists (which is not proved
by Corollary 3), it is in strong contrast with the usual propagation “at speed 1” along the
integral curves ofHa (as in Hörmander’s theorem). As already mentioned in the introduction,
we proved this surprising fact in a joint work with Yves Colin de Verdière [9]: we gave
explicit examples of initial data of a subelliptic wave equation whose singularities effectively
propagate at any speed between 0 and 1 along a singular curve.

Note that a similar phenomenon occurs for “partial sub-Laplacians” (typically, ∂2x in
R2
x,y), as proved in [31] using a parametrix construction. The result of [31] is presented as

a model for the “conical refraction”, which is the splitting of a ray into a cone of rays by a
biaxial crystal.

6 Proof of Theorem 4 and Corollary 5

We now turn to the study of the wave kernel KG. Section 6 is devoted to the proof of Theorem
4 and Corollary 5, i.e., we deduce the wave-front set of the Schwartz kernel KG from the
“geometric” propagation of singularities given by Corollary 3. The idea is to consider KG

itself as the solution of a subelliptic wave equation to which we can apply Corollary 3.

6.1 KG as the solution of a wave equation

We consider the product manifold X×X, with coordinate x on its first copy, and coordinate
y on its second copy. We set

A⊗ =
1

2
(Ax ⊗ Idy + Idx ⊗Ay)

and we consider the operator
P⊗ = ∂2tt −A⊗
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acting on functions of R ×Xx ×Xy. Using (7), we can check that the Schwartz kernel KG

is a solution of
KG|t=0 = 0, ∂tKG|t=0 = δx−y, P⊗KG = 0.

The operator A⊗ is a self-adjoint non-negative real second-order differential operator on
X ×X. Moreover it is subelliptic: it is immediate that the vector fields Y1 ⊗ Idy, . . . , YK ⊗
Idy, Idx ⊗ Y1, . . . , Idx ⊗ YK verify Hörmander’s Lie bracket condition, since it is satisfied
by Y1, . . . , YK . Hence, Theorem 1 applies to P , with the cones (and the null-rays) being
computed with A⊗ in T ∗(X ×X) instead of A (see (60)). We denote by ∼t the relation of
existence of a null-ray of length |t| joining two given points of T ∗(X ×X) \ 0 (see Remark
10 for the omission of the variables t and τ in the null-rays).

Since WF (KG(0)) = ∅ and

WF (∂tKG(0)) = {(z, z, ζ,−ζ) ∈ T ∗(X ×X) \ 0},

(see [36, p. 93]) we have, according to Theorem 1,

WF (KG(t)) ⊂ {(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, ∃(z, ζ) ∈ T ∗X \ 0,

(z, z, ζ,−ζ) ∼t (x, y, ξ,−η)}.
(58)

Our goal is now to give a simpler expression for the right-hand side of (58).

Let us denote by g1 the sub-Riemannian metric on Xx and by g2 the sub-Riemannian
metric on Xy. The sub-Riemannian metric on Xx ×Xy is g⊗ = 1

2 (g1 ⊕ g2). In other words,
if q = (q1, q2) ∈ X ×X and v = (v1, v2) ∈ Tq(X ×X) ≈ Tq1X × Tq2X, we have

g⊗q (v) =
1

2
(g1q1(v1) + g2q2(v2)). (59)

Now, according to (57), the cones Γ⊗m associated to A⊗ are given by

Γ⊗m = R+(∂t +B),

B = {b ∈ ker(a⊗m)⊥ω⊗ , g⊗(dπ⊗(b)) 6 1}.
(60)

Here, ⊥ω⊗ designates the symplectic orthogonal with respect to the canonical symplectic
form ω⊗ on T ∗(X ×X), and π⊗ : T ∗(X ×X)→ X ×X is the canonical projection.

To evaluate the right-hand side of (58), we denote by ≈t the relation of existence of
a null-ray of length |t| joining two given points of T ∗X \ 0 (the cones Γm are subsets of
T (T ∗(R×X)) as defined in Section 2). Let us prove that

{(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, ∃(z, ζ) ∈ T ∗X \ 0, (z, z, ζ,−ζ) ∼t (x, y, ξ,−η)}
⊂ {(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, (x, ξ) ≈t (y, η)}.

(61)

Combining with (58), it will immediately follow that

WF (KG(t)) ⊂ {(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, (x, ξ) ≈t (y, η)}. (62)

6.2 Proof of (61).

We denote by γ : [0, t] → T ∗(X × X) \ 0 a null-ray from (z, z, ζ,−ζ) to (x, y, ξ,−η),
parametrized by time. Our goal is to construct a null-ray of length |t| in T ∗X \ 0, from
(y, η) to (x, ξ). It is obtained by concatenating a null-ray from (y, η) to (z, ζ) with another
one, from (z, ζ) to (x, ξ). However, there are some subtleties hidden in the parametrization
of this concatenated null-ray.

We write γ(s) = (α1(s), α2(s), β1(s), β2(s)), and for i = 1, 2 and 0 6 s 6 t, we set
γi(s) = (αi(s), βi(s)) ∈ T ∗X. We also set δi(s) = gi(dπi(γ̇i(s))), where πi : T ∗X → X (here
X is the i-th copy of X). The upper dot denotes here and in the sequel the derivative with
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respect to the time variable. Since g⊗(dπ⊗(γ̇(s))) 6 1 for any s ∈ [0, t], we deduce from (59)
that

1

2
(δ1(s) + δ2(s)) 6 1.

Note that it is possible that δ1(s) > 1 or δ2(s) > 1.

We are going to construct a null-ray ε : [0, t]→ T ∗X of the form

ε(s) = (α2(θ(s)),−β2(θ(s))), 0 6 s 6 s0 (63)

ε(s) = (α1(θ(s)), β1(θ(s))), s0 6 s 6 t.

The parameter s0 and the parametrization θ will be chosen so that the first part of ε joins
(y, η) to (z, ζ) and the second part joins (z, ζ) to (x, ξ). We choose θ(0) = t, hence ε(0) =
(y, η). Then, for 0 6 s 6 s0, we choose θ(s) 6 t in a way to guarantee that g1(dπ1(ε̇(s))) = 1.
This defines s0 in a unique way as the minimal time for which ε(s0) = (z, ζ). In particular,
θ(s0) = 0. A priori, we do not know that s0 6 t, but we will prove it below. Then, for
s > s0, we choose θ(s) > 0 in order to guarantee that g2(dπ2(ε̇(s))) = 1. This defines a time
s1 in a unique way as the minimal time for which ε(s1) = (x, ξ). Finally, if s1 6 t, we extend
ε by ε(s) ≡ (x, ξ) for s1 6 s 6 t.

We check that ε is a null-ray in T ∗X. We come back to the definition of null-rays as
tangent to the cones Γm. It is clear that

ker(a⊗m)⊥ω⊗ = ker(am)⊥ω1 × ker(am)⊥ω2

where ωi is the canonical symplectic form on T ∗Xi. Therefore, ε̇(s) ∈ ker(am)⊥ωi for i = 1
when 0 6 s 6 s0 and for i = 2 when s0 6 s 6 t. Thanks to Lemma 28, the inequality in (15)
(but for the cones in X1 and X2) is verified by ε̇(s) for any 0 6 s 6 t by definition. There
is a “time-reversion” (or “path reversion”) in the first line of (63); the property of being a
null-ray is preserved under time reversion together with momentum reversion. Hence ε is a
null-ray in T ∗X.

The fact that s0, s1 6 t follows from the following computation:

t >
∫ t

0

g⊗(dπ⊗(γ̇(s)))ds =
1

2

∫ t

0

g1(dπ1(γ̇1(s)))ds+
1

2

∫ t

0

g2(dπ2(γ̇2(s)))ds

=
1

2

∫ s0

0

g1(dπ1(ε̇(s)))ds+
1

2

∫ s1

s0

g2(dπ2(ε̇(s)))ds

= s0 + (s1 − s0) = s1.

where the second equality follows from the fact that ε is a reparametrization of γ1 (resp. γ2)
for s ∈ [0, s0] (resp. [s0, s1]). This concludes the proof of (61).

6.3 Conclusion of the proof of Theorem 4

Let us finish the proof of Theorem 4. We fix (x0, ξ0), (y0, η0) and t0 such that there is no
null-ray from (y0, η0) ∈ T ∗X to (x0, ξ0) ∈ T ∗X in time t0.

Claim. There exist a conic neighborhood V of (x0, y0, ξ0,−η0) in T ∗(X × X) and a
neighborhood V0 of t0 in R such that for any N ∈ N and any t ∈ V0, ∂2Nt KG(t) is smooth in
V .

Proof. We choose V so that for (x, y, ξ,−η) ∈ V and t ∈ V0, there is no null-ray from (y, η)
to (x, ξ) in time t. Such a V exists, since otherwise by extraction of null-rays (which are
Lipschitz with a locally uniform constant, see (20)), there would exist a null-ray from (y0, η0)

to (x0, ξ0) in time t0. Then, we can check that for any N ∈ N, K
(2N)
G = ∂2Nt KG is a solution

of
K

(2N)
G |t=0 = 0, ∂tK

(2N)
G |t=0 = (A⊗)Nδx−y, P⊗K

(2N)
G = 0.
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Repeating the above argument leading to (62) with K
(2N)
G instead of KG, we obtain

WF (K
(2N)
G (t)) ⊂ {(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, (x, ξ) ≈t (y, η)},

which proves the claim.

We deduce from the claim that if there is no null-ray from (y0, η0) ∈ T ∗X to (x0, ξ0) ∈
T ∗X in time t0, then (t0, τ0, x0, y0, ξ0,−η0) /∈WF (KG) for any τ0 ∈ R.

Finally, if there is a null-ray from (y0, η0) to (x0, ξ0) in time t0, then a(x0, ξ0) = a(y0, η0),
and due to the fact that WF (KG) is included in the characteristic set of ∂2tt − A⊗, the
only τ0’s for which (t0, τ0, x0, y0, ξ0,−η0) ∈ WF (KG) is possible are the ones satisfying
τ20 = a(x0, ξ0) = a(y0, η0). This concludes the proof of Theorem 4.

Remark 30. Theorem 4 allows to recover some results already known in the literature.
In the situations studied in [23], [24] and [30], Σ(2) is a symplectic manifold (a typical

example is given by Example 25). In this case, thanks to (15), we see that the only null-rays
starting from points in Σ(2) are lines in t. Therefore Theorem 4 implies:

• the “wave-front part” of the main results of [23] and [24] (but not the effective con-
struction of parametrices handled in these papers);

• Theorem 1.8 in [29].

6.4 Proof of Corollary 5

We finally prove Corollary 5. We fix x, y ∈ X with x 6= y and we denote by Ts the minimal
length of a singular curve joining x to y.

We consider ϕ : R→ R×X×X, t 7→ (t, x, y) which has conormal setNϕ = {(t, x, y, 0, ξ, η)}
(in other words Nϕ corresponds to τ = 0). Using Theorem 4 and Proposition 29, we see
that WF (G ) does not intersect the conormal set of ϕ|(−Ts,Ts). Then, [17, Theorem 2.5.11’]
ensures that G , which is the pull-back of KG by ϕ|(−Ts,Ts), is well-defined as a distribution
over (−Ts, Ts). Of course, SingSupp(G ) is the projection of WF (G ) (for |t| < Ts).

By definition of Ts, for |t| < Ts, null-rays between x and y are contained in {τ 6= 0}, thus
they are null-bicharacteristics (see Proposition 29). Hence, the singularities of G occur at
times belonging to the set L of lengths of normal geodesics (for τ > 0, we obtain normal
geodesics from y to x, and for τ < 0, normal geodesics from x to y).

Remark 31. If x = y, the same reasoning as in the proof of Corollary 5 says nothing more
than SingSupp(KG(·, x, x)) ⊂ R since for any point (x, ξ) ∈ D⊥ and any t ∈ R, the constant
path joining (x, ξ) to (x, ξ) in time t is a null-ray (with τ ≡ 0).

A Appendix

A.1 Sign conventions in symplectic geometry

In the present work, we take the following conventions (the same as [19], see Chapter 21.1):
on a symplectic manifold with canonical coordinates (x, ξ), the symplectic form is ω =
dξ ∧ dx, and the Hamiltonian vector field Hf of a smooth function f is defined by the
relation ω(Hf , ·) = −df(·). In coordinates, it reads

Hf =
∑
j

(∂ξjf)∂xj
− (∂xj

f)∂ξj .

In these coordinates, the Poisson bracket is

{f, g} = ω(Hf , Hg) =
∑
j

(∂ξjf)(∂xj
g)− (∂xj

f)(∂ξjg),

which is also equal to Hfg and −Hgf .
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A.2 Pseudodifferential operators

This appendix is a short reminder on basic properties of pseudodifferential operators. Most
proofs can be found in [19]. In this paper, we work with the class of polyhomogeneous
symbols (defined below), which is slightly smaller than the usual class of symbols but has the
advantage that the subprincipal symbol can be read easily when using the Weyl quantization
(see [19], the paragraph before Section 18.6).

We consider Ω an open set of a d-dimensional manifold, and µ a smooth volume on Ω.
The variable in Ω is denoted by q. Let π : T ∗Ω→ Ω be the canonical projection.

Snhom(T ∗Ω) stands for the set of homogeneous symbols of degree n with compact support
in Ω. We also denote by Snphg(T ∗Ω) the set of polyhomogeneous symbols of degree n with
compact support in Ω. Hence, a ∈ Snphg(T ∗Ω) if a ∈ C∞(T ∗Ω), the projection π(supp(a)) is

a compact of Ω, and there exist aj ∈ Sn−jhom(T ∗Ω) such that for any N ∈ N, a −
∑N
j=0 aj ∈

Sn−N−1phg (T ∗Ω). We denote by Ψn
phg(Ω) the space of polyhomogeneous pseudodifferential

operators of order n on Ω, with a compactly supported kernel in Ω× Ω.

We use the Weyl quantization denoted by Op : Snphg(T ∗Ω)→ Ψn
phg(Ω). It is obtained by

using partitions of unity and the formula in local coordinates

Op(a)f(q) =
1

(2π)d

∫
Rd

q′×R
d
p

ei〈q−q
′,p〉a

(
q + q′

2
, p

)
f(q′)dq′dp.

If a is real-valued, then Op(a)∗ = Op(a). Moreover, with this quantization, the principal
and subprincipal symbols of A = Op(a) with a ∼

∑
j6n aj are simply σp(A) = an and

σsub(A) = an−1 (usually, the subprincipal symbol is defined for operators acting on half-
densities, but we make here the identification f ↔ fdν1/2).

We also have the following properties:

1. If A ∈ Ψl
phg(Ω) and B ∈ Ψn

phg(Ω), then [A,B] ∈ Ψl+n−1
phg (Ω). Moreover, σp([A,B]) =

1
i {σp(a), σp(b)} where the Poisson bracket is taken with respect to the canonical sym-
plectic structure of T ∗Ω.

2. If X is a vector field on Ω and X∗ is its formal adjoint in L2(Ω, µ), then X∗X is a
second order pseudodifferential operator, with σp(X

∗X) = h2X and σsub(X∗X) = 0.
Here, for X a vector field, we denoted by hX the momentum map given in canonical
coordinates (x, ξ) by hX(x, ξ) = ξ(X(x)).

3. If A ∈ Ψn
phg(Ω), then A maps continuously the space Hs(Ω) to the space Hs−n(Ω).

Finally, we define the essential support of A, denoted by essupp(A), as the complement in
T ∗Ω of the points (q, p) which have a conic-neighborhood W so that A is of order −∞ in W .

A.3 The cones Γm as generalized Hamiltonians

In this section, we interpret the set B = B(m) which appears in the formula (15), namely

B(m) =
{
b ∈ ker(am)⊥ωX , a∗m(I(b)) 6 1

}
,

as a generalized Hamiltonian, just adapting the notion of Clarke generalized gradient (see
[7, Chapter 1.2]) to the “Hamiltonian” framework.

Definition 32. Let f be an almost everywhere differentiable function on T ∗X and let Ωf
be the set of points where it is not differentiable. Its generalized Clarke Hamiltonian Hf(x)
at x ∈ Ωf is the set

Hf(x) = cxhl

{
lim

j→+∞
Hf (xj), xj → x, xj /∈ Ωf

}
⊂ Tx(T ∗X)

where cxhl denotes the convex hull.
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The main result of this section is the following:

Proposition 33. For any m ∈ Σ(2), B(m) = H
√
a(m).

This proposition, beside giving an alternative proof of Lemma 7, draws a link between
our computations and the Pontryagin maximum principle in the Clarke formulation, which
asserts that any sub-Riemannian geodesic (see Section 5.1) is a solution of the differential
inclusion

γ̇(s) ∈ H
√
a(γ(s)).

The projection of a null-ray in T ∗X is also by Definition 9 a solution of this differential
inclusion, and this “explains” why abnormal extremals appear naturally in Corollary 3.

Before proving Proposition 33, we introduce the “fundamental matrix” F (see [19, Section
21.5]) defined as follows:

∀Y,Z ∈ Tm(T ∗X), ωX(Y, FZ) = am(Y,Z). (64)

Here am(Y,Z) = 1
2 (Hess a)(m)(Y, Z). Then, ωX(FY,Z) = −ωX(Y, FZ). As already ex-

plained in Section 2.2, there is here a slight abuse of notations since Tm(T ∗X) stands for
Tπ2(m)(T

∗X) where π2 : M → T ∗X is the canonical projection on the second factor.

Lemma 34. The fundamental matrix induces an isomorphism

F : Tm(T ∗X)/ker(am)→ ker(am)⊥ωX

Proof. F clearly passes to the quotient by ker(am) by (64). Let b ∈ ker(am)⊥ωX . We set b0 =
−I(b) ∈ ker(am)⊥. The bilinear form am is continuous and coercive on Tm(T ∗X)/ker(am),
and b0 is a linear form on this space, thus by Lax-Milgram’s lemma we get the existence of
Z ∈ Tm(T ∗X)/ker(am) such that b0 = am(Z, ·). Finally, we have

−I(b) = b0 = am(·, Z) = ω(·, FZ) = −I(FZ)

according to (16), which means that b = FZ.

Now we derive a formula for B(m) in terms of the fundamental matrix (see formula (2.6)
in [30]):

Lemma 35. There holds

B(m) = cxhl

{
FZ

am(Z)
1
2

, Z ∈ Tm(T ∗X)/ker(am)

}
. (65)

Proof. We have to compare (15) with (65).

First, let b ∈ ker(am)⊥ωX with a∗m(I(b)) 6 1. By the proof of Lemma 34, there exists
Z ∈ Tm(T ∗X)/ker(am) such that −I(b) = b0 = am(Z, ·). Using that a∗m(b0) 6 1, we obtain

am(Z) 6 1, hence b0 = λam(Z, ·)/am(Z)
1
2 where |λ| 6 1. It follows that b = −I−1(b0) =

λFZ/am(Z)
1
2 . This proves that the cones given by (15) are included in those given by (65).

For the converse, we first notice that FZ/am(Z)
1
2 ∈ ker(am)⊥ωX , and thus it is also the

case for any convex combination. Also, it follows from the definitions of I, F , a∗m and the
Cauchy-Schwarz inequality that

∀Z ∈ Tm(T ∗X)/ker(am), a∗m(I(FZ)/am(Z)
1
2 ) 6 1.

By convexity of a∗m, we obtain that any convex combination b of elements of the form

FZ/am(Z)
1
2 satisfies a∗m(I(b)) 6 1. This concludes the proof.
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Proof of Proposition 33. As in Section 2.3, we work in a chart near m. Following the compu-
tations of Lemma 8, we have for any sequence of points (mj)j∈N such that mj−m /∈ ker(am),

1

2
ωX(Ha(mj), w) = −1

2
da(mj)(w) = −am(mj −m,w) + o(mj −m)

= ωX(F (mj −m), w) + o(mj −m),

which implies

H√a(mj) =
1

2

Ha(mj)

a(mj)
1
2

=
F (mj −m)

am(mj −m)
1
2

+ o(1). (66)

Choosing mj = m+ εjZ with εj → 0, we obtain

H√a(mj) −→
j→+∞

FZ

am(Z)
1
2

which proves that B(m) ⊂ H
√
a(m) according to Lemma 35.

Conversely, since F is a linear isomorphism (see Lemma 34), it is not difficult to see that

any limit of
F (mj−m)

am(mj−m)
1
2

is of the form FZ

am(Z)
1
2

. Using (66) and taking convex hulls, this

proves that H
√
a(m) ⊂ B(m).
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Riemannian Laplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional
contact case. Duke Mathematical Journal, vol. 167, no 1, p. 109-174, 2018.

[9] Yves Colin de Verdière and Cyril Letrouit. Propagation of well-prepared states along
Martinet singular geodesics. To appear in Journal of Spectral Theory. Arxiv preprint
arXiv:2105.03305.

[10] Johannes J. Duistermaat and Victor W. Guillemin. The spectrum of positive elliptic
operators and periodic bicharacteristics. Inventiones Mathematicae, vol. 29, p. 39-80,
1975.
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