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Abstract

We benchmark several numerical approaches building on upstream mobility two-point flux
approximation finite volumes to solve Richards’ equation in domains made of several rock-
types. Our study encompasses four different different schemes corresponding to different ways
to approximate the nonlinear transmission condition systems arising at the interface between
different rocks, as well as different resolution strategies based on Newton’s method with vari-
able switch. The different methods are compared on filling and drainage test cases with
standard nonlinearities of Brooks-Corey and van Genuchten type, as well as with challenging
steep nonlinearities.
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1 Introduction

The Richards equation [43] is a popular model for underground water flow in the vadose zone. It
consists in a simplification of the incompressible immiscible two-phase Darcy flow model, assum-
ing that the pressure of the gas phase is known and equal to the atmospheric pressure, see for
instance [5]. Besides, Richards equation also attracts an important interest from scientists as it
provides a relatively simple model that already accounts for many difficulties occurring in complex
porous media flows, like degeneracies when one phase (air or water) vanishes, or strong material
heterogeneities with severe changes in the physical parameters at the interface between different
rocks. We formalize mathematically in Section 1.1 the problem under consideration in this pa-
per, namely Richards equation in heterogeneous domains, before discussing on possible numerical
strategies in Section 1.2.
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1.1 The Richards equation in heterogeneous domains

Let Ω Ă Rd p1 ď d ď 3q be a connected open polyhedral domain, representing the porous matrix in
which water flows. The porous matrix is assumed to be heterogeneous, and we particularly focus
on severe variations of the rock characteristics at the interface between different rock-types. More
precisely, we assume that there exist polyhedral connected and disjointed open subsets pΩiq1ďiďI
such that

Ω “
ď

1ďiďI

Ωi.

Each subdomain Ωi represents a rock-type, and is assumed to be homogeneous for simplicity. We
denote by

Γi,j “ Ωi X Ωj , 1 ď i, j ď I,

the interface between Ωi and Ωj and by

Γ “
ď

1ďi‰jďI

Γi,j

the set containing all these interfaces.
Let T ą 0 be an arbitrary finite time horizon, then Richards’ equation in Qi,T “ p0, T q ˆ Ωi

writes

φi Bts` divF “ 0, (1.1)

F ` λi ηipsq∇pp` %gzq “ 0, (1.2)

s´ Sippq “ 0. (1.3)

The unknowns are the water saturation s, the water flux F and the water pressure p. Equation (1.1)
encodes the local conservation of the water volume (since water is described as an incompressible
fluid). The Darcy-Muskat relation (1.2) relates the water flux to the gradient of the hydraulic
head, whereas the last equation (1.3) links the saturation to the pressure. In the above system,
φi stands for the porosity of the ith rock and λi ą 0 for its intrinsic permeability (isotropy of
the porous medim is assumed here), while % stands for the water density which is assumed to be
constant, and g denotes the modulus of the gravity vector. The mobility ηipsq is nonnegative and
nondecreasing with respect to the saturation, while the function Si relating the water pressure and
saturation is nondecreasing and takes its values in r0, 1s. In accordance with the classical models
of the literature — see Section 4.1.3 for the precise description of the models to be used in practice
in the numerical simulations — we assume that water is always mobile, i.e., that ηipSippqq ą 0 for
all p P R. Water becomes immobile in the dry asymptote, i.e. limpÑ´8 ηipSippqq “ 0, leading to
a degeneracy of hyperbolic type. On the other hand, positive pressures correspond to saturated
regimes, i.e. Sippq “ Sip0q for all p ě 0, leading to a degeneracy of elliptic type.

At the interface Γi,j , pressure and flux are continuous. More precisely, denote by pi the trace
at p0, T q ˆ Γi,j of the pressure p|Ωi in Qi,T , and by Fi the trace at p0, T q ˆ Γi,j of the flux F|Ωi in
Qi,T , then the transmission conditions across Γi,j write

Fi ¨ νi ` Fj ¨ νj “ 0, (1.4)

pi ´ pj “ 0, (1.5)

where νi (resp. νj) denotes the normal to Γi,j outward w.r.t. Ωi (resp. Ωj). Note that since
the pressure is continuous, and since Si ‰ Sj in general, the saturation is discontinuous across
Γi,j . The pressure continuity (1.5) has to be relaxed in the case where the water mobility could
vanish for finite p. We refer for instance to [7, 17, 21] for formulations with such relaxed pressure
continuity conditions at the interfaces. Let us stress that our work can be extended without further
difficulties to this more involving setting.
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Concerning the boundary conditions, the external boundary BΩ, the outward normal of which
being denoted by ν, is split into a portion called ΓD where a constant Dirichlet boundary condition
is imposed, and ΓN “ BΩzΓD where a Neumann boundary condition is fixed:

F ¨ ν “ qN on p0, T q ˆ ΓN, (1.6)

p “ pD on p0, T q ˆ ΓD. (1.7)

Finally, the initial saturation profile is prescribed,

sp0, xq “ s0pxq in Ω. (1.8)

1.2 Motivation and positioning of our work

Richards equation is interesting in itself for modeling the infiltration of water in the near subsurface.
This motivated the development of many numerical approaches with the aim of being robust
while preserving accuracy, especially with respect to mass conservation. For numerical schemes
approximating the solutions to Richards equation, we refer for instance to [19] for finite differences,
to [29] for control volume finite elements, to [25,27] for two-point flux approximation (TPFA) finite
volumes and to [13, 34, 46] for more advanced finite volume methods, to [6, 42, 48] for mixed finite
elements, or to [36] for discontinuous Galerkin approaches. The above reference list is far from
being exhaustive, and we refer to [28] for a review.

The problem being nonlinear and degenerate, an important part of the research effort has
been assigned to the design of efficient iterative linearization procedures. Two main approaches
then emerge: a first one based on (modified) Picard type fixed point strategies, and second one
relying on Newton’s method. Suitably designed Picard iteration based methods are known to
enjoy robustness at the price of a mere linear convergence speed, see for instance [19, 37, 41, 45].
On the other hand, a crude Newton’s algorithm may face severe difficulties to converge, see for
instance [35,37] for comparison of different approaches. This motivated the introduction of methods
based on variable switch [20,30], nested Newton loops [18], or nonlinear preconditioning technics [8]
to increase robustness. Our approach, which is described in Section 2.3 and [3], relies on the so-
called parametrization approach introduced in [9,12], which can be interpreted as a generalization
of the variable switch approach as well as a (diagonal) nonlinear preconditioning technique.

The second main difficulty to be addressed is the strong heterogeneity of the domain Ω with
discontinuous physical characteristics across Γ. Since the pressure is continuous, cf. (1.5), schemes
that are based on formulations involving the Kirchhoff transform θi “

şp

0
ηipSipaqqda, which is

known to be a powerful tool for the mathematical [1] and numerical [27, 42, 48] study of Richards
equation, will require a specific treatment at the interfaces to maintain the continuity of the
pressure. We refer for instance to [10,16,21–23,31] for methods built in this spirit. A more natural
approach consists in using discrete fluxes expressed directly in the form (1.2), with degrees of
freedom localized on the interface Γ to enforce the continuity of the pressure, as done for instance
in [2,14,26,32,40]. Let us also mention [44] where the authors solve the transmission condition (1.4)–
(1.5) thanks to an iterative procedure stemming from domain decomposition. In the case of cell
centered methods, like for instance TPFA finite volumes, convergence can also be assessed without
any specific treatment of the interface, as for example done in our recent contribution [4]. However,
the pressure continuity is only imposed at convergence w.r.t. grid refinement, leading to possible
loss in the accuracy. Therefore, specific treatments of the interface are needed. As highlighted
in [11], the specific treatment of the interface Γ may have a major impact on the Newton’s method
behavior. The purpose of this paper is to compare several approaches described in Section 3 to
deal with the interface transmission condition (1.4)–(1.5) and to depict their pros and cons when
confronted to different physical settings described in Section 4.
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2 Problem discretization

2.1 Space-time discretization

Let pT ,E q be a finite-volume space discretization of Ω satisfying the classical orthogonality con-
dition required for the consistency of the Two Point Flux Approximation (TPFA), see [24, Def-
inition 9.1] for more details. Here T denotes the set of cells and E the set of faces. We as-
sume that the mesh is consistent with the geometry in the sense that, for all K P T , there
exists i P t1, . . . , Iu such that K Ă Ωi. We denote by Ti “ tK P T | K Ă Ωiu. Then
for all f P tS, λ, φ, . . . u that depends on the rock-type, we set fK “ fi if K P Ti. The
set E is then subdivided into: the set of internal faces shared by cells of the same subdomain
Ei “ tσ “ K|L P E | K,L P Tiu, the set of the internal faces shared by cells belonging to different
subdomains EΓ “ tσ P E | σ Ă Γu “

Ť

i‰jtσ “ K|L P E | K P Ti, L P Tju, the set of Dirichlet

faces ED
ext “ tσ P E |σ Ă ΓDu and the set of Neumann faces EN

ext “ tσ P E |σ Ă ΓNu. Let us call
Eint “ Ei Y EΓ the set of all internal faces. We also introduce the local set EK “ tσ P E |σ Ă BKu
containing all the faces surrounding a cell K. To each face σ P E we associate a distance dσ defined
by

dσ “

#

|xK ´ xL| if σ “ K|L P Eint,

dK,σ if σ P EK X pE D
ext Y E N

extq
(2.1)

where, for all pair pK,σq such that σ P EK , dK,σ “ |xK ´ xσ|, with xK the cell center and xσ the
face center, which is chosen as the intersection of rxK , xLs with σ. Moreover, for each cell K, we
denote by mK its Lebesgue measure, and by mσ the measure of a face σ. The time discretization
is given by a vector of values ptnq0ď1ďN with 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T , and we denote by
tn ´ tn´1 “ ∆tn, 1 ď n ď N , the time steps.

2.2 Upstream TPFA finite-volume scheme

The two-point flux approximation of a diffusive flux, FKσ, related to the gradient of an unknown
u and coming out a cell K through the face σ, is defined by:

JKσ “ aσpuKσ ´ uKq

where the transmissivity on the face σ P E is defined by aσ “
mσ
dσ

and the mirror value uKσ by

uKσ “

$

’

&

’

%

uL if σ “ K|L P Eint,

uK if σ P EK X E N
ext,

uσ if σ P EK X E D
ext.

The saturation capillary-pressure relationship (1.3) and the volume balance (1.1) are discretized
into

snK “ SKppnKq, K P Ti, n ě 1, (2.2)

mKφK
snK ´ s

n´1
K

∆t
`

ÿ

σPEK

FnKσ “ 0, K P Ti, n ě 1, (2.3)

where the Darcy flux (1.2) is approximated by

FnKσ “

#

aσλKη
n
σ rpp

n
K ´ p

n
Kσq ` %g pzK ´ zKσqs, σ P EK X pEint Y ED

extq,

mσq
n
σ , σ P EK X EN

ext,
(2.4a)

with

qnσ “
1

mσ
∆tn

ż tn

tn´1

ż

σ

qN .
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In (2.4a), the face mobilities are upwinded in the following way

ηnσ “

#

ηKps
n
Kq if ppnK ´ p

n
Kσq ` %g pzK ´ zKσq ě 0,

ηKps
n
Kσq otherwise.

(2.4b)

The initial condition (1.8) is discretized into

s0
K “

1

mK

ż

K

s0, @K P Ti, (2.5)

and the Dirichlet boundary condition (1.7) into

pDσ “
1

mσ

ż

σ

pD, @σ P ED
ext. (2.6)

2.3 Switch of variable and parametrization technique

Let us now detail the resolution strategy for problem (2.2)–(2.6). A natural approach to solve
this nonlinear system is to choose the pressure ppKqKPT as primary unknown and to solve it
via an iterative method such as Newton’s one. However, the pressure variable is known to be an
inefficient choice for dry soils s ! 1, because of the degeneracy of Richards’ equation, where schemes
in which saturation is the primary variable outperform. On the other hand, the knowledge of the
saturation is not sufficient to describe the pressure curve in saturated regions where the pressure-
saturation relation cannot be inverted. This motivated the design of schemes which introduce
a switch of variable [20, 30]. Our approach is based on the technique proposed by Brenner and
Cancès [9], in which a third generic variable τ is introduced to become the primary unknown of
the system. Then, removing the subscript i related to the rock-type for convenience, the idea
is to choose a parametrization of the graph tp,Sppqu, i.e., to construct two monotone functions
s : I Ñ rsrw, 1 ´ srns and p : I Ñ R such that spτq “ Spppτqq and s1pτq ` p1pτq ą 0 for all
τ P I Ă R. The latter non-degeneracy assumption ensures that for all p P R, there exists a unique
τ P R such that pp,Sppqq “ pppτq, spτqq. Such a parametrization is not unique, for instance we can
choose I “ R, p “ Id which is equivalent to solving the system always in pressure, but this is not
recommended as seen before. Here, we set I “ R and

spτq “

$

’

&

’

%

Spκpτ ´ τ˚q ` p˚q if τ ď τ˚,

srw ` τp1´ srn ´ srwq if τ˚ ď τ ď τs,

Spps ` ςpτ ´ τsqq if τ ě τs,

(2.7a)

ppτq “

$

’

&

’

%

κpτ ´ τ˚q ` p˚ if τ ď τ˚,

S´1psrw ` τp1´ srn ´ srwqq if τ˚ ď τ ď τs,

ps ` ςpτ ´ τsq if τ ě τs.

(2.7b)

In the above formulas, pps, ssq “ pppτsq, spτsqq is referred later on as the switching point, at which
one passes from τ behaving as the saturation to τ behaving as the pressure (recall that New-
ton’s iterations are not sensitive to linear changes of variables). Another switch is incorporated
at pp˚, s˚q “ pppτ˚q, spτ˚qq to improve Newton’s robustness in presence of heterogeneities. The
parameter τ˚ is chosen so small that the solution ppnK , s

n
KqKPT to the scheme is always larger that

pp˚, s˚q. The parameters κ and ς are chosen so that p is C1, leading to the expressions

κ “
1´ srn ´ srw

S 1pp`˚ q
, and ς “

1´ srn ´ srw

S 1pp´s q
, (2.8)

where S 1pp`˚ q and S 1pp´s q respectively denote the limits of S 1ppq as p tends to p˚ and ps from above
and below. Then if S is C1, so is s “ S ˝ p. When S is convex then concave, as in the Brooks-
Corey and van Genuchten settings detailed in Section 4.1.3, then choosing τs such that pps, ssq
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is the inflexion point of the graph of S ensures that both p and the restriction of s to rτ˚,`8q
are concave. Moreover, if S belongs to C2pRq as in the van Genuchten setting, then so do the
restrictions of p and s to pτ˚,`8q. An example of parametrized curves p, s corresponding to van
Genuchten pressure-saturation laws is shown in Figure 1.

Figure 1: Plot of saturation and pressure parametrized van Genuchten-Mualem curves, using values
of rock type 1 reported in Table 2 . The green dot indicate the value for τ “ τ˚ and the magenta
one τ “ τs.

Applying the parametrization to our equations, we obtain the parametrized system:

mKφK
sKpτ

n
Kq ´ sKpτ

n´1
K q

∆t
`

ÿ

σPEK

FnKσ “ 0, K P Ti, n ě 1, (2.9)

where the fluxes (2.4a) become

FnKσ “

#

aσλKη
n
σ rppKpτ

n
Kq ´ pKpτ

n
Kσqq ` ρg pzK ´ zKσqs, σ P EK X pEint Y ED

extq,

mσqN , σ P EK X EN
ext,

(2.10)

and the upwinded face mobilities turn into

ηnσ “

#

ηKpsKpτ
n
Kqq if ppKpτ

n
Kq ´ pKpτ

n
Kσqq ` %g pzK ´ zKσq ě 0,

ηKpsKpτ
n
Kσqq otherwise.

(2.11)

Finally, we rewrite the initial condition as

τ0
K “ s´1

K

ˆ

1

mK

ż

K

s0

˙

, @K P Ti, (2.12)

and the Dirichlet boundary condition as

τDσ “ p´1
K

ˆ

1

mσ

ż

σ

pD
˙

, @σ P ED
ext. (2.13)

We have not specified yet how the interface fluxes FnKσ for σ “ EΓ are treated. This specification
is the purpose of Section 3. In the case of a homogeneous domain where Γ “ H, the resulting
system Fnpτnq “ 0 which is fully equivalent to (2.2)–(2.6), admits a unique solution τn (for details
see [4, Proposition 3.6-3.7]).

Remark 2.1. The practical resolution of the nonlinear system relies on Newton’s method. In the
homogeneous setting, the method we use is the one that is presented in [3, Section 2] with some
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differences. The first one concerns the approximation of the kr law by the van Genuchten Mualem
model, that we explain in Section 4.1.3. Another one is related to the values of τ : here I “ R, so
no projection of τ after each Newton iteration to avoid τ ă srw is required. Then, when we treat
dry zones, we risk to manage a singular Jacobian matrix. In order to avoid this we impose that
krpsrwq “ 10´33 when evaluating J to allow the pressure-gravity motor not to be zero. Finally, to
help Newton’s algorithm recover the good direction when the `8 norm of the residual exceeds 102,
a relaxation is activated with 0.3 as relaxing constant.

3 Numerical treatment of the interface

This section is devoted to the presentation of different strategies to approximate the transmission
conditions (1.4)–(1.5) across the faces σ P EΓ located at an interface between to different rock-
types. We propose four schemes, referred as methods A to D. For the last one, two different
iterative Newton-based solvers are proposed.

3.1 Method A

This method basically consists in treating the interfaces as standard bulk faces, leading to the
formula

FnKσ “ aσλση
n
σ rppKpτ

n
Kq ´ pLpτ

n
Lqq ` %g pzK ´ zLqs, σ “ K|L P EΓ, (3.1)

where the face permeabilities pλσqσPEΓ are given by

λσ “
λKλLdσ

λKdL,σ ` λLdK,σ
, σ “ K|L P EΓ, (3.2)

and the upwind face mobilities turn into

ηnσ “

#

ηKpsKpτ
n
Kqq if ppKpτ

n
Kq ´ pLpτ

n
Lqq ` %g pzK ´ zLq ě 0,

ηLpsLpτ
n
Lqq otherwise.

(3.3)

Therefore, the continuity of the normal flux (1.4) is exactly transposed into the local conservation
condition

FnKσ ` F
n
Lσ “ 0, @σ “ K|L P EΓ, n ě 1. (3.4)

On the other hand, pnK ‰ pnL in general. The pressure continuity (1.5) is recovered asymptotically
as dσ tends to 0 from (3.1). More precisely, assuming that |FnKσ| ď Cmσ, then we deduce from (3.1)
that |pKpτ

n
Kq ´ pLpτ

n
Lq| ď Cdσ, where the constant C has been updated and further depends on

λσ,maxi }ηi ˝ Si}8 and %g.
The scheme (2.9)–(2.11), complemented by the interface fluxes (3.1)–(3.3), has been shown in [4]

to be well-posed in the sense that the corresponding nonlinear system admits a unique solution
pτnKqKPT . Further, the rigorous convergence of the scheme as the mesh size and the time steps
tend to 0 is also established. However, the numerical results presented in [4] (as well as those
presented in what follows) show that the expected first order convergence can be lost in presence
of heterogeneities. Methods B, C, and D have been designed as remedies to this loss of accuracy,
which takes its origin in the poor approximation of the pressure continuity (1.5) by Method A.

3.2 Method B

This method, introduced in [4] consists in adding two thin cells, denoted by Iσ,K and Iσ,L, of
thickness δB ! dσ on both sides of each face σ “ K|L P EΓ located at a rock-type interface, as
depicted in Figure 2. This leads to the adjunction of two additional unknowns τnσ,K and τnσ,L per
interface σ “ K|L P EΓ, that will allow for a more precise approximation of the pressure continuity
condition (1.5). Define pFnKσqσPEΓ

to be used in (2.9) by setting for σ “ K|L P EΓ and n ě 1:
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Figure 2: Method B: introduction of two thin cells on both sides of a face located between two
rock types

FnKσ “aσ,KλKη
n
σ,K

`

pKpτ
n
Kq ´ pKpτ

n
σ,Kq ` %gpzK ´ zσ,Kq

˘

, (3.5)

FnLσ “aσ,LλLη
n
σ,L

`

pLpτ
n
Lq ´ pLpτ

n
σ,Lq ` %gpzL ´ zσ,Lq

˘

, (3.6)

where we have set
aσ,K “

mσ

dK,σ ´ δB{2
, aσ,L “

mσ

dL,σ ´ δB{2
,

where zσ,K and zσ,L are the respective vertical coordinates of

xσ,K “ xK `
dK,σ ´ δB{2

dσ
pxL ´ xKq and xσ,L “ xL `

dL,σ ´ δB{2

dσ
pxK ´ xLq

and

ηnσ,K “

#

ηKpsKpτ
n
Kqq if pKpτ

n
Kq ` %gzK ě pKpτ

n
Kσq ` %gzσ,K ,

ηKpsKpτ
n
σ,Kqq otherwise.

Two equations are required to determine τnσ,K and τnσ,L. These equations are local conservation
laws in the thin cells Iσ,K and Iσ,L. Denote by mσ,K and mσ,L the Lebesgue measure of the thin
cells Iσ,K and Iσ,L respectively (mKσ “ mσδB for Cartesian grids as depicted in Figure 2), then
pτnKσ, τ

n
Lσq are determined by

φK
sKpτ

n
σ,Kq ´ sKpτ

n´1
σ,K q

∆t
mσ,K ` F

n
σ ´ F

n
Kσ “ 0, (3.7)

φL
sLpτ

n
σ,Lq ´ sLpτ

n´1
σ,L q

∆t
mσ,L ´ F

n
σ ´ F

n
Lσ “ 0, (3.8)

where Fnσ is the flux from Iσ,K to Iσ,L defined by

Fnσ “
mσ

δB
λση

n
σ

`

pKpτ
n
σ,Kq ´ pLpτ

n
σ,Lq ` %gpzσ,K ´ zσ,Lq

˘

, (3.9)

with λσ given by (3.2) and

ηnσ “

#

ηKpsKpτ
n
σ,Kqq if pKpτ

n
σ,Kq ` %gzσ,K ě pLpτ

n
σ,Lq ` %gzσ,L,

ηLpsLpτ
n
σ,Lqq otherwise.

(3.10)

Assuming that |Fnσ | ď Cmσ, then we deduce from (3.9) that |pKpτ
n
σ,Kq ´ pLpτ

n
σ,Lq| ď CδB, im-

proving the pressure continuity with respect to Method A since δB ! dσ. On the other hand,
summing (3.7) and (3.8) yields

|FnKσ ` F
n
Lσ| ď C

mσδB
∆t

ÝÑ
δBÑ0

0. (3.11)
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Note that even if (3.11) can be interpreted as a defect in the approximation of (1.4), Method B is
still conservative since we keep track of this defect thanks to the discrete conservation laws (3.7)–
(3.8). The volume mK of the cell K is updated into

mK Ð mK ´
ÿ

σPEKXEΓ

mσ,K (3.12)

in (2.9) for all K having interface edges.

3.3 Method C

This method takes inspiration from [11,12] and consists in adding only one thin cell, Iσ, of thickness
δC ! dσ, which overlaps the rock-type interface as shown in Figure 3. For σ “ K|L P EΓ, we denote
by mσ,K and mσ,L the Lebesgue measures of Iσ,K :“ Iσ XK and Iσ,L :“ Iσ XL respectively. The

Figure 3: Method C: one extra thin cell Iσ overlaps the interface located between two rock types.

system is enriched with only one extra unknown τnσ per face σ P EΓ, in opposition to Method B
where two additional unknowns where needed. The new cell Iσ is shared by two subcells Iσ,K and
Iσ,L corresponding to different lithologies. To enforce one single pressure in the cell, we introduce
a second parametrization and define monotone functions ωσ,K , ωσ,L with ω1σ,K ` ω1σ,L ą 0 such
that

pKpωσ,Kpτqq “ pLpωσ,Lpτqq, @τ. (3.13)

As for the parametrization pp, sq of the graph of S, an infinite number of admissible pωσ,K , ωσ,Lq
satisfying (3.13) can be built. We further investigate two choices.

The first possibility, named with exponent 1, consists in setting

ω1
σ,Kpτq “ τ, ω1

σ,Lpτq “ p´1
L ˝ pKpτq, (3.14)

the orientation of the cell being such that ω1
σ,L is concave (choose K and L such that pb,K ą pb,L or

αK ą αL in the Brooks-Corey and van Genuchten settings described in Section 4.1.3 respectively),
hence so does pL ˝ ω

1
σ,L. As it appears on figures 4 and 5, the derivative of ω1

σ,L might blow up
(the value of κK defined by (2.8) is very large in practice).

Our second proposition, named with exponent 2, is tailored to maintain control on the deriva-
tives of ω2

σ,K and ω2
σ,L. To this end, keeping the same orientation K|L of the interface σ, we

set

ω2
σ,Kpτq “

#

p´1
K ˝ pLpτq if τ ď βL,

τ ` βK ´ βL if τ ě βL.
ω2
σ,Lpτq “

#

τ if τ ď βL,

p´1
L ˝ pKpτ ` βK ´ βLq if τ ě βL.

(3.15)

the parameters βK and βL are uniquely determined by the conditions

pKpβKq “ pLpβLq and p1KpβKq “ p1LpβLq

9



Figure 4: Behaviour of ω1
σ,Kp¨q and ω1

σ,Lp¨q functions using the Brooks and Corey model.

Figure 5: Behaviour of ω1
σ,Kp¨q and ω1

σ,Lp¨q functions using the van Genuchten Mualem model.

Figure 6: Behaviour of ω2
σ,Kp¨q and ω2

σ,Lp¨q functions using the Brooks and Corey model.

10



Figure 7: Behaviour of ω2
σ,Kp¨q and ω2

σ,Lp¨q functions using the van Genuchten Mualem model.

since pK , pL are increasing and concave. This yields 1-Lipschitz continuous functions ω2
σ,K and

ω2
σ,L as depicted on figures 6 and 7.

With a double parametrization pωσ,K , ωσ,LqσPEΓ
at hand, Method C then consists in writing

a discrete conservation law in Iσ. While in Method B, the sub-cells Iσ,K and Iσ,L had different
pressures generating an in-between flux Fnσ (3.9), here the two sub-cells share the same pressure

pnσ “ pKpωσ,Kpτ
n
σ qq “ pLpωσ,Lpτ

n
σ qq, σ “ K|L P EΓ, (3.16)

thanks to (3.13). The discrete volume conservation on Iσ then reads

φK
sKpωσ,Kpτ

n
σ qq ´ sKpωσ,Kpτ

n´1
σ qq

∆t
mσ,K

` φL
sLpωσ,Lpτ

n
σ qq ´ sLpωσ,Lpτ

n´1
σ qq

∆t
mσ,L ´ F

n
Kσ ´ F

n
Lσ “ 0, (3.17)

where the fluxes FnKσ and FnLσ from K to Iσ and from L to Iσ are given by

FnKσ “
mσ

dK,σ
λKη

n
σ,K ppKpτ

n
Kq ´ p

n
σ ` %gpzK ´ zσqq , (3.18)

FnLσ “
mσ

dL,σ
λLη

n
σ,L ppLpτ

n
Lq ´ p

n
σ ` %gpzL ´ zσqq , (3.19)

with

ηnσ,K “

#

ηKpsKpτ
n
Kqq if pKpτ

n
Kq ` %gzK ě pnσ ` %gzσ,

ηKpsKpωσ,Kpτ
n
σ qqq otherwise.

(3.20)

In (3.18)–(3.20), pnσ is given by (3.16), which should be thought as the discrete counterpart to
the pressure continuity (1.5) across the interface. Concerning the continuity of the fluxes (1.4), it
follows from (3.17) that

|FnKσ ` F
n
Lσ| ď C

mσδC
∆t

ÝÑ
δCÑ0

0, (3.21)

meaning that (1.4) is recovered only asymptotically. Nevertheless, with δC small, flux continuity
is captured in an accurate way. Moreover, as for Method B, Method C is locally conservative if
one corrects the cell size mK as prescribed by (3.12).

3.4 Method D

The last method we propose, referred as Method D, consists in enforcing both the pressure con-
tinuity and the flux continuity across the interface, at the price of one edge unknown τnσ on each

11



σ P EΓ on the interface between different rocks. Such an approach has already been proposed for
instance in [10, 11, 16, 21]. Letting δC tend to 0 in Method C (cf. Figure 8, and more precisely in
(3.17)), one recovers the flux continuity

FnKσ ` F
n
Lσ “ 0, σ “ K|L P EΓ, (3.22)

with FnKσ and FnLσ respectively defined by (3.18) and (3.19), whereas pressure continuity is still
ensured by (3.16). We propose then two numerical strategies, later referred as Methods D1 and
D2 to solve the resulting nonlinear system.

Figure 8: Method D: introduction of a face unknown τnσ with no associated volume.

3.4.1 Method D1: Schur complement based elimination of the face unknowns

With the rock-type face unknowns the obtained system is made of #T `#EΓ equations

FpτnT , τnEΓ
q “

ˆ

FT pτ
n
T , τ

n
EΓ
q

FEΓ
pτnT , τ

n
EΓ
q

˙

“ 0 (3.23)

where τnT “ pτnKqKPT , τnEΓ
“ pτnσ qσPEΓ

, and where FT corresponds to the volume conservation
laws (2.9) and FEΓ

to the flux conservation across the interfaces (3.22).
In what follows, we are interested in the resolution of the system (3.23) at a prescribed time step

n. For notation convenience, the superscript n is dropped in this section. Denote by
`

τ `T , τ
`
EΓ

˘

`ě0

a sequence of approximation of pτT , τ EΓ
q given by iterations of Newton’s method. The Jacobian

matrix of F at
`

τ `T , τ
`
EΓ

˘

, ` ě 0 can be split into four blocks:

JFpτ `T , τ `EΓ
q “

„

A` B`

C` D`



where

A` “
BFT

BτT
pτ `T , τ

`
EΓ
q, B` “

BFT

BτnEΓ

pτ `T , τ
`
EΓ
q, C` “

BFEΓ

BτnT
pτ `T , τ

`
EΓ
q, D` “

BFEΓ

BτnEΓ

pτ `T , τ
`
EΓ
q.

Then the matrix D` is diagonal with negative diagonal entries because of the monotonicity of
FnKσ, FnLσ with respect to τnσ that can be deduced from the monotonicity of pK , pL and ωσ,K , ωσ,L.
Therefore, D` can be inverted for free.

A Newton iteration to solve (3.23) then consists in computing an increment ∆`
“

´

∆`
T ,∆

`
EΓ

¯T

which is solution to

JFpτ `T q∆
`
“ ´Fpτ `T , τ `EΓ

q “ ´

ˆ

FT pτ
`
T , τ

`
EΓ
q

FEΓ
pτ `T , τ

`
EΓ
q

˙

“ ´

ˆ

F`
T

F`
EΓ

˙

,

12



or equivalently

pA` ´B`
`

D`
˘´1

C`q∆`
T “ ´F`

T `B`
`

D`
˘´1 F`

EΓ
, (3.24)

and
∆`

EΓ
“ ´pD`q

´1F`
EΓ
` pD`q

´1
C` ∆`

T .

Then the unknowns are updated by τ ``1 “ τ ` `∆`. The linear system (3.24) then consists in
#T equations.

3.4.2 Method D2: face unknowns elimination thanks to a bisection method

We present here an alternative approach to solve the nonlinear system (3.23). The strategy consists
here in computing increments of the cell unknowns via Newton’s method and updating the face
unknowns by solving exactly the flux conservation (3.22) on each interface and at each Newton
iteration ` via the bisection method. The unknowns tτ `σuσPEΓ

are here considered as functions of
the neighbouring cell unknowns τ `K and τ `L for σ “ K|L P EΓ (we still drop the time index n).
Therefore, the dependency of the interface fluxes w.r.t. the cell unknowns expresses as

BFK,σpτ
`
K , τσpτ

`
K , τ

`
Lqq

BτK
“
BFK,σ
BτK

`
BFK,σ
Bτσ

Bτσ
BτK

.

The Jacobian matrix associated to the reduced system then writes

JFpτ `T q “ A` ´B`E` where E` “
Bτ `EΓ

BτT
“
`

D´1
˘`
C`.

The increment of the `th Newton iteration thus solves (3.24) with

FEΓpτ
`
EΓ
q “ 0. (3.25)

We detail now how we solve the flux-conservation subsystem (3.25) knowing
`

τ `K
˘

KPT
. For each

σ P EΓ and for all outer Newton loop iteration `, we build a sequence
`

ϑ`,kσ
˘

kě0
“

`

p`,kσ ` ρgzσ
˘

kě0
approximating the interface hydraulic head at the interface. More precisely, define

ϑ`K “ pKpτ
`
Kq ` ρgzK , ϑ`L “ pLpτ

`
Lq ` ρgzL, σ “ K|L P EΓ,

and

F `K,σpϑσq “
mσ

dK,σ
λKη

`
σ,Kpϑσqpϑ

`
K ´ ϑσq, F `L,σpϑσq “

mσ

dL,σ
λLη

`
σ,Lpϑσqpϑ

`
L ´ ϑσq,

with

η`σ,Kpϑσq “

#

ηK ˝ sK ˝ p
´1
K pϑ

`
K ´ ρgzKq if ϑσ ď ϑ`K ,

ηK ˝ sK ˝ p
´1
K pϑσ ´ ρgzσq otherwise

and a similar definition for η`σ,L, then one readily checks that F `K,σ is decreasing w.r.t. ϑσ, and
that

F `K,σ
`

min
`

ϑ`K , ϑ
`
L

˘˘

ě 0 ě F `K,σ
`

max
`

ϑ`K , ϑ
`
L

˘˘

.

Therefore, the continuous and decreasing function G`σ : RÑ R defined by

G`σpϑσq “
F `K,σpϑσq ` F

`
L,σpϑσq

aσµ´1pλK ` λLqp|ϑ`K | ` |ϑ
`
L|q

vanishes at some ϑ`σ P
“

min
`

ϑ`K , ϑ
`
L

˘

,max
`

ϑ`K , ϑ
`
L

˘‰

, from which one deduces

τ `σ “ ω´1
σ,K ˝ p

´1
K pϑ

`
σ ´ ρgzσq “ ω´1

σ,L ˝ p
´1
L pϑ

`
σ ´ ρgzσq
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with pωσ,K , ωσ,Lq being a double parametrization as introduced in Section 3.3. Then we solve the
nonlinear equation G`σpϑσq “ 0 thanks to the classical bisection method, stopping the iterations

over k when either
ˇ

ˇG`σpϑ
k
σq
ˇ

ˇ ă εbis or
|ϑk0´ϑ

k
1 |

minp|ϑk0 |,|ϑ
k
1 |q
ă γ with εbis “ 10´16 and γ “ 10´15 in our

simulations. We can finally remark that Method D2 does not depend on the choice of the double
parametrization.

4 Numerical results

We now present numerical results obtained for different test cases. In all cases, we consider a
two-dimensional layered domain Ω “ r0m, 5ms ˆ r´3m, 0ms made up of two rock types denoted
by RT0 and RT1 respectively, RT0 being less permeable than RT1. The domain Ω is partitioned
into three connected subdomains: Ω1 “ r1m, 4ms ˆ r´1m, 0ms, Ω2 “ r0m, 5ms ˆ r´3m,´2ms and
Ω3 “ Ω z pΩ1 Y Ω2q, as depicted in Figure 9.

Figure 9: Simulation domain Ω “ r0m, 5ms ˆ r´3m, 0ms.

4.1 Description of the test cases

Both filling and drainage configurations are considered along with the two classical Brooks-Corey
and van Genuchten-Mualem hydraulic models. These analytical models are first used in a set-
ting where the pressure-saturation relationship and its inverse have moderate derivatives (non-
steep cases). We then only consider the Brooks-Corey model and coefficients where the pressure-
saturation dependence has sharp variations (steep cases).

4.1.1 Filling case

This test case has already been considered in [18,30,33,39]. The rock-type repartition is reported
in Figure 10. Starting from an initially dry domain Ω, where the initial capillary pressure is set
to ´47.088 ¨ 105Pa, water flows from a portion ΓN “ tpx, yq |x P r1m, 4ms, y “ 0mu of the top
boundary at a constant rate of 0.5m/day. A no-flow boundary condition is applied elsewhere. The
simulation stops after 1 day.

Water flows according to the following dynamics. It starts invading the dry porous space in
Ω1. When it reaches the interface with Ω3, capillary forces creates a suction force on water from
Ω1 to Ω3. But, on the other hand, the low permeability value in RT1 is set against this water flow
through Ω3. The simulation ends before water reaches the bottom part corresponding to Ω2.

4.1.2 Drainage case

This test case is designed as a two-dimensional extension of a one-dimensional test case proposed
by [38] and addressed in [18,39]. We simulate a vertical drainage starting from saturated initial and
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Figure 10: Boundary condition for the filling case

boundary conditions during 105 ¨ 104 s. The initial pressure is hydro-static, that is p0pzq “ ´ρgz.
A Dirichlet boundary condition pD “ 0 Pa is imposed on the bottom boundary, ΓD “ tpx, yq |x P
r0m, 5ms, y “ ´3mu. The rock-type distribution of Ω is shown in Figure 11 along with the bottom
boundary condition.

Figure 11: Boundary condition for the drainage test

Note that rock types RT0 and RT1 are here reversed compared to the previous case. Thus, at
the top interface between Ω1 and Ω3, capillarity acts in opposition to gravity and to the evolution
of the system towards a dryer configuration. The interface between Ω2 and Ω3 acts in the opposite
way: both capillarity and gravity contribute to the drainage of the RT0 subdomain.

4.1.3 Hydraulic models

For two-phase problems, water saturation and capillary pressure are linked through the relation
s “ Sppq. Here S : RÑ r0, 1s is nondecreasing. It satisfies Sppq “ 1´ srn if p ě pb and Sppq Ñ srw

as p Ñ ´8, with srw (resp. srn) the residual wetting (resp. non-wetting) saturation. In the
following, to model the two-phase flow characteristics for both rock types,
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• either the Brooks-Corey [15] model:

s “ Sppq “

$

&

%

srw ` p1´ srn ´ srwq

´

p
pb

¯´n

if p ď pb,

1´ srn if p ą pb,

(4.1)

krpsq “ s
3` 2

n

eff , seff “
s´ srw

1´ srn ´ srw
;

• or the van Genuchten-Mualem [47] model:

s “ Sppq “

$

&

%

srw ` p1´ srn ´ srwq

”

1`
ˇ

ˇ

ˇ

α
ρgp

ˇ

ˇ

ˇ

nı´m

if p ď 0,

1´ srn if p ą 0,

(4.2)

krpsq “ s
1
2

efft1´ r1´ s
1
m

eff s
mu2, seff “

s´ srw

1´ srn ´ srw
, m “ 1´

1

n

are used. In both models, we have denoted by krp¨q the relative permeability which, with the water
viscosity µ “ 10´3 Pa ¨ s, defines the water mobility thanks to ηp¨q “ krp¨q{µ. The parameters used
for both rock types are given in Table 1 for cases using the Brooks-Corey model and in Table 2 for
the other ones. These parameters have been chosen in such a way that water is more likely to be in
RT1 than in RT0: indeed, at a fixed pressure, the water saturation is higher in RT1 than in RT0.
This can be observed on the plots of the capillary-pressure functions depicted in Figures 12–14.
On these figures, the relative permeability functions are also shown. Let us, in particular, remark
the non-Lipschitz character of the relative permeability in the van Genuchten-Mualem case. Thus,
in order to avoid infinite values for the derivative of krpsq when sÑ 1´ srn, we approximate it for

s P rslim, 1´ srns using a second degree polynomial rkrpsq. This polynomial satisfies the following

conditions: krpslimq “ rkrpslimq, rkr
1
pslimq “ k1rpslimq and rkrp1 ´ srnq “ 1 where slim is chosen so

that seff “ 0.998.

1´ srn srw pbrPas n λrm2s φ
RT0 1.0 0.1 ´1.4708 ¨ 103 3.0 10´11 0.35
RT1 1.0 0.2 ´3.4301 ¨ 103 1.5 10´13 0.35

Table 1: Parameters used for the Brooks-Corey model

1´ srn srw n λ rm2s α rm´1s φ
RT0 (Sand) 1.0 0.0782 2.239 6.3812 ¨ 10´12 2.8 0.3658
RT1 (Clay) 1.0 0.2262 1.3954 1.5461 ¨ 10´13 1.04 0.4686

Table 2: Parameters used for the van Genuchten-Mualem model

4.2 Comparison of the results in non-steep cases

We now analyze the results obtained on the test cases which were previously introduced. We use
uniform time discretizations. The time step ∆t depends on the test case and is reported in Table
5 together with the others numerical parameters used for these simulations. The detailed results
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Figure 12: Capillary pressure and relative permeability curves for the Brooks-Corey model

Figure 13: Parametrized saturation and pressure functions using the Brooks and Corey model and
parameters of Table 1. The green dot indicates the value for τ “ τ˚ and the magenta one τ “ τs.

Figure 14: Capillary pressure and relative permeability curves for the van Genuchten-Mualem
model
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Figure 15: Parametrized saturation and pressure functions using the van Genuchten Mualem model
using parameters of Table 2. The green dot indicate the value for τ “ τ˚ and the magenta one
τ “ τs.

for the different cases, methods and meshes along with figures of the solutions are reported in
Appendix A.

In Table 3 we present a brief classification of the proposed methods based on both robustness
(R) and accuracy (A) criteria. For each criterion, the colour choice corresponds to the following
glossary: green for good, orange for average, red for bad. Regarding the robustness, a non-
convergent method is classified as red; orange is used if a method faces many times difficulties
during Newton’s resolution (maximal number of iterations reached, a much larger number of total
iterations in comparison to other methods...); the green label is used in other cases. Thus, a
method, having a relative error in the same order as the best performing one, is tagged as green;
if an error has one (resp. several ) order(s) of magnitude more than the best performing one, the
label of the corresponding method is taken as orange (resp. red).

Let us discuss each test case in details, starting with the filling test case simulated with the
Brooks and Corey model. Table 6 shows that Method A has the smallest saturation relative error
with the coarsest mesh. Subsequent refinements then enable to reduce the error related to methods
B,C,D at a higher convergence rate, leading to errors on the finest grid that are smaller than the
one obtained with the classical scheme A. All the methods face difficulties in the Brooks-Corey
filling case for the 3rd mesh and the first time step. This is due to our non-optimal choice of a
uniform time discretization. A simple time step adaptation strategy similar to the one used in the
steep case would fix this issue.

Keeping the Brooks and Corey model, if we now analyze the results reported in Table 7 for
the drainage case, we notice that methods B, C and D always have a smaller error than method
A that converges again at a slower rate. Concerning Method C, it behaves as Method A in terms
of accuracy and is fairly cheaper in terms of iterations with respect to this one.

We now consider the results obtained with the van Genuchten Mualem model. Table 8 summa-
rizes the results obtained with the filling case. We can notice that all methods have approximately
the same errors and convergence rates. Regarding Newton’s cost, the conclusions are similar to
the ones made for the Brooks and Corey tests.

In the drainage case (see Table 9), methods B and C turn out to be more precise and to converge
faster that Method A. On the other hand, Methods B and C require more Newton iterations than
Method A and D that almost have the same iterations’ cost. Moreover we observe that all methods
require an important maximum number of iterations to converge which is greater than 50 (reaching
the number of 100 iteration for the finer meshes.)

Throughout all these non-steep tests we can also notice that the number of Newton iterations
to reach convergence with method B is larger than for the other ones.

Let us now make one last comment on the results obtained using the two proposed double
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Method A Method B Method C Method D1 Method D2

R A R A R A R A R A

Brooks and Corey

Filling case

Brooks and Corey

Drainage case

van Genuchten Mualem

Filling case

van Genuchten Mualem

Drainage case

Table 3: Summary of methods’ robustness (R) and accuracy (A) classification. Method D1 and
Method D2 denote Method D with Schur complement and bisection method respectively. Color
legend: green= good, orange= passing, red=bad.

parametrizations (see Eq. (3.14)-(3.15)) in Method D: they provide the same solutions with the
same accuracy in all tests. They only differ in terms of Newton iterations which slightly vary from
one parametrization to the other one according to the test case.

4.3 Tests with Brooks-Corey model and steep capillary-pressure curves

The aim of this section is to evaluate the robustness of Newton’s algorithm when used with the
four previous methods and steep capillary-pressure curves. We use the same filling and drainage
cases with Brooks-Corey model as in the previous section. We here only change the value of the
parameter n which is now equal to 120 for rock-type RT0 and 60 for RT1, making the problem
(1.1)–(1.8) close to a strongly-degenerate parabolic case. The corresponding capillary pressure
curves are represented in Figure 16. The time evolution for these tests is adaptive:

Figure 16: Steep cases: capillary-pressure and relative permeability curves for the Brooks-Corey
model

• Filling case
Minimal, maximal and initial time steps are such that ∆tmin “ 10´6s, ∆tmax “ 104s,
∆t0 “ 10´6s and, for n ě 0,

∆tn`1
“ minp∆tmax, 1.2∆tnq
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in case of Newton’s convergence or

∆tn`1
“ maxp∆tmin,∆t

n
{2q

in the absence of convergence. In the latter case, for ∆t “ ∆tmin, the simulation stops.
Nmax “ 30 is taken as maximal number of Newton’s iterations.

• Drainage case
Minimal, maximal and initial time steps are such that ∆tmin “ 1s, ∆tmax “ 105s, ∆t0 “ 1s
and, for n ě 0,

∆tn`1
“

#

2.5∆tn if ∆t ă 500s,

minp∆tmax, 1.2∆tnq otherwise,

in case of a successful time step, or

∆tn`1
“

#

maxp∆tmin,∆t
n
{5q if ∆t ă 500s,

∆tn{2 otherwise,

in the absence of convergence with Nmax “ 30 iterations. If Newton does not converge for
∆t “ ∆tmin the simulation stops.

4.3.1 Comparison of the results

Table 4 shows that only methods A, B, C2, D2
1 and D2 converge for all test cases. Here and

hereafter, the exponents 1 or 2 refer to the choice of the double parametrization presented in
Section 3.3. Figure 23 reports on the evolution of the cumulated number of Newton iterations for
the filling case with the 50 ˆ 30 cells mesh. Apart from method D which faces difficulties at the
beginning, all curves evolve in the same way. These conclusions remain valid for the 400ˆ240 cells
mesh with an exception for method B whose number of iterations increased as it can be observed
in Figure 24.
Figures 26 and 27 show the results obtained on the drainage case with meshes of resolutions 50ˆ30
and 400ˆ240 respectively. In both cases, the methods C1 and D1

1 face more difficulties to converge
than the other ones around time t “ 348500s. It corresponds to the moment at which the cells line
in Ω2 below the interface between Ω3 and Ω2 starts to empty. Note that the number of Newton
iterations also increases for method B at that particular time on the finer mesh too. Method C2

also encounters difficulties on the coarser mesh but at a earlier time (when the cells line in Ω1 below
the interface between Ω1 and Ω3 starts to empty) and to a lesser extent. On the whole, the results
on this last case show a higher degree of robustness for methods A and the second proposition of
the double parameterisation which has been designed with the aim of controlling and bounding its
derivatives, as it can be seen in Figures 17.

4.4 Overall methods’ evaluation

Using this glossary and the results obtained in the steep and non-steep cases, we proceed, in the
following of this section, to a general evaluation of the five studied methods.

Let us start with Method A. In this approach, rock-type interface faces are treated like classical
inner faces and the pressure continuity on these interfaces is not enforced. Nevertheless, if the
simulation is performed on a sufficiently refined mesh, a good approximation of this condition can
be obtained. In the previous tests, and in particular in the steep ones (see Section 4.3), this method
turns out to be very robust. On fine meshes its accuracy is, in general, close to the ones of other
methods. In the filling case with the Brooks and Corey model (see Table 6), this method is even
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Figure 17: Comparison between ω11σ,Kp¨q, ω
11
σ,Lp¨q (above) and ω12σ,Kp¨q, ω

12
σ,Lp¨q (below) when using

steep capillary pressure curves.

Method A Method B Method C Method D1 Method D2

Mesh dp1 dp2 dp1 dp2 dp1 dp2

Filling case
50ˆ 30

400ˆ 240

Drainage case
50ˆ 30

400ˆ 240

Table 4: Summary of methods’ robustness classification for steep tests. Method D1 and Method
D2 denote Method D with Schur complement and bisection method respectively. Color legend:
green= good, orange= passing, red=not converge.
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the most accurate one on coarse meshes. A noticeable drawback of this method is the loss of the
linear convergence rate when used with the Brooks and Corey model (see Tables 6–7).

Method B is the first approach we propose with a specific treatment for the rock-type interfaces,
which only entails moderate changes in terms of implementation compared to method A. We here
just add two thin cells around the rock-type interfaces and neglect, for these new cells, the fluxes
through the faces with small measures. It features a rather good robustness since it also converges
in the steep cases (see Section 4.3). For non-steep cases, it always provides a rather accurate
solution and good robustness. Compared to method A, the linear convergence rate is recovered at
the price of about 10% extra Newton iterations.

Method C is the first method which strongly enforces the pressure continuity on the rock-type
interfaces. Here, the interfaces are thickened in thin cells and the pressure continuity is ensured by
introducing a second parametrization (3.13) for which we propose two different forms detailed in
Equations (3.14)-(3.15). This parametrization should be calculated beforehand and depends on the
chosen petro-physical model. Thus, this method involves more changes for its implementation with
respect to the previous one. In non-steep simulations, the two proposed double parametrizations
provide the same solutions with the same accuracy with just a slight difference in the required
number of iterations. Moreover it behaves as Method B in all non-steep simulations in terms
of error. In the steep tests a remarkable difference of performance between the use of the two
proposed parametrizations for the pressure continuity at interfaces arises: the first proposition of
parametrization converges only in drainage case while the second one always converges showing,
generally, a competitive robustness.

The last studied method Method D guarantees the flux conservation between all cells of the
initial meshes and pressure continuity at rock-type interfaces. As for Method C, it also uses a
double parametrization (3.13). In the non-steep cases, the application of the two proposed second
parametrizations, as in Method C, provides the same solutions with the same accuracy with just a
slight difference in the required number of iterations, as already remarked in Section 4.2. Moreover,
Methods D1 and D2 show in all tests a good robustness and the same rather good accuracy: in
drainage cases their accuracy is fairly better than Method A when using the Brooks and Corey
model and, when employing the van Genuchten Mualem model, they show a relative error almost
halved with respect to the one of Method A. In filling cases they have almost the same accuracy
as Method A. Methods D1 and D2 always recover a first-order convergence except for the drainage
test case with the van Genuchten Mualem model in which the convergence rate is slightly degraded.
The fact that Methods D1 and D2 show the same accuracy is not surprising: the only difference
between the two methods is how we solve the system that, for its part, does not change. In steep
tests both double parametrizations employed in Method D1 and D2 make the simulation converge,
apart for the filling test case in which Method D1

1 fails, just showing in some cases a difference of
behaviour in terms of robustness as detailed in Section 4.3.1.

Finally we can conclude that if we want to perform simulation for test cases with steep pressure
curves, we can choose between Method A or B or, if one does not mind making larger code changes,
methods C2, D2

1 or D2 can also be used. If it is not the case, for coarse meshes, Method A ensures
a good robustness and an accurate solution without any particular treatment for interfaces. For
more refined meshes, even if its accuracy is slightly lower or comparable -it depends on the specific
test case- to that of Method D, Method B is easier to implement and the least intrusive with
respect to methods introducing a treatment for interfaces. So, if the choice is based on an accuracy
criterion actually Method B, C and D are almost equivalent; in terms of ease of implementation
the best choice is Method B.
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A Figures and data related to the non-steep cases

∆t τ˚ ε εbis γ δB δC
Filling - Brooks and Corey 500 10´10 10´12 10´16 10´15 10´6 2 ¨ 10´6

Filling - van Genuchten Mualem 500 10´8 10´12 10´16 10´15 10´6 2 ¨ 10´6

Drainage - Brooks and Corey 1000 10´10 10´12 10´16 10´15 10´6 2 ¨ 10´6

Drainage - van Genuchten Mualem 1000 10´8 10´12 10´16 10´15 10´6 2 ¨ 10´6

Table 5: Numerical parameters used in the examples

A.1 Filling case using Brooks and Corey model

Figure 18: Evolution of the saturation profile for t P t0s, 21.5 ¨ 103s, 41.5 ¨ 103s, 86.4 ¨ 103su for the
non-steep filling case, using Brooks and Corey model, Method B and the 50ˆ 30 cells mesh.
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Method A 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
9.60719e-2 8.08028e-2 6.41616e-2 5.18869e-2

Rate of convergence ´ 0.25 0.333 0.306
7 total iterations 647 777 1074 1236
7 avg iterations 3 4 6 7
7 max iterations 18 21 168 32
Method B 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.43731e-1 1.0421e-1 6.3325e-2 2.76736e-2

Rate of convergence ´ 0.464 0.719 1.194
7 total iterations 835 959 1279 1428
7 avg iterations 4 5 7 8
7 max iterations 19 21 168 38
Method C 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.46706e-1 1.06227e-1 6.45985e-2 2.84733e-2

Rate of convergence ´ 0.465 0.7156 1.182
7 total iterations 690 796p794q 1106p1102q 1253p1247q
7 avg iterations 3 4 6 7
7 max iterations 20p18q 21 168 29
Method D1 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.7701e-1 1.26129e-1 7.75469e-2 3.66345e-2

Rate of convergence ´ 0.489 0.702 1.082
7 total iterations 620p634q 721p734q 1001p1018q 1140p1146q
7 avg iterations 3 4 5 6
7 max iterations 17 20 155 32
Method D2 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.7701e-1 1.26129e-1 7.75469e-2 3.66345e-2

Rate of convergence ´ 0.489 0.702 1.082
7 total iterations 590 714 999 1140
7 avg iterations 3 4 5 6
7 max iterations 17 20 155 32
7 avg it. bisection per face 16 15 15 14

Table 6: Results for the non-steep filling case using Brooks and Corey model. For methods C
and D1, we specify within parentheses the number of iterations corresponding to the second choice
of double parametrization when it differs from the one obtained with the first choice, which is
reported without parentheses.
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A.2 Drainage case using Brooks and Corey model

Figure 19: Evolution of the saturation profile for t P t0s, 35 ¨ 104s, 70 ¨ 104s, 105 ¨ 104su for the
non-steep drainage case, using Brooks and Corey model, Method B and the 50ˆ 30 cells mesh.
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Method A 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
4.48867e-2 2.60531e-2 1.64213e-2 1.110698e-2

Rate of convergence ´ 0.785 0.666 0.564
7 total iterations 2598 2848 3258 3819
7 avg iterations 2 2 3 3
7 max iterations 21 24 29 32
Method B 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.80469e-2 9.9613e-3 4.83626e-3 1.77811e-3

Rate of convergence ´ 0.857 1.042 1.443
7 total iterations 2845 3056 3448 3918
7 avg iterations 2 2 3 3
7 max iterations 20 24 20 32
Method C 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.81634e-2 1.00638e-2 4.92295e-3 1.84945e-3

Rate of convergence ´ 0.851 1.032 1.412
7 total iterations 2659p2653q 2893p2887q 3304p3298q 3804p3798q
7 avg iterations 2 2 3 3
7 max iterations 20p21q 24 28p29q 32
Method D1 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
3.03634e-2 1.62917e-2 8.64114e-3 4.18359e-3

Rate of convergence ´ 0.898 0.915 1.046
7 total iterations 2659p2665q 2919p2905q 3329p3324q 3863p3861q
7 avg iterations 2 2 3 3
7 max iterations 21p20q 24 29p30q 32
Method D2 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
3.03634e-2 1.62917e-2 8.64114e-3 4.18359e-3

Rate of convergence ´ 0.898 0.915 1.046
7 total iterations 2614 2894 3320 3856
7 avg iterations 2 2 3 3
7 max iterations 21 24 29 32
7 avg it. bisection per face 35 34 33 32

Table 7: Results for the non-steep drainage case using Brooks and Corey model. For methods C
and D1, we specify within parentheses the number of iterations corresponding to the second choice
of double parametrization when it differs from the one obtained with the first choice, which is
reported without parentheses.
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A.3 Filling case using van Genuchten Mualem model

Figure 20: Evolution of the saturation profile for t P t0s, 21.5 ¨ 103s, 41.5 ¨ 103s, 86.4 ¨ 103su for the
non-steep filling case using Van Genuchten model, Method B and the 50ˆ 30 cells mesh.
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Method A 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.05534e-1 7.48124e-2 4.55216e-2 2.1125e-2

Rate of convergence ´ 0.496 0.717 1.108
7 total iterations 575 667 782 930
7 avg iterations 3 3 4 5
7 max iterations 9 12 15 18
Method B 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.23187e-1 8.67715e-2 5.30592e-2 2.40712e-2

Rate of convergence ´ 0.506 0.71 1.14
7 total iterations 836 900 959 1076
7 avg iterations 4 5 5 6
7 max iterations 9 12 15 18
Method C 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.23321e-1 8.68681e-2 5.31222e-2 2.41106e-2

Rate of convergence ´ 0.509 0.706 1.14
7 total iterations 571p573q 678p675q 779p800q 934p960q
7 avg iterations 3 3 4 5
7 max iterations 9 12 15 18
Method D1 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.50856e-1 1.0295e-1 6.20923e-2 2.91945e-2

Rate of convergence ´ 0.551 0.729 1.089
7 total iterations 579p581q 677p676q 785p814q 933p985q
7 avg iterations 3 3 4 5
7 max iterations 9 12 15 18
Method D2 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.50856e-1 1.0295e-1 6.20923e-2 2.91945e-2

Rate of convergence ´ 0.551 0.729 1.089
7 total iterations 579 674 783 933
7 avg iterations 3 3 4 5
7 max iterations 9 12 15 18
7 avg it. bisection per face 15 13 12 11

Table 8: Results for the non-steep filling case using van Genuchten Mualem model.For methods
C and D1, we specify within parentheses the number of iterations corresponding to the second
choice of double parametrization when it differs from the one obtained with the first choice, which
is reported without parentheses.
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A.4 Drainage case using van Genuchten Mualem model

Figure 21: Evolution of the saturation profile for t P t0s, 35 ¨ 104s, 70 ¨ 104s, 105 ¨ 104su for the
non-steep drainage case using Van Genuchten model, Method B and the 50ˆ 30 cells mesh.
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Method A 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
1.50494e-2 7.3434e-3 3.57016e-3 1.66693e-3

Rate of convergence ´ 1.035 1.04 1.099
7 total iterations 2333 2330 2325 2326
7 avg iterations 2 2 2 2
7 max iterations 65 67 67 72
Method B 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
6.52099e-3 3.11282e-3 1.35196e-3 4.53001e-4

Rate of convergence ´ 1.064 1.203 1.577
7 total iterations 2949 3006 3028 3236
7 avg iterations 2 2 2 3
7 max iterations 97 96 96 100
Method C 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
6.52104e-3 3.11287e-3 1.35201e-3 4.53048e-4

Rate of convergence ´ 1.067 1.203 1.577
7 total iterations 2855 2818p2817q 2904p2902q 2970p2962q
7 avg iterations 2 2 2 2
7 max iterations 99 98p97q 97p95q 101p93q
Method D1 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
6.58861e-3 3.56638e-3 1.87745e-3 1.01069e-3

Rate of convergence ´ 0.886 0.926 0.893
7 total iterations 2349 2351p2350q 2350 2367
7 avg iterations 2 2 2 2
7 max iterations 76 77p76q 80 84
Method D2 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
||s´sref ||L2pr0,T s,Ωq

||sref ||L2pr0,T s,Ωq
6.58861e-3 3.56638e-3 1.87745e-3 1.01069e-3

Rate of convergence ´ 0.886 0.923 0.893
7 total iterations 2348 2345 2350 2367
7 avg iterations 2 2 2 2
7 max iterations 76 76 80 84
7 avg it. bisection per face 34 33 32 31

Table 9: Results for the non-steep drainage case using van Genuchten Mualem model. For methods
C and D1, we specify within parentheses the number of iterations corresponding to the second
choice of double parametrization when it differs from the one obtained with the first choice, which
is reported without parentheses.
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B Figures and data related to the steep cases

B.1 Filling case

Figure 22: Evolution of the saturation profile for t P t0s, 5422.843s, 37844.5s, 86.4 ¨ 103su for the
steep filling case using Brooks and Corey model, Method B and the 50ˆ 30 cells mesh
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Figure 23: Steep filling case: Evolution of the cumulated number of Newton’s iterations for the
50ˆ 30 cells mesh
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Figure 24: Steep filling case: Evolution of the cumulated number of Newton’s iterations for the
400ˆ 240 cells mesh

B.2 Drainage case

Figure 25: Evolution of the saturation profile for t P t0s, 81593.8s, 308776s, 105 ¨104su for the steep
drainage case using Brooks and Corey model, Method B and the 50ˆ 30 cells mesh
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Figure 26: Steep drainage case: Evolution of the cumulated number of Newton’s iterations for the
50ˆ 30 cells mesh
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Figure 27: Steep drainage case: Evolution of the cumulated number of Newton’s iterations for the
400ˆ 240 cells mesh
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