
HAL Id: hal-03258883
https://hal.science/hal-03258883

Submitted on 12 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Completion in Operads via Essential Syzygies
Philippe Malbos, Isaac Ren

To cite this version:
Philippe Malbos, Isaac Ren. Completion in Operads via Essential Syzygies. 46th Interna-
tional Symposium on Symbolic and Algebraic Computation, Jul 2021, Saint Petersburg, Russia.
�10.1145/3452143.3465552�. �hal-03258883�

https://hal.science/hal-03258883
https://hal.archives-ouvertes.fr


Completion in Operads via Essential Syzygies
Philippe Malbos

Univ Lyon, Université Claude Bernard Lyon 1

CNRS UMR 5208, Institut Camille Jordan

France

Isaac Ren

École Normale Supérieure de Lyon

France

Abstract
We introduce an improved Gröbner basis completion algorithm

for operads. To this end, we define operadic rewriting systems as

a machinery to rewrite in operads, whose rewriting rules do not

necessarily depend on an ambient monomial order. A Gröbner basis

of an operadic ideal can be seen as a confluent and terminating

operadic rewriting system; thus, the completion of a Gröbner basis

is equivalent to the completion of a rewriting system. We improve

the completion algorithm by filtering out redundant S-polynomials

and testing only essential ones. Finally, we show how the notion of

essential S-polynomials can be used to compute Gröbner bases for

syzygy bimodules. This work is motivated by the computation of

minimal models of associative algebras and symmetric operads. In

this direction, we show how our completion algorithm extends to

the case of shuffle operads.

CCS Concepts
• Computing methodologies→ Combinatorial algorithms;
Algebraic algorithms.

Keywords
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1 Introduction
The fundamental theorem of any algebraic rewriting machinery

is the critical branching theorem, or Buchberger criterion, which

characterizes confluence by algebraic obstructions described as

critical branchings or critical pairs in rewriting theory [14, 20], and

as 𝑆-polynomials in Gröbner basis theory [4, 19]. This theorem is

the core of completion algorithms of a rewriting system, which re-

solve the obstructions in order to reach confluence. The efficiency

of completion algorithms depends on several aspects: 1/ the al-

gebraic structure on which we rewrite (strings, commutative or

non-commutative polynomials, planar trees...), 2/ the strategy used

to orient the rules added during completion, 3/ the choice of which

critical branchings to resolve and the prediction non-essential ones,

4/ the order in which we resolve these critical branchings. For in-

stance, Buchberger’s algorithm consists in exploring all branchings,

but several methods have been introduced to improve completion

by reducing the set to be explored via syzygies of generating poly-

nomials, which describe relations between obstructions [9, 15].

The objective of this work is twofold. Firstly, we introduce a

rewriting machinery for non-symmetric operads that generalizes

the Gröbner basis approach of [3, 8] by removing the constraint of a

monomial order for the orientation of the rewriting rules. Secondly,

we define a completion algorithm for rewriting in an operadic con-

text by restricting the examination of critical branchings to essential

ones. The essential branchings are defined by considering relations

between critical branchings with respect to a monomial order on

contexts. We show that the relations between these branchings

correspond to syzygies of the defining rewriting rules.

This work is aimed at developing rewriting methods for cal-

culating with operads. Operads provide an algebraic language to

describe types of algebras in topology and algebra [16, 18]. They

are usually defined with symmetric actions, which are incompatible

with rewriting, but shuffle operads, introduced by Dotsenko and

Khoroshkin in [7], allow for rewriting methods all while preserv-

ing the information of symmetries. In particular, these rewriting

methods apply to the computation of explicit free resolutions of

operads [7, 17]. The problem of finding a procedure that computes

a minimal model for a given operad is still open. In the rewriting

approach, this calls for a notion of minimal branchings in all di-

mensions of the resolution. In this article, we present our algorithm

in the case of non-symmetric operads, but the shuffle case can be

treated in the same way. Moreover, our notion of essential branch-

ings can also be used to ‘go up in dimension’, and we expect to

deduce an algorithm calculating minimal resolutions of operads.

The paper is structured as follows. In Section 2, we define the

notions of rewriting systems and Gröbner bases for non-symmetric

operads. We introduce the notion of essential branchings, and we

give an algorithm to compute essential branchings with respect to a

monomial order on contexts. In Section 3, we show the main result

of this paper, Theorem 3.3, which characterizes the confluence of a

terminating operadic rewriting system in terms of essential branch-

ings. From this result, we deduce a completion algorithm, which

transforms terminating rewriting systems into confluent ones by

resolving essential branchings. In Section 4, we show that essen-

tial syzygies generate the bimodule of all syzygies of a convergent

operadic rewriting system. As a conclusion, in Section 5, we give

an alternative definition of essential branchings, allowing us to

define essential branchings involving 𝑛 > 2 rewriting rules. We

also explain how to adapt our constructions to the cases of algebras

over operads and shuffle operads.

2 Operadic rewriting systems
In this section, we introduce rewriting systems for non-symmetric

operads, which we relate to the notion of Gröbner bases for op-

erads. We define the notion of essential branchings as ’minimal’

obstructions to local confluence, and an algorithm to compute the

essential branchings of an operadic rewriting system.

Operads. A collection is a sequence𝑉 = (𝑉 (𝑛))𝑛∈N of spaces (over

a field k) indexed by arities 𝑛 ⩾ 0. We denote by ar(𝑥) the arity of

an element of 𝑉 . A (non-symmetric) operad is a collection 𝑃 with

an identity element Y in 𝑃 (1), equipped with composition maps

◦ : 𝑃 (𝑘) ⊗ 𝑃 (𝑛1) ⊗ . . . ⊗ 𝑃 (𝑛𝑘 ) → 𝑃 (𝑛1 + . . . + 𝑛𝑘 )



sending (𝑥,𝑦1, . . . , 𝑦𝑘 ) to 𝑥 ◦ (𝑦1, . . . , 𝑦𝑘 ) and satisfying identity and

associativity conditions:

i) 𝑥 ◦ (Y, . . . , Y) = 𝑥 = Y ◦ 𝑥 ,
ii) 𝑥 ◦ (𝑦1 ◦ (𝑧1

1
, . . . , 𝑧1

𝑘1
), . . . , 𝑦 𝑗 ◦ (𝑧 𝑗

1
, . . . , 𝑧

𝑗

𝑘 𝑗
))

= (𝑥 ◦ (𝑦1, . . . , 𝑦 𝑗 )) ◦ (𝑧1
1
, . . . , 𝑧1

𝑘1
, . . . , 𝑧

𝑗

1
, . . . , 𝑧

𝑗

𝑘 𝑗
))

For 1 ⩽ 𝑖 ⩽ 𝑘 , 𝑥 ∈ 𝑃 (𝑘), and 𝑦 ∈ 𝑃 (𝑛), denote by 𝑥 ◦𝑖 𝑦 :=

𝑥 ◦ (Y, . . . , Y, 𝑦
𝑖

, Y, . . . , Y) an elementary composition of 𝑥 and 𝑦.

The set of (tree) monomials T (Σ) is the term algebra on a graded

set Σ = (Σ𝑛)𝑛⩾0. Monomials will be written using the Backus-Naur

form

T (Σ) ::= {Y}
�� (Σ(𝑘) | T (Σ) (𝑛1) . . . T (Σ) (𝑛𝑘 )).

We denote by ®𝑣 the list of monomials 𝑣1, . . . , 𝑣𝑘 . A monomial can

be represented by a planar tree with inputs: for instance,

𝑤 = (𝑥 | Y 𝑦 (𝑧 | 𝑢 𝑣)) =

𝑥

1 𝑦

2

𝑧

𝑢

3 4

𝑣

5 6

is a monomial where ar(𝑥) = 3, ar(𝑦) = 1, and ar(𝑧) = ar(𝑢) =
ar(𝑣) = 2. The size of a monomial 𝑢 is the number of inner vertices.

For instance, size(𝑤) = 5.

In this work, we rewrite in free operads. We denote by F (Σ) the
free operad over Σ, where, for 𝑛 > 0, F (Σ) (𝑛) is the vector space
spanned by monomials of arity 𝑛, whose elements are called (ho-

mogeneous) polynomials. The support of 𝑓 =
∑
𝑖∈𝐼 _𝑖𝑢𝑖 is the set of

monomials Supp(𝑓 ) := {𝑢𝑖 | 𝑖 ∈ 𝐼 } that appear in its decomposition.

The elementary compositions of monomials extend to polynomials

by multilinearity.

A (one-hole) monomial context of F (Σ) of inner arity 𝑘 is a term

𝐶 := 𝑤 ◦𝑖 (□𝑘 | ®𝑤) of T (Σ∪ {□𝑘 }), where □𝑘 is a symbol of arity 𝑘

that appears exactly once in 𝐶 . For a polynomial 𝑓 in F (Σ) (𝑘), we
denote by𝐶 [𝑓 ] the polynomial𝑤 ◦𝑖 (𝑓 | ®𝑤). A (one-hole) context of

F (Σ) of (inner) arity𝑘 is a linear combination of one-hole monomial

context of inner arity 𝑘 . Similarly, we define a two-hole context

of F (Σ) inner arities (𝑘, ℓ) as a linear combination of terms of

T (Σ∪ {□𝑘 } ∪ {□ℓ }) with exactly one occurence of both □𝑘 and □ℓ .
When the arity of 𝐷 (as a monomial) is equal to the inner arity of𝐶 ,

we can compose the two contexts, which we denote by𝐶𝐷 . Finally,

for monomials 𝑢, 𝑣 , we write 𝑢 ⊆ 𝑣 when there exists a monomial

context 𝐶 such that 𝑣 = 𝐶 [𝑢].
An F (Σ)-bimodule 𝑀 is a collection𝑀 equipped with an action

of the collection of contexts ofF (Σ) satisfying compatibility axioms

with respect to the composition of F (Σ). An ideal of F (Σ) is an
F (Σ)-bimodule contained in F (Σ). Given a family of polynomials

𝐹 = {𝑓1, . . . , 𝑓𝑠 } ⊆ F (Σ), we denote by 𝐼 (𝐹 ) the ideal generated by

𝐹 and by F (Σ)⟨𝐹 ⟩ the free F (Σ)-bimodule generated by 𝐹 . The

F (Σ)-bimodule of syzygies of 𝐹 , denoted by S(𝐹 ), is the kernel

of the bimodule morphism F (Σ)⟨𝐹 ⟩ → F (Σ). Thus, a syzygy

corresponds to a relation

𝐶1 [𝑓1] + . . . +𝐶𝑠 [𝑓𝑠 ] = 0,

where the 𝐶𝑖 are polynomial contexts of F (Σ).
Operadic rewriting systems. An operadic rewriting system, or

ORS, is a data 𝑋 = (Σ, 𝑅) made of a graded set Σ and a (binary)

relation 𝑅 ⊂ T (Σ) × F (Σ), whose elements are rules 𝛼 : 𝑢 → 𝑓

reducing the monomial source 𝑠 (𝛼) := 𝑢 to the polynomial target

𝑡 (𝛼) := 𝑓 . We write 𝜕 = 𝑠 − 𝑡 and define the ideal generated by 𝑅

as 𝐼 (𝑅) := ⟨𝜕(𝛼) | 𝛼 ∈ 𝑅⟩. The operad presented by the ORS 𝑋 ,

denoted by 𝑋 , is the quotient of the free operad F (Σ) by 𝐼 (𝑅).
We define the graph R𝑋 , whose vertices are the elements of

F (Σ) and whose edges are the _𝐶 [𝛼] + 1𝑔 : _𝐶 [𝑠 (𝛼)] + 𝑔 →𝑅

_𝐶 [𝑡 (𝛼)] + 𝑔, where 𝛼 ∈ 𝑅, 𝐶 is a monomial context, _ ∈ k\{0},
and 𝑔 is a polynomial of F (Σ). For every edge 𝑎 of R𝑋 , denote by
𝑎− = 𝑠 (𝑎) − 𝑎 + 𝑡 (𝑎) the edge with source 𝑡 (𝑎) and target 𝑠 (𝑎). An
edge of R𝑋 is a rewriting monomial when _ = 1 and 𝑔 = 0, and a

rewriting step when 𝐶 [𝑠 (𝛼)] ∉ Supp(𝑔). Denote by R𝑚
𝑋

(resp. R+
𝑋
)

the set of rewriting monomials (resp. rewriting steps) of 𝑋 . Denote

by · the composition of paths in R𝑋 . A composition of rewriting

steps is called a rewriting path of 𝑋 . A polynomial 𝑓 in F (Σ) is in
normal form wrt 𝑋 , or reduced, if there is no rewriting step with

source 𝑓 . Denote by nf(𝑋 ) the set of reduced polynomials of F (Σ).
An order relation ≺ on T (Σ) is compatible with 𝑅 if, for every

𝛼 ∈ 𝑅 and every monomial 𝑣 ∈ Supp(𝑡 (𝛼)), we have 𝑣 ≺ 𝑠 (𝛼). The
relation ≺ extends to F (Σ) by setting, for 𝑓 , 𝑔 in F (Σ), 𝑔 ≺ 𝑓 if the

two following conditions are satisfied:

i) Supp(𝑓 ) \ Supp(𝑔) ≠ ∅,
ii) for all 𝑣 ∈ Supp(𝑔) \ Supp(𝑓 ), there exists 𝑢 ∈ Supp(𝑓 ) \

Supp(𝑔) such that 𝑣 ≺ 𝑢.
We denote by ≺𝑅 the smallest partial order relation on T (Σ) stable
by product and compatible with 𝑅. The ORS 𝑋 is terminating if

the relation ≺𝑅 is well-founded. In this case, there does not exist

infinite sequence of rewriting steps of 𝑋 .

Rewriting monomials form a basis of F (Σ)⟨𝑅⟩, the free F (Σ)-
bimodule on 𝑅, whose elements we call rewriting polynomials. A

syzygy then corresponds to a rewriting polynomial 𝔰 such that

𝜕(𝔰) = 0. We denote by S(𝑋 ) the F (Σ)-bimodule of syzygies of 𝑋 ,

which corresponds to the bimodule S(𝜕(𝑅)) defined previously.

Monomial orders. A monomial order on T (Σ) is a total order ≺
stable by product; that is, for all 𝑢,𝑢 ′ ∈ T (Σ) (𝑘), 𝑣, 𝑣 ′ ∈ T (Σ) (ℓ),
and 1 ⩽ 𝑖 ⩽ 𝑘 , 𝑢 ≺ 𝑢 ′, 𝑣 ≺ 𝑣 ′ implies 𝑢 ◦𝑖 𝑣 ≺ 𝑢 ′ ◦𝑖 𝑣 ′. A monomial

order on T (Σ ⊔ {□𝑘 }𝑘⩾1) induces a monomial order on contexts of

F (Σ). Given a monomial order ≺ on T (Σ), a monomial order on

contexts, and a total order < on 𝑅, we define the rewriting monomial

order ≺rm on R𝑚
𝑋

by setting 𝐶 [𝛼] ≺rm 𝐷 [𝛽] if
i) 𝐶 [𝑠 (𝛼)] ≺ 𝐷 [𝑠 (𝛽)], or
ii) 𝐶 [𝑠 (𝛼)] = 𝐷 [𝑠 (𝛽)] and 𝐶 < 𝐷 , or

iii) 𝐶 [𝑠 (𝛼)] = 𝐷 [𝑠 (𝛽)], 𝐶 = 𝐷 , and 𝛼 < 𝛽 .

Note that the third case only occurs if the ORS admits rules with

the same source.

An example of a monomial order is the path-lexicographic order,

defined in [6, 12]. Given a tree monomial, there exists a unique path

from the root to each input. We can write these paths as words in

the alphabet Σ: for instance, the monomial 𝑤 = (𝑥 | Y 𝑦 (𝑧 | 𝑢 𝑣))
above gives the paths (𝑥, 𝑥𝑦, 𝑥𝑧𝑢, 𝑥𝑧𝑢, 𝑥𝑧𝑣, 𝑥𝑧𝑣). Given a total order

≺ on Σ, we define the lexicographic order ≺
lex

on paths. Then, we

define the path-lexicographic order ≺
path-lex

as the lexicographic

product order of ≺
lex

on the list of paths, ordered by the inputs.

We can extend ≺ to a total order ≺′ on Σ ⊔ {□𝑘 }𝑘⩾1 where, for
all 1 ⩽ 𝑘 < ℓ and 𝑥 ∈ Σ, □𝑘 ≺′ □ℓ and □𝑘 ≺′ 𝑥 . We can then define

the path-lexicographic order ≺′
path-lex

on T (Σ ⊔ {□𝑘 }𝑘 ), which



restricts to a monomial order ≺
cont-path-lex

on monomial contexts.

Fixing a total order on 𝑅, this gives a rewriting monomial order

≺
rm-path-lex

.

Gröbner bases. Fix a monomial order ≺ on T (Σ). The leading

monomial of a polynomial 𝑓 of F (Σ) is the greatest monomial in

the support of 𝑓 wrt the order ≺, denoted by lm≺ (𝑓 ). We define

the associated rule
®
lm≺ (𝑓 ) : lm≺ (𝑓 ) → 1/lc≺ (𝑓 ) (𝑓 − lm≺ (𝑓 )),

where lc≺ (𝑓 ) denotes the coefficient of lm≺ (𝑓 ) in the polynomial 𝑓 .

For a set of polynomials 𝐺 of F (𝑋 ), we denote by
®
lm≺ (𝐺) :=

{ ®lm≺ (𝑔) | 𝑔 ∈ 𝐺} the corresponding set of rules. We say that 𝐺 is

a Gröbner basis of an ideal 𝐼 of F (Σ) if 𝐺 generates 𝐼 and the ORS

(𝑋, ®lm≺ (𝐺)) is confluent, or equivalently, if every polynomial 𝑓

in 𝐼 reduces to 0 wrt
®
lm≺ (𝐺).

Now, let 𝐸 be a set of rewriting polynomials. Every element 𝔢 of 𝐸

can be written 𝔢 =
∑
𝑖 _𝑖𝐶𝑖 [𝛼𝑖 ], where _𝑖 ∈ k\{0},𝐶𝑖 is a monomial

context, and 𝛼𝑖 ∈ 𝑅. We define the rule
®
lm≺rm (𝔢) : lm≺rm (𝔢) →

1/lc≺rm (𝔢) (𝔢− lm≺rm (𝔢)), where lc≺rm (𝔢) denotes the coefficient of

lm≺rm (𝔢) in 𝔢. Denote by ®lm≺rm (𝐸) the set of these rules for 𝔢 ∈ 𝐸.
We say that 𝐸 is a Gröbner basis of a submodule 𝑀 of F (Σ)⟨𝑅⟩
wrt ≺rm if 𝐸 generates𝑀 as a F (Σ)-bimodule and every rewriting

polynomial 𝔰 in𝑀 reduces to 0 wrt
®
lm≺rm (𝐸).

Branchings and confluence. A branching (resp. local branching)

is a pair (𝑎, 𝑏) of rewriting paths (resp. rewriting steps) such that

𝑎 ≠ 𝑏 and 𝑠 (𝑎) = 𝑠 (𝑏). We classify local branchings into three types:

i) additive branchings: (_𝑎 + `1𝑣 + 1ℎ, _1𝑢 + `𝑏 + 1ℎ), where
𝑎 : 𝑢 → 𝑓 , 𝑏 : 𝑣 → 𝑔 ∈ R𝑚

𝑋
, _, ` ∈ k\{0}, ℎ is a polynomial,

𝑢 ≠ 𝑣 , and 𝑢, 𝑣 ∉ Supp(ℎ).
ii) multiplicative branchings: (_𝐶 [𝑎, 1𝑣] + 1ℎ, _𝐶 [1𝑢 , 𝑏] + 1ℎ),

where 𝐶 is a monomial two-hole context, 𝑎 : 𝑢 → 𝑓 , 𝑏 :

𝑣 → 𝑐 ∈ R𝑚
𝑋
, _ ∈ k\{0}, ℎ is a polynomial, and 𝐶 [𝑢, 𝑣] ∉

Supp(ℎ).
iii) intersecting branchings: the rest of the local branchings.

We define a well-founded partial order ⊑ on branchings by setting,

for every monomial context 𝐶 , polynomial ℎ, and _ ∈ k\{0},

(𝑎, 𝑏) ⊑ (_𝐶 [𝑎] + 1ℎ, _𝐶 [𝑏] + 1ℎ) .

The critical branchings are the minimal intersecting branchings for

this order.

Now, fix a rewriting monomial order ≺rm on R𝑚
𝑋
. An essen-

tial branching of 𝑋 is a critical branching (𝐶 [𝛼], 𝐷 [𝛽]), where
𝐶 [𝛼] ≺rm 𝐷 [𝛽] and they are consecutive for this order, that is

there does not exist a rewriting monomial 𝐸 [𝛾] such that𝐶 [𝛼] ≺rm
𝐸 [𝛾] ≺rm 𝐷 [𝛽]. We denote by E(𝑋 ) the set of essential branchings
of 𝑋 . Algorithm 1 computes the essential branchings of an ORS 𝑋

with respect to a monomial order.

The 𝑆-polynomial of a branching (𝑎, 𝑏) of 𝑋 is the polynomial

𝑆 (𝑎, 𝑏) := 𝑡 (𝑎) − 𝑡 (𝑏). It is called essential when the branching is

so. A branching (𝑎, 𝑏) is confluent if there exist two rewriting paths
𝑡 (𝑎) → ℎ and 𝑡 (𝑏) → ℎ with the same target, or equivalently, if its

𝑆-polynomial reduces to 0. The ORS𝑋 is confluent (resp. locally con-

fluent) at a polynomial 𝑓 if all its branchings (resp. local branchings)

with source 𝑓 are confluent. It is confluent (resp. locally confluent)

if it is so at every polynomial, and convergent if it is confluent and

terminating.

rec BranchingsWithRoot(Σ, 𝑅, ≺rm, 𝛼, ®𝑣, 𝑖0)
Input: An ORS 𝑋 = (Σ, 𝑅),

an order ≺rm on R𝑚
𝑋
,

a rewriting rule 𝛼 of 𝑅 of arity 𝑛,

a list of monomials 𝑣1, . . . , 𝑣𝑛 in T (Σ),
𝑖0 ⩽ ar(𝑣1) + . . . + ar(𝑣𝑛).

Output: A set of essential branchings whose first rewriting

step contains (𝛼 | ®𝑣), and where the first 𝑖0 − 1
inputs are untouched.

if size(®𝑣) < max𝛽∈𝑅 |𝑠 (𝛽) | then
𝑃 ← {𝐷 [𝛽] ∈ R𝑚

𝑋

| 𝐷 [𝑠 (𝛽)] = (𝑠 (𝛼) | ®𝑣), and (𝛼 | ®𝑣) ≺rm 𝐷 [𝛽]};
if 𝑃 ≠ ∅ then

return {((𝛼 | ®𝑣),min(𝑃, ≺rm))};
else

return⋃
𝑖0⩽𝑖
𝑥 ∈Σ

BranchingsWithRoot(𝑋, ≺rm, 𝛼, ®𝑣 ◦𝑖 𝑥, 𝑖);

else
return ∅;

EssentialBranchings(Σ, 𝑅, ≺rm)
Input: An ORS 𝑋 = (Σ, 𝑅),

A rewriting monomial order ≺rm on R𝑚
𝑋
.

Output: The set of essential branchings of (Σ, 𝑅).
return

⋃
𝛼 ∈𝑅

BranchingsWithRoot(Σ, 𝑅, ≺rm, 𝛼, ®Y, 1);

Algorithm 1: EssentialBranchings and its auxiliary recur-

sive function, BranchingsWithROot

Let 𝑋 be a convergent ORS, ≺ a monomial order on T (Σ), and <
a total order on 𝑅, and consider the associated monomial order ≺rm
on rewriting monomials. A normalization strategy 𝜌 associates to

each polynomial 𝑓 of F (𝑋 ) a rewriting path from 𝑓 to its normal

form as follows. If 𝑓 is a normal form, then 𝜌 𝑓 := 1𝑓 . Otherwise,

write 𝑓 = _𝑢 + 𝑔, where 𝑢 is the greatest reducible monomial of 𝑓

wrt ≺, _ ∈ k\{0}, and 𝑢 ∉ Supp(𝑔), and let 𝐶 [𝛼] be the greatest
rewriting monomial wrt ≺rm that reduces 𝑢. We then set

𝜌 𝑓 := (_𝐶 [𝛼] + 𝑔) · 𝜌_𝐶 [𝑡 (𝛼) ]+𝑔 .

Since 𝑋 is terminating, 𝜌 is well-defined.

Examples.
i) Consider the associative operad presented by one generator

𝑥 and one rule:

𝛼 :

𝑥

𝑥

1 2

3 →
𝑥

1 𝑥

2 3

also written 𝑥 ◦1𝑥 → 𝑥 ◦2𝑥 . There is one critical branching,
and so one essential branching, (𝛼 ◦1 𝑥, 𝑥 ◦1 𝛼).

ii) Consider the associative algebra presented by ⟨𝑥 | 𝛼 :

𝑥3 → 0⟩, seen as an operad concentrated in arity 1. The

critical branchings are (𝛼𝑥, 𝑥𝛼) and (𝑥𝑥𝛼, 𝛼𝑥𝑥), and only

the first one is essential.



iii) Consider the ORS with three generators 𝑥,𝑦, 𝑧 and the

following rewriting rule:

(𝑥 | 𝑦 𝑧) → (𝑥 | 𝑥 𝑥) + (𝑦 | 𝑦 𝑦) + (𝑧 | 𝑧 𝑧)

There are no essential branchings. However, this rule can-

not be the result of an orientation by a monomial order,

since there is always a monomial on the righthand side

greater than (𝑥 | 𝑦 𝑧). Note that if we orient this rule by a

monomial order, we would get two essential branchings.

3 Completion using essential branchings
In this section, we show that the obstructions to the confluence of a

terminating ORS can be reduced to the confluence of the essential

branchings, which, as we will explain in the next section, corre-

sponds to existence of essential syzygies. We deduce an improved

completion algorithm for operadic rewriting systems.

Lemma 3.1 ([11]). Let 𝑋 be an ORS.

i) For every path 𝑎 in R𝑋 , there exists a zig-zag sequence of

rewriting steps from 𝑠 (𝑎) to 𝑡 (𝑎).
ii) For every path 𝑓0

𝑎1−→ 𝑓1
𝑎2−→ · · ·

𝑎𝑛−→ 𝑓𝑛 of length 𝑛 such

that 𝑋 is confluent at 𝑓𝑖 for all 𝑖 ⩾ 1, there exist rewriting

paths 𝑏 and 𝑐 such that 𝑏 · 𝑐− has source 𝑓0 and target 𝑓𝑛 .

Proof. Consider an edge 𝑎 = _𝐶 [𝛼] + 1𝑔 of R𝑋 . Write 𝑔 =

`𝐶 [𝑠 (𝛼)] + ℎ, where 𝐶 [𝑠 (𝛼)] ∉ Supp(ℎ) and ` ∈ k. Then the zig-

zag of rewriting paths

((_ + `)𝐶 [𝛼] + 1ℎ) · (`𝐶 [𝛼] + 1_𝐶 [𝑡 (𝛼) ]+ℎ)−

has the same source and target as 𝑎. We deduce the first point

immediately.

For the second point, we proceed by induction on the length 𝑛

of the path. We have proven the point for 𝑛 = 1. For 𝑛 ⩾ 1, consider

the diagram

𝑓𝑛 𝑐2

��
𝑓1

𝑎2 · · ·𝑎𝑛 22

𝑏2 //
𝑐1 %%

𝑔2 𝑑2

��
𝑓0

𝑎1 22

𝑏1

33 𝑔1
𝑑1

33 𝑓 ′

The rewriting paths 𝑏1, 𝑐1 are given by the first point, and the

rewriting paths 𝑏2, 𝑐2 are given by induction hypothesis. Since we

suppose 𝑋 confluent at 𝑓1, we get the rewriting paths 𝑑1, 𝑑2. Thus

(𝑏1 · 𝑑1) · (𝑐2 · 𝑑2)− has source 𝑓0 and target 𝑓𝑛 . □

Lemma 3.2. Let 𝑋 be an ORS, 𝑓 a polynomial such that 𝑋 is con-

fluent at every polynomial 𝑔 ≺𝑅 𝑓 , and (𝑎, 𝑏) a local branching of

source 𝑓 . Then (𝑎, 𝑏) is confluent if there exist rewriting paths 𝑐, 𝑑 ,

one-hole contexts 𝐶, 𝐷 of F (Σ), and polynomials ℎ, 𝑘 in F (Σ) as in
the following diagram

𝑡 (𝑎) 𝐶 [𝑐] + 1ℎ
��

𝑓

𝑎 00

𝑏
..

𝑔

𝑡 (𝑏)
𝐷 [𝑑] + 1𝑘

==

Proof. We shall construct the following confluence diagram:

𝑡 (𝑎)
𝑎1

++

𝐶 [𝑑] + 1ℎ
%%

𝑓0 𝑎2

��
𝑓

𝑎 44

𝑏 **

𝑔

𝑎0

::

𝑏0
$$

𝑔′

𝑡 (𝑏)

𝐷 [𝑑] + 1𝑘
99

𝑏1

33 𝑔0 𝑏2

BB

Let us consider the top half of the diagram. Writing the rewriting

path 𝑐 as 𝑐1 · . . . · 𝑐𝑝 and the context 𝐶 as

∑𝑞

𝑗=1
_ 𝑗𝐶 𝑗 , the idea is to

apply each 𝑐𝑖 to each 𝐶 𝑗 , leaving the other monomials unchanged:

for 1 ⩽ 𝑖 ⩽ 𝑝 and 1 ⩽ 𝑗 ⩽ 𝑞, we choose the edge in R𝑋

𝑐𝑖, 𝑗 :=

𝑗−1∑︁
ℓ=1

_ℓ𝐶ℓ [𝑡 (𝑐𝑖 )] + _ 𝑗𝐶 𝑗 [𝑐𝑖 ] +
𝑞∑︁

ℓ=𝑗+1
_ℓ𝐶ℓ [𝑠 (𝑐 𝑗 )] + 1ℎ,

and write 𝑔𝑖, 𝑗 := 𝑡 (𝑐𝑖, 𝑗 ) and 𝑔𝑖,0 := 𝑠 (𝑐𝑖,1) = 𝑡 (𝑐𝑖−1,𝑞). Then we have

the path in R𝑋

𝑡 (𝑎) = 𝑔1,0
𝑐1,2−→ . . .

𝑐1,𝑞
−→ 𝑔1,𝑞 = 𝑔2,0

𝑐2,1−→ . . .

. . .
𝑐𝑝−1,𝑞
−→ 𝑔𝑝−1,𝑞 = 𝑔𝑝,0

𝑐𝑝,1
−→ . . .

𝑐𝑝,𝑞
−→ 𝑔𝑝,𝑞 = 𝑔.

Moreover, for every 𝑖, 𝑗 , 𝑔𝑖, 𝑗 ≺𝑅 𝑓 , so 𝑋 is confluent at 𝑔𝑖, 𝑗 . Fol-

lowing the second point of Lemma 3.1, there exist rewriting paths

𝑎0, 𝑎1 as in the diagram. Similarly, we show the existence of the

rewriting paths 𝑏0, 𝑏1. Since 𝑔 ≺𝑅 𝑓 , we can apply the confluence

hypothesis to the branching (𝑎0, 𝑏0), so we get the rewriting paths

𝑎2, 𝑏2. □

Theorem 3.3. Let 𝑋 be a terminating ORS. If every essential 𝑆-

polynomial reduces to 0, then every 𝑆-polynomial reduces to 0.

Proof. It suffices to prove that every branching of𝑋 is confluent.

Since every essential 𝑆-polynomial reduces to 0, every essential

branching is confluent.

We proceed by well-founded induction on the sources of the

branchings of 𝑋 , with the order ≺𝑅 , to prove that 𝑋 is confluent at

every polynomial of F (Σ). A reduced polynomial cannot be the

source of a local branching, so 𝑋 is confluent at every 𝑓 ∈ nf(𝑋 ).
Now, fix a nonreduced polynomial 𝑓0 of F (Σ), and assume that 𝑋

is confluent at every 𝑔 ≺𝑅 𝑓0. Then we proceed by case analysis on

the types of local branchings.

Additive branchings. Let (_𝑎+`1𝑣 +1ℎ, _1𝑢 +`𝑏 +1ℎ) be an additive

branching of source 𝑓0, where 𝑎 : 𝑢 → 𝑓 , 𝑏 : 𝑣 → 𝑔 ∈ R𝑚
𝑋
,

_, ` ∈ k\{0}, and ℎ ∈ F (Σ), with 𝑢 ≠ 𝑣 and 𝑢, 𝑣 ∉ Supp(ℎ). We

have the following diagram:

_𝑓 + `𝑣 + ℎ _1𝑓 + `𝑏 + 1ℎ
))

𝑓0 = _𝑢 + `𝑣 + ℎ

_𝑎 + `1𝑣 + 1ℎ 00

_1𝑢 + `𝑏 + 1ℎ
..

_𝑓 + `𝑔 + ℎ

_𝑢 + `𝑔 + ℎ
_𝑎 + `1𝑔 + 1ℎ

55

The dotted arrows are rewriting paths in context, so by Lemma 3.2,

this local branching is confluent.



Multiplicative branchings. Let (_𝐶 [𝑎, 1𝑣] + 1ℎ, _𝐶 [1𝑢 , 𝑏] + 1ℎ) be
a multiplicative branching of source 𝑓0, where 𝐶 is a monomial

two-hole context, 𝑎 : 𝑢 → 𝑓 , 𝑏 : 𝑣 → 𝑔 ∈ R𝑚
𝑋
, _ ∈ k\{0}, ℎ ∈ F (Σ),

and 𝐶 [𝑢, 𝑣] ∉ Supp(ℎ). We have the following diagram:

_𝐶 [𝑓 , 𝑣] + ℎ
_𝐶 [1𝑓 , 𝑏] + 1ℎ

((
𝑓0 = _𝐶 [𝑢, 𝑣] + ℎ

_𝐶 [𝑎, 1𝑣] + 1ℎ 00

_𝐶 [1𝑢 , 𝑏] + 1ℎ
//

_𝐶 [𝑓 , 𝑔] + ℎ

_𝐶 [𝑢,𝑔] + ℎ
_𝐶 [𝑎, 1𝑔] + 1ℎ

66

The dotted arrows are rewriting paths in context, so by Lemma 3.2,

this local branching is confluent.

Critical branchings. Let (𝐶 [𝛼], 𝐷 [𝛽]) be a critical branching of

source 𝑓0. If the branching is essential, then it is confluent by hypoth-

esis. Otherwise, there exists a rewriting monomial 𝐸 [𝛾] such that

𝐶 [𝛼] ≺rm 𝐸 [𝛾] ≺rm 𝐷 [𝛽], and we get two branchings (𝐶 [𝛼], 𝐸 [𝛾])
and (𝐸 [𝛾], 𝐷 [𝛽]). The branching (𝐶 [𝛼], 𝐸 [𝛾]) is either multiplica-

tive or intersecting. If it is multiplicative, then it is confluent by

the multiplicative case. Otherwise, it is either non-minimal for ⊑
or a critical branching. In the non-minimal case, there exists a

factorisation

𝐶1𝐶0 [𝑡 (𝛼)] 𝐶1 [𝑎0]
$$

𝐶1𝐶0 [𝑠 (𝛼)] = 𝐶1𝐸0 [𝑠 (𝛾)]

𝐶1𝐶0 [𝛼] ..

𝐶1𝐸0 [𝛾]
00

𝐶1 [ℎ0]

𝐶1𝐸0 [𝑡 (𝛾)] 𝐶1 [𝑏0]

::

where (𝐶0 [𝛼], 𝐸0 [𝛾]) is a critical branching and 𝐶1 is a monomial

context. In the critical case, the branching is either essential, or not.

If it is essential, then it is confluent by hypothesis. Otherwise, we

proceed by induction on the number of rewriting monomials 𝐹 [𝛿]
such that 𝐶 [𝛼] ≺rm 𝐹 [𝛿] ≺rm 𝐸 [𝛾].

We proceed similarly for the branching (𝐸 [𝛾], 𝐷 [𝛽]): in every

case, we can write

− the branching (𝐶 [𝛼], 𝐸 [𝛾]) as (𝐶1𝐶0 [𝛼],𝐶1𝐸0 [𝛾]), with𝐶1

a monomial context and (𝐶0 [𝛼], 𝐸0 [𝛾]) a confluent branch-
ing,

− the branching (𝐸 [𝛾], 𝐷 [𝛽]) as (𝐷1𝐸
′
0
[𝛾], 𝐷1𝐷0 [𝛽]), with

𝐷1 a monomial context and (𝐸 ′
0
[𝛾], 𝐷0 [𝛽]) a confluent

branching.

We can then construct the confluent diagram

𝐶1𝐶0 [𝑡 (𝛼)]
𝐶1 [𝑎0]

,,
𝐶1 [ℎ0] 𝑐1

##
𝐶 [𝑠 (𝛼)]

𝐶 [𝛼] 33

𝐷 [𝛽] ++

𝐸 [𝛾] // 𝐸 [𝑡 (𝛾)]

𝐶1 [𝑏0] 77

𝐷1 [𝑎′0]
''

ℎ

𝐷1𝐷0 [𝑡 (𝛽)]
𝐷1 [𝑏 ′0]

22 𝐷1 [ℎ′0] 𝑐 ′
1

;;

where the left squares are the aforementioned confluent branchings

in context and the right square is given by induction hypothesis.

Non-critical intersecting branchings. Finally, let (_𝐶 [𝛼]+1ℎ, _𝐷 [𝛽]+
1ℎ) be an intersecting branching of source 𝑓0 that is not critical,

where 𝛼 : 𝑢 → 𝑓 , 𝛽 : 𝑣 → 𝑔 ∈ 𝑅, 𝐶, 𝐷 are monomial contexts,

_ ∈ k\{0}, and ℎ ∈ F (Σ), such that𝐶 [𝑢] ∉ Supp(ℎ). Let𝐶0,𝐶1, 𝐷0

be the monomial contexts such that 𝐶1𝐶0 = 𝐶 , 𝐶1𝐷0 = 𝐷 , and

(𝐶0 [𝛼], 𝐷0 [𝛽]) is a critical branching. By the previous case, we

have the confluence diagram

𝐶0 [𝑓 ]
𝑎′
0

##
𝐶0 [𝑢] = 𝐷0 [𝑣]

𝐶0 [𝛼] //

𝐷0 [𝛽]
//

ℎ0

𝐷0 [𝑔] 𝑏 ′
0

;;

Applying the context _𝐶1 and adding ℎ, we get the following dia-

gram

_𝐶 [𝑓 ] + ℎ
_𝐶1 [𝑎′0] + 1ℎ

((
_𝐶 [𝑢] + ℎ = _𝐷 [𝑣] + ℎ

_𝐶 [𝛼] + 1ℎ //

_𝐷 [𝛽] + 1ℎ
//

_𝐶1 [ℎ0] + ℎ

_𝐷 [𝑔] + ℎ
_𝐶1 [𝑏 ′0] + 1ℎ

66

Applying Lemma 3.2, we conclude that the local branching is con-

fluent.

Thus we have shown that the ORS𝑋 is locally confluent at 𝑓0. To

conclude the induction step, we show that 𝑋 is confluent at 𝑓0 by

the diamond lemma. Let (𝑎, 𝑏) be a non-local branching of source
𝑓0, and write 𝑎 = 𝑎0 ·𝑎1, 𝑏 = 𝑏0 ·𝑏1, where 𝑎0, 𝑏0 are rewriting steps
and 𝑎1, 𝑏1 are rewriting paths. We construct the confluence diagram

𝑔0

𝑎1
++

𝑎′
0 ''

𝑔1 𝑎2

��
𝑓0

𝑎0 00

𝑏0
..

𝑓 ′
0

𝑐 // 𝑔2

𝑑
��

ℎ0

𝑏 ′
0
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𝑏1
// ℎ1

𝑏2

33 𝑘

as follows. By the previous arguments, the local branching (𝑎0, 𝑏0)
is confluent, yielding the rewriting paths 𝑎′

0
, 𝑏 ′

0
. Since both 𝑓0 ≻

𝑔0 and 𝑓0 ≻ ℎ0, the induction hypothesis applies to the branch-

ing (𝑎1, 𝑎′
0
) to gives the rewriting paths 𝑎2, 𝑐 , and then to the branch-

ing (𝑏 ′
0
· 𝑐, 𝑏1) to give the rewriting paths 𝑑,𝑏2. □

As a consequence of Theorem 3.3 and [6, Thm. 1], we have the

following result.

Corollary 3.4. Let 𝐼 be an ideal of F (Σ) and (Σ, 𝑅) a convergent
ORS such that 𝑅 is compatible with a monomial order and 𝐼 (𝑅) = 𝐼 .

If the set of essential 𝑆-polynomials reduces to 0, then 𝜕𝑅 is a Gröbner

basis of 𝐼 .

Completion algorithm. From Theorem 3.3, we deduce a comple-

tion algorithm Complete, Algorithm 2, which transforms a termi-

nating ORS into a convergent one presenting the same operad. The

algorithm only tests essential 𝑆-polynomials, using the algorithm

EssentialBranchings defined above. The essential branchings are

computed with respect to a monomial order on rewriting monomi-

als ≺rm given by the function RewritingMonomialOrder(≺2, ⊣),



which takes as arguments a monomial order ≺2 on T (Σ) and a

total order ⊣ on 𝑅, and returns the monomial order on rewriting

monomials induced by ≺2, ⊣, and the path-lexicographic order on

contexts.

Complete(Σ, 𝑅, ≺1, ≺2, ⊣)
Input: An ORS (Σ, 𝑅) compatible with ≺1, monomial orders

≺1, ≺2 on T (Σ), and a total order ⊣ on 𝑅.

Output: A convergent ORS (Σ,𝑇 ) such that

𝐼 (Σ, 𝑅) ≃ 𝐼 (Σ,𝑇 ).
𝑇 ← 𝑅;

≺rm← RewritingMonomialOrder(≺2, ⊣);
B ← EssentialBranchings(Σ,𝑇 , ≺rm);
while B ≠ ∅ do

Choose (𝑎, 𝑏) in B;
B ← B \ {{𝑎, 𝑏}};
𝑢 ← nf𝜌,≺1 (𝑡 (𝑓 ),𝑇 );
𝑣 ← nf𝜌,≺1 (𝑡 (𝑔),𝑇 );
𝛾 ← ®

lm≺1 (𝑢 − 𝑣);
if 𝛾 ≠ 0 then
B ←
UpdateEssentialBranchings(Σ,𝑇 ,B, ≺rm, 𝛾);

𝑇 ← 𝑇 ∪ {𝛾};

return (Σ,𝑇 );
Algorithm 2: The completion algorithm Complete

Note that we extend and update during the total order on 𝑅 to a

total order on the rules of 𝑇 . Indeed, the sources of the new rules

𝛾 never coincide the other rules in 𝑇 . The algorithm Complete re-

quires Algorithm 3, which updates the essential branchings during

completion.

Algorithm 2 adds to the set of rules 𝑅 the rules needed to resolve

the essential critical branchings. By construction, the added rules

do not change the presented operad. At the output of the algorithm,

we get a convergent set of rules 𝑇 . Termination follows from the

fact that all added rules are oriented with respect the monomial

order ≺1. Note that 𝑇 may be infinite if the completion algorithm

loops indefinitely.

This algorithm improves Buchberger’s completion algorithm [4]

when there are non-essential branchings. However, when the algo-

rithm starts with an ORS whose rules’ sources are all of size two

and are pairwise distinct, then every branching is essential.

Example. Consider the ORS〈
𝑥2, 𝑦1, 𝑧1

������ 𝛼 : (𝑥 | 𝑦 𝑦 1) → (𝑥 | 𝑧 𝑧 1),
𝛽 : (𝑥 | 𝑦 1𝑦) → (𝑥 | 𝑧 1 𝑧),
𝛾 : (𝑥 | 1𝑦 𝑦) → (𝑥 | 1 𝑧 𝑧)

〉
There are three critical branchings: (𝛼 ◦3 𝑦, 𝛽 ◦2 𝑦), (𝛼 ◦3 𝑦,𝛾 ◦1
𝑦), (𝛽 ◦2 𝑦,𝛾 ◦1 𝑦). The contexts involved, in path-lexicographic

order, are □3 ◦3𝑦 ≺ □3 ◦2𝑦 ≺ □3 ◦1𝑦. Thus Complete will execute
as follows:

− The initial set of essential branchings is B = {(𝛼 ◦3 𝑦, 𝛽 ◦2
𝑦), (𝛼 ◦3 𝑦,𝛾 ◦1 𝑦)}.

rec UpdateBranchingsWithRoot(Σ,𝑇 ,B, ≺rm, 𝛼,𝛾, ®𝑣, 𝑖0)
Input: An ORS 𝑋 = (Σ,𝑇 ),

an order ≺rm on R𝑚
𝑋
,

the set B of essential branchings of (Σ,𝑇 ),
a rewriting rule 𝛼 of 𝑅 of arity 𝑛,

a rewriting rule 𝛾 ,

a list of monomials 𝑣1, . . . , 𝑣𝑛 ,

𝑖0 ⩽ ar(𝑣1) + . . . + ar(𝑣𝑛).
Output: An updated set of essential branchings whose first

rewriting step contains (𝛼 | ®𝑣), and where the first

𝑖0 − 1 inputs are untouched.
if size(®𝑣) < max𝛽∈𝑅 |𝑠 (𝛽) | then

if there exists ((𝛼 | ®𝑣), 𝐷 [𝛽]) ∈ B then
𝑄 ← {𝐸 [𝛾] ∈ R𝑚

𝑋

| (𝛼 | ®𝑣) ≺rm 𝐸 [𝛾] ≺rm 𝐷 [𝛽]} ∪ {𝐷 [𝛽]};
return {((𝛼 | ®𝑣),min(𝑄, ≺rm))};

else
𝑄 ← {𝐸 [𝛾] ∈ R𝑚

𝑋

| 𝐸 [𝑠 (𝛼)] = (𝑠 (𝛼) | ®𝑣) and (𝛼 | ®𝑣) ≺rm 𝐸 [𝛾]};
if 𝑄 ≠ ∅ then

return {((𝛼 | ®𝑣),min(𝑄, ≺rm))};
else

return⋃
𝑖0⩽𝑖
𝑥 ∈Σ

UpdateBranchingsWithRoot(Σ,𝑇 ,B,

≺rm, 𝛼,𝛾, ®𝑣 ◦𝑖 𝑥, 𝑖);

else
return ∅;

UpdateEssentialBranchings(Σ,𝑇 ,B, ≺rm, 𝛾)
Input: An ORS 𝑋 = (Σ, 𝑅),

A rewriting monomial order ≺rm on R𝑚
𝑋
.

Output: The set of essential branchings of 𝑋 .

return⋃
𝛼 ∈𝑅

UpdateBranchingsWithRoot(Σ,𝑇 ,B, ≺rm, 𝛼,𝛾, ®Y, 1);

Algorithm 3: UpdateEssentialBranchings and its auxiliary

recursive function, UpdateBranchingsWithRoot

− Consider the first essential branching (𝛼 ◦3 𝑦, 𝛽 ◦2 𝑦): the
targets of these rewriting monomials are already in normal

form, so we add 𝛿 : (𝑥 | 𝑧 𝑦 𝑧) → (𝑥 | 𝑧 𝑧 𝑦).
− No new branchings are created, so B remains unchanged.

− There remains one essential branching (𝛼 ◦3 𝑦,𝛾 ◦1 𝑦).
Similarly, the targets of the two rewriting monomials are

already in normal form, so we add Z : (𝑥 | 𝑦 𝑧 𝑧) → (𝑥 |
𝑧 𝑧 𝑦).

− There are no new essential branchings. B is empty, so we

return the convergent ORS ({𝑥,𝑦, 𝑧}, {𝛼, 𝛽,𝛾, 𝛿, Z }).



4 Gröbner bases for syzygies
In this section, we show that essential and multiplicative syzygies

generate the bimodule of syzygies of a convergent ORS 𝑋 . In par-

ticular, when the rules of 𝑋 are compatible with a monomial order,

we show how to construct a Gröbner basis of this bimodule with

respect a fixed normalization strategy.

Syzygies as loops. Let 𝑋 be an ORS. A loop of 𝑋 is a zig-zag

𝑎 = 𝑎
Y1
1
· . . . · 𝑎Y𝑛𝑛 of rewriting steps, where 𝑎𝑖 = _𝑖𝐶𝑖 [𝛼𝑖 ] + 1𝑔𝑖 and

Y𝑖 = ±1, such that 𝑠 (𝑎Y1
1
) = 𝑡 (𝑎Y𝑛𝑛 ). To such a loop, we associate

the syzygy

∑𝑛
𝑖=1 Y𝑖_𝑖𝐶𝑖 [𝛼𝑖 ]. Conversely, for a syzygy

∑𝑛
𝑖=1 _𝑖𝐶𝑖 [𝛼𝑖 ],

consider the following path in the graph R𝑋 :

𝑎 = (_1𝛼1 + _2𝐶 [𝑠 (𝛼2)] + . . . + _𝑛𝐶 [𝑠 (𝛼𝑛)])
· (_1𝐶 [𝑡 (𝛼1)] + _2𝛼2 + . . . + _𝑛𝐶 [𝑠 (𝛼𝑛)])
. . . · (_1𝐶 [𝑡 (𝛼1)] + _2𝐶 [𝑡 (𝛼2)] + . . . + _𝑛𝛼𝑛)

We have 𝑠 (𝑎) = 𝑡 (𝑎) = 𝐶 [𝑠 (𝛼1)] + . . . +𝐶 [𝑠 (𝛼𝑛)]. By the first point

of Lemma 3.1, there exists a zig-zag sequence of rewriting steps

that loops on 𝑠 (𝑎) = 𝑡 (𝑎). In particular, a confluence diagram can

be seen as a loop, and so it is associated to a syzygy.

Given a normalization strategy 𝜌 , for each essential branch-

ing (𝑓 , 𝑔), let (𝑓 · 𝜌 𝑓 , 𝑔 · 𝜌𝑔) be the confluence given by 𝜌 , and

take the corresponding essential syzygy. For each multiplicative

branching (𝐶 [𝛼, 𝑠 (𝛽)],𝐶 [𝑠 (𝛼), 𝛽]), take the multiplicative syzygy

𝐶 [𝛼, 𝜕(𝛽)] − 𝐶 [𝜕(𝛼), 𝛽]. Denote by Syz(𝑋, 𝜌) the set of essential
and multiplicative syzygies. This notion of syzygy allows us to

reformulate Theorem 3.3 as follows:

Proposition 4.1. Let 𝑋 be a terminating ORS and let 𝜌 be a

normalisation strategy. For every branching of𝑋 , there is a confluence

diagram such that the associated syzygy is generated by Syz(𝑋, 𝜌).

The proof of this result is obtained following the arguments

of the proof of Theorem 3.3 and keeping track of the syzygies

corresponding to each confluent diagram.

Proposition 4.2. Let 𝑋 be a convergent ORS and 𝜌 a normal-

ization strategy. The set Syz(𝑋, 𝜌) generates the F (𝑋 )-bimodule of

syzygies S(𝑋 ).

Proof. Let 𝑎 be a rewriting step in R+
𝑋
. By Proposition 4.1,

the associated syzygy of the confluence diagram of the branching

(𝜌 𝑓1 , 𝑎 · 𝜌 𝑓2 ):

𝑓1

𝑎
))

𝜌 𝑓1 ��

𝑓2

𝜌 𝑓2��
𝑓

is generated by Syz(𝑋, 𝜌). Now consider a syzygy 𝔰 of 𝑋 . As shown

above, it corresponds to

∑𝑛
𝑖=1 Y𝑖 𝜕(𝑎𝑖 ), where 𝑎𝑖 ∈ R+𝑋 and Y𝑖 = ±1

such that 𝑎Y
1
· 𝑎Y

2
· . . . · 𝑎Y𝑛 is a loop in G𝑋 . This loop can be drawn

as a circular pie

𝑓1

𝜌 𝑓1
��

𝑎Y
2

))
𝑓2

��𝜌 𝑓2
��

𝑓0

𝑎Y
1

99

𝜌 𝑓0 // 𝑓
.
.
.

𝑓𝑛−1
𝑎Y𝑛

SS
𝜌 𝑓𝑛−1

DD

𝑓𝑛−2
𝑎Y𝑛−1

kk

𝜌 𝑓𝑛−2

ZZ

}}

where 𝑓 is the unique normal form of the polynomials 𝑓𝑖 . Each ’slice’

of the pie defines a syzygy generated by Syz(𝑋, 𝜌). Combining these

syzygies, we conclude that the syzygy 𝔰 is generated by Syz(𝑋, 𝜌).
□

Considering the operad presented by 𝑋 , we compute syzygies

modulo the multiplicative syzygies, and we get the following result.

Corollary 4.3. Let 𝑋 be a convergent ORS, 𝜌 a normalisation

strategy, and𝑋 the operad presented by𝑋 . The set of essential syzygies

generates the 𝑋 -bimodule of syzygies S(𝑋 ).

Let us prove the main result of this section, which corresponds

to a non-commutative version of Schreyer’s syzygy theorem [21],

already apparent in Janet’s approach [13].

Theorem 4.4. Let𝑋 be a convergent ORS compatible with a mono-

mial order ≺ and 𝜌 a normalisation strategy. The set Syz(𝑋, 𝜌) forms

a Gröbner basis of the F (𝑋 )-bimodule S(𝑋 ) with respect to ≺rm.

Proof. Let 𝔰 =
∑𝑛
𝑖=1 _𝑖𝐶𝑖 [𝛼𝑖 ] be a syzygy in S(𝑋 ), where _𝑖 ∈

k \ {0}, 𝐶𝑖 ∈ R𝑚𝑋 and 𝛼𝑖 ∈ 𝑅. Reduce 𝔰 to a normal form wrt

Syz(𝑋, 𝜌) and the order ≺rm, which we write 𝔱 =
∑𝑝

𝑗=1
` 𝑗𝐷 𝑗 [𝛽 𝑗 ],

with ` 𝑗 ∈ k\{0}, 𝐷 𝑗 ∈ R𝑚𝑋 and 𝛼 𝑗 ∈ 𝑅. To show that Syz(𝑋, 𝜌)
forms a Gröbner basis of S(𝑋 ), it suffices to show 𝔱 = 0.

For all 1 ⩽ 𝑗 < 𝑗 ′ ⩽ 𝑝 , 𝐷 𝑗 [𝑠 (𝛽 𝑗 )] ≠ 𝐷 𝑗 ′ [𝑠 (𝛽 𝑗 ′)]. Otherwise, this
would give a local branching of the form (𝐷 𝑗 [𝛽 𝑗 ], 𝐷 𝑗 ′ [𝛽 𝑗 ′]). By
convergence of 𝑋 , this would give a syzygy whose leading term

is either 𝐷 𝑗 [𝛽 𝑗 ] or 𝐷 𝑗 ′ [𝛽 𝑗 ′]. By Proposition 4.2, the set Syz(𝑋, 𝜌)
generates all syzygies, so in particular, the previous syzygy could

be reduced by an element of Syz(𝑋, 𝜌). This would contradict the

fact that 𝔱 is a normal form.

As a consequence, the monomials 𝐷 𝑗 [𝑠 (𝛽 𝑗 )] in 𝔱 cannot cancel

each other out. Moreover, by definition of syzygies,

𝑝∑︁
𝑗=1

` 𝑗𝐷 𝑗 [𝜕(𝛽 𝑗 )] =
𝑛∑︁
𝑖=1

_𝑖𝐶𝑖 [𝜕(𝛼𝑖 )] = 0.

The only possibility is 𝑝 = 0, so 𝔱 = 0. □

5 Further developments
In this article, we have introduced a notion of rewriting systems for

non-symmetric operads whose rules do not depend on a monomial

order. We have shown how to optimize a completion procedure that

given a terminating ORS produces a convergent one by resolving

only essential 𝑆-polynomials. We also have proved how to compute

a Gröbner basis of the bimodule of syzygies using essential syzy-

gies. Several improvements of these constructions and results are



possible. In particular, some variations are possible on the notion of

essential 𝑆-polynomials. Moreover, we can extend our completion

algorithm to algebras over operads and shuffle operads.

Essential branchings: continuation. One of the objectives of the
rewriting approach developed in this work is to compute explicit

free resolutions, and more generally cofibrant replacements for

associative algebras [1, 2, 11] and operads [7, 17]. In this direction,

it is necessary to extend the definition of essential branchings to

higher dimensions. To do so, we consider an alternate definition of

essential branchings based on the notion of crowns.

Let 𝑋 = (Σ, 𝑅) be an ORS. A reducible divisor of 𝑢 ∈ T (Σ) is a
minimal non-reduced monomial 𝑣 such that 𝑣 ⊆ 𝑢. Denote by 𝐷 (𝑢)
the set of reducible divisors of 𝑢. When the composition (𝑢 | ®𝑣) is
defined, we say that ®𝑣

i) creates reducible divisors if 𝐷 (𝑢 | ®𝑣) \ 𝐷 (𝑢) is nonempty,

ii) creates reducible divisors context-minimally if, in addition,

for all submonomials𝑤𝑖 of 𝑣𝑖 and monomials ®𝑤 ′ ≠ ®Y such
that (𝑢 | ®𝑣) = ((𝑢 | ®𝑤) | ®𝑤 ′), 𝐷 (𝑢 | ®𝑤) = 𝐷 (𝑢),

iii) is a crown on𝑢 if the monomials in ®𝑣 are reduced and create
reducible divisors context-minimally.

By definition, essential branchings correspond to critical branchings

of the form ((𝛼 | ®𝑣), 𝐷 [𝛽]) where ®𝑣 is a crown on 𝑠 (𝛼). In this way,

essential branchings can be generalized to a notion of essential

overlappings involving 𝑛 rewriting rules as done in [17], where

the authors show that higher dimensional essential overlappings

generate higher dimensional syzygies on the presented operad 𝑋 ,

providing a resolution of the operad presented by the ORS 𝑋 , and

thus extending Corollary 4.3 to higher dimensions.

Algebras over operads. Our approach can be adapted to rewrit-

ing systems for algebras over non-symmetric operads. Indeed, an

algebra 𝐴 over a non-symmetric operad 𝑃 can be represented by

the polynomials of arity 0 of an operad whose generators are those

of 𝑃 and 𝐴, the latter being of arity 0, satisfying the relations of the

operad and those of the algebra [8]. Gröbner bases have been devel-

oped for algebras over certain operads, including the commutative

operad and associative operad for usual algebras, as well as the Lie

operad [5] and the free operad on a binary generator, which defines

non-associative non-commutative algebras [10]. We expect that

our approach is a first step towards a unified definition of critical

branchings for rewriting systems in algebraic structures.

The case of shuffle operads. In this article, for simplicity’s sake,

our algorithms are written for non-symmetric operads. However, it

would work for other types of operads, such as shuffle operads and

colored versions of non-symmetric and shuffle operads. Shuffle oper-

ads, which encode symmetric actions explicitly, were introduced by

Dotsenko and Khoroshkin in [6] to study homological properties of

linear symmetric operads by a rewriting approach. They introduced

a notion of Gröbner bases for shuffle operads with respect to a total

order on tree monomials and a completion algorithm that extends

Buchberger’s completion algorithm.

A free shuffle operad consists of the same monomials as a non-

symmetric operad, except that we allow certain permutations of

inputs: a shuffle monomial is of the form

𝑥0

𝑥1

𝑖1,1 · · · 𝑖1,𝑛
1

· · · 𝑥𝑘

𝑖𝑘,1 · · · 𝑖𝑘,𝑛𝑘

where the inputs are permuted such that 𝑖 𝑗,1 < · · · < 𝑖 𝑗,𝑛 𝑗
for

all 1 ⩽ 𝑗 ⩽ 𝑘 and 𝑖1,1 < · · · < 𝑖𝑘,1. Our constructions and al-

gorithms on non-symmetric operads can be extended to shuffle

operads: in particular, we have an analogous notion of essential

branchings. The key modification consists in the definition of the

set of monomials T (Σ) by taking into account the shuffle compo-

sition: (𝑥0 |𝑓 𝑥1 . . . 𝑥𝑘 ), where 𝑓 is the surjection associated to

the permutation on the inputs. The shuffle composition extends to

contexts and the confluence properties work as well. Theorems 3.3

and 4.4 still apply, and the algorithms EssentialBranchings and

Complete can be adapted to the shuffle case.
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