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(Received xx; revised xx; accepted xx)

Identification of coherent structures is an essential step to describe and model turbulence
generation mechanisms in wall-bounded flows. To this end, we present a clustering
method based on Latent Dirichlet Allocation (LDA), a generative probabilistic model
for collections of discrete data. The method is applied to a set of snapshots featuring the
Reynolds stress (Q− events) for a turbulent channel flow at a moderate Reynolds number
Rτ = 590. Both 2D and 3D analysis show that LDA provides a robust and compact
flow description in terms of a combination of motifs, which are latent variables inferred
from the set of snapshots. We find that the characteristics of the motifs scale with the
wall distance, in agreement with the wall-attached eddy hypothesis of Townsend (1961).
LDA motifs can be used to reconstruct fields with an efficiency that can be compared
with the POD. Moreover, the LDA model makes it possible to generate a collection of
synthetic fields that is statistically closer to the original dataset than its POD-generated
counterpart. These findings highlight the potential of LDA for turbulent flow analysis,
compression and generation.

1. Introduction

The introduction of coherent structures (Kline et al. 1967; Townsend 1947) has repre-
sented a major paradigm shift for turbulence theory and has had a significant impact in
various related fields, ranging from geophysical flows to industrial applications. Coherent
structure identification has become a key step towards modelling and controlling wall-
bounded turbulent flows. However a recurrent stumbling block is the absence of a precise
definition of structures, as is apparent from several comprehensive reviews (Cantwell
1981; Robinson 1991; Jimenez 2013; Dennis 2015).

Studies originating in the 1960’s (Kline et al. 1967; Kim et al. 1971) have established
that most of the turbulence in the near-wall region occurred in a highly intermittent
manner in both space and time, during what was originally termed “bursting events”.
Quadrant analysis of the Reynolds stress in the plane of streamwise and wall-normal
fluctuation (u′, v′) was introduced by Wallace et al. (1972); Willmarth & Lu (1972) to
characterize these events. Bursting events were found to be associated with low-speed
streaks being lifted away from the wall, as well with sweeping motions of high-speed
fluid towards the wall, which respectively correspond to Quadrant II (u′ < 0, v′ > 0)
and Quadrant IV (u′ > 0, v′ < 0) events. The two quadrants corresponding to −u′v′ > 0
can be termed Q− events and represent the major contribution to the Reynolds stress
(Wallace 2016). An interpretation of these bursts is that they are the signature of coherent
structures or eddies advected by the mean field. Determining the characteristics of these
structures has been the object of considerable effort, Jimenez (2018).

A central element of wall turbulence theory is the attached eddy model, reviewed in
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detail by Marusic & Monty (2019). The model is based on the idea that turbulence
arises as a field of randomly distributed eddies, identified as organized flow patterns
which extend to the wall, in the sense that their characteristics are influenced by the
wall. Further assumptions require that the entire geometry of the eddies scales with the
wall distance, with a constant characteristic velocity scale. The model was extended by
Perry & Chong (1982), who introduced the idea of a hierarchy of discrete scales, with
an inverse-scale probability distribution. Woodcock & Marusic (2015) showed that this
inverse probability distribution was in fact a direct consequence of the self-similarity of
the eddies. Further extensions of the model for the logarithmic layer include a wider
variety of structures, such as wall-detached ones (Perry & Marusic 1995; Hu et al. 2020).

Detection of self-similarity in boundary layers has been the focus of several experi-
mental studies, such as Baars et al. (2017)’s, who used spectral coherence analysis to
provide evidence of self-similar structures in the streamwise velocity fluctuations of pipe
flow. Numerical simulation has proved a powerful tool to explore three-dimensional flow
fields using a clustering approach. Examples include the work of Alamo et al. (2006), who
showed that the logarithmic region of turbulent channel was organized in self-similar vor-
tex clusters, and Lozano-Duran et al. (2012) developed a three-dimensional extension of
quadrant analysis to detect self-similarity in numerical data at various Reynolds numbers.
More recently, wall-attached structures were identified in the streamwise fluctuations of
a turbulent boundary layer (Hwang & Sung 2018) as well as in pipe flow (Hwang & Sung
2019). The structures were shown to scale with the wall distance while their population
density scales inversely with the distance to the wall. Cheng et al. (2020) detected the
signature of wall-attached eddies in the streamwise and spanwise velocity fluctuations in
turbulent channel flow simulations at low Reynolds numbers. Evidence of self-similarity
has been found as well in the context of resolvent analysis, Sharma & McKeon (2013). It
has also emerged from Proper Orthogonal Decomposition (POD) results, such as channel
flow simulations at low Reynolds numbers (Podvin et al. 2010; Podvin & Fraigneau 2017),
or pipe flow experiments (Hellström et al. 2016).

The increase of available data, whether through numerical simulation or experiment,
has strengthened the need for new identification methods, such as those provided by
machine learning (see Brunton et al. (2020) for a review). The challenge is to extract
structural information about the data without pre-existing knowledge, which defines
an unsupervised learning problem. Solutions to this problem should be robust, easy to
implement and scalable. One example of unsupervised learning method that meets these
criteria is Proper Orthogonal Decomposition (Lumley 1967), a now classical approach to
decompose turbulent fields. POD is a statistical technique which provides an objective
representation of the data as a linear combination of spatial eigenfunctions, which can be
hierarchized with respect to a given norm. Although the reconstruction is optimal with
respect to this norm (Holmes et al. 1996), a potential limitation of the decomposition is
that the physical interpretation of the eigenfunctions is not clear. In particular, in the
case of homogeneous statistics, the eigenfunctions are spatial Fourier modes over the full
domain (see Holmes et al. (1996) for a proof), even though instantaneous patterns are
strongly localized in space. The connection between POD spatial eigenfunctions with
observed coherent structures is therefore not necessarily straighforward. Moreover, the
amplitudes of the spatial eigenfunctions are generally strongly inter-dependent, even
though they are by construction uncorrelated. This makes it difficult to give a physical
meaning to individual amplitudes, especially in the absence of a probabilistic framework
in which to interpret them.

In this paper we consider such a framework to explore an alternative unsupervised
learning approach called Latent Dirichlet Allocation (LDA), which can be derived from
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POD (Hofmann 1999). LDA is a generative probabilistic model, that is a probabilistic
model that mimics the characteristics of a collection of data. It is based on a soft clustering
approach, which was first developed for text mining applications (Blei et al. 2003), but has
been extended to other fields in recent years (Aubert et al. 2013). The goal of LDA (Blei
et al. 2003) is to find short descriptions of the members of a collection that enable efficient
processing of large collections while preserving the essential statistical relationships that
are useful for basic tasks such as classification, novelty detection, summarization, and
similarity and relevance. LDA is a three-level hierarchical Bayesian model, in which each
member of a collection is modeled as a finite mixture over an underlying set of topics or
motifs.

In the field of natural language processing, the dataset to which LDA is applied
consists of a set of documents, each of which is considered as a “bag-of-words”, that
is an unordered set of words taken from a finite vocabulary. A particular word may
appear several times in the document, or not appear at all. The number of occurrences
of each vocabulary word in a document can be seen as an entry of a sparse matrix where
the lines correspond to the vocabulary words and the columns to the documents. Based
on this typically sparse word count matrix, the classification method returns a set of
NT topics, where the topics are latent variables inferred from the word counts in the
documents and the number of topics NT is a user-defined parameter.

Unlike “hard” clustering, such as the K-means approach (MacQueen 1967), where each
document is assigned to a specific topic, LDA represents each document as a mixture
of topics, where the coefficients of the mixture represent the probability of the topic in
the document. An interesting application of the LDA method was carried out for a
dataset containing images by Griffiths & Steyvers (2004). The dataset considered was a
collection of gray-scale images where each image consists of an array of pixels, each of
which is associated with a gray level. In this framework, each image is the equivalent
of a document, each pixel represents an individual vocabulary word, and the gray-level
intensity measured at each pixel is taken as the analog of the word count matrix entry (the
lines of the matrix now represent the pixels, while the columns represent the snapshots).
The sum of the intensities over the pixels, which will be called throughout the paper
the total intensity, is the analog of the total number of words observed in the document.
Given a set of original patterns constituting the topics or motifs, a collection of synthetic
images was generated from random mixtures of the patterns. It was shown that LDA was
able to recover the underlying patterns from the observations of the generated images.

Following Griffiths & Steyvers (2004), the idea of the paper is to look for evidence
of coherent structure in turbulent flow snapshots by identifying LDA topics or motifs.
The relevant gray-level intensity is based on the value of Q− (unlike in Griffiths &
Steyvers (2004)’s work, it corresponds to a physical field.) We thus propose the following
analogy: each scalar field observed in a collection of snapshots results from a mixture
of NT spatial topics that will be referred to as motifs in the remainder of the paper.
This can be compared with the standard view that each realization of a turbulent flow
is constituted of a random superposition of discrete eddies, characterized by a hierarchy
of scales.

The paper is organized as follows. We show in Section 2 how the POD method of
snapshots, which is equivalent to Latent Semantic Allocation (LSA), can be generalized
to a probabilistic framework (Probabilistic Latent Semantic Allocation or PLSA) which
is then further extended into Latent Dirichlet Allocation (LDA) in Section 3. Application
to the extraction of motifs for a turbulent channel flow is introduced in Section 4 and
results are discussed in Section 5. The potential of the approach for flow reconstruction
and flow generation is considered in Section 6 before Section 7 closes the paper.



4

2. A probabilistic extension of Proper Orthogonal Decomposition

To suitably introduce and contextualize the Latent Dirichlet Allocation, several estab-
lished approaches to represent data are first briefly discussed.

2.1. Proper Orthogonal Decomposition

2.1.1. General formulation

The Proper Orthogonal Decomposition (POD) is arguably the most popular tool for
representation and analysis of turbulent flow fields. It relies on a method rediscovered
and revisited several times in different scientific domains and comes by several names
(Principal Component Analysis, Empirical Mode Decomposition, Karhunen-Loève de-
composition, Latent Semantic Allocation (LSA) . . . ) although they are not all strictly
equivalent. It was introduced for turbulent flows and adapted by Lumley (1967).

The POD method allows to derive an orthogonal basis for the (sub)space of the
fluctuations of a multi-dimensional quantity f of finite variance. One can show that a
basis for the space of fluctuations, defined as f ′ (t) := f (t)− 〈f〉, with 〈·〉 the statistical
mean, is given by the set of elements {φn}n, eigenvectors of the following eigenvalue
problem (Holmes et al. 1996):

Cφn = λnφn, (2.1)

with λn the eigenvalue and C ∈ RNx×Nx the empirical 2-point covariance matrix:

C =
1

Ns

Ns∑
i=1

f ′ (ti)f
′ (ti), (2.2)

with {ti}i the time instants for which the field f is available. Some conditions on

the temporal sampling scheme apply for the empirical covariance Ĉ to be an accurate
approximation of C (Holmes et al. 1996). POD modes are identified as the eigenvectors
φn.

2.1.2. Method of snapshots

The above method is a quite natural implementation of the underlying Hilbert-
Schmidt decomposition theory. However, the algorithmic complexity associated with the
eigenvalue problem (2.1) scales as O

(
NsNx

2
)
, where the number of field instances Ns

was assumed to be lower than the size Nx of the discrete field, Ns 6 Nx. For large
field vectors (large Nx), the computational and memory cost is hence high. For this
widely encountered situation, a possible workaround was suggested in Sirovich (1987)
and consists in solving the following eigenvalue problem:

C̃ an = λnan, an ∈ RNs , (2.3)

with

C̃i,i′ ∝ 〈f ′ (ti) ,f ′ (ti′)〉Ω , ∀ i, i′ ∈ [1, Ns] ⊂ N, (2.4)

and 〈·, ·〉Ω the Euclidean inner product. Since the correlation matrix C̃ is Hermitian,
its eigenvalues are real and non-negative, λn > 0, ∀n, and its eigenvectors {an}n are
orthogonal and can be made orthonormal in an Euclidean sense, aT

n an′ ∝ δn,n′ , with
δ the Kronecker delta. The spatial POD modes are finally retrieved via projection as
follows:

φn = λ−1/2n F ′ an, ∀n. (2.5)

where the i-th column of the matrix F ′ is the snapshot f ′i .
The algorithmic complexity is now O

(
Ns

3
)

and scales much better than the standard
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POD approach (O
(
NsNx

2
)
) in the usual situation where Ns � Nx. In this work, we

rely on this so-called method of snapshots to implement POD.
Formally the decomposition of the snapshot matrix F ′ is equivalent to a singular value

decomposition SVD

F ′ = ΦΣAT, (2.6)

where Φ is the matrix constituted by the n columns φn,
A is the matrix containing the n columns an and Σ is a diagonal matrix whose entries

are λ
−1/2
n . The snapshot matrix can thus be decomposed into a snapshot-mode matrix

A and into a cell-mode matrix Φ. The spatial modes or structures can be seen as latent
variables allowing optimal reconstruction of the data in the L2 norm or an equivalent.
The decomposition can be truncated to retain only the NT largest values corresponding
to the NT first columns of each matrix.

2.2. Probabilistic Latent Semantic Analysis

In all that follows we will consider a collection of Ns scalar fields {fi}i=1,··· ,Ns . Each
field is of dimension Nx and consists of either positive or zero integer values on each grid
cell. For each snapshot i, the value of fi on grid cell l indicates that the grid cell i has been
detected or activated fl,i times. Probabilistic Latent Semantic Analysis (PLSA) tackles
the problem of finding latent variables using a probabilistic method instead of SVD. This
representation assumes that each snapshot fi consists of a mixture of structures zn.

PLSA adds a probabilistic flavor as follows:
• given a snapshot fi, the structure zn is present in that snapshot with probability

p(zn|fi),
• given a structure zn, the grid cell xl is activated with probability p(xl|z).
Formally, the joint probability of seeing a given snapshot fi and activating a grid cell

xl is:

p(fi,xl) = p(fi)
∑
n

p(zn|fi)p(xl|zn). (2.7)

p(fi), p(zn|fi), and p(xl|fi) are the parameters of the model: p(fi) is the probability
to obtain such a snapshot fi and is constant in our case, p(fi) = 1/Ns. p(zn|fi) and
p(xl|zn) can be infered using the Expectation-Maximization (EM) algorithm of Dempster
et al. (1977).

Using Bayes’ rule, p(fi,xl) can be equivalently written as:

p(fi,xl) =
∑
n

p(zn)p(xl|zn)p(fi|zn). (2.8)

This alternative formulation shows a direct link between PLSA model and POD model
(as mentioned above, POD is called Latent Semantic Allocation or LSA in text mining).
If we compare equations (2.6) and (2.8), we see that the structure probability p(zn)
corresponds to the diagonal matrix Λn, the probability of the snapshot fi given the
structure zn corresponds to the snapshot-mode matrix entry Ai,n, and the probability
to activate the cell xl given the structure zn corresponds to the matrix entry Φl,n.

3. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) extends PLSA to address its limitations. Its speci-
ficity is:
• the introduction of a probabilistic model for the collection of snapshots: each snap-
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shot is now characterized by a distribution over the structures which will be now called
motifs.
• the use of Dirichlet distributions to model both motif-cell and snapshot-motif dis-

tributions.

The Dirichlet distribution is a multivariate probability distribution over the space of
multinomial distributions. It is parametrized by a vector of positive-valued parameters
α = (α1, . . . , αN ):

p (x1, . . . , xN ;α1, . . . , αN ) =
1

B(α)

N∏
n=1

xαn−1
n ,

where B is a normalizing constant, which can be expressed in terms of the Gamma
function Γ :

B(α) =

∏N
n=1 Γ (αn)

Γ (
∑N
n=1 αn)

.

The support of the Dirichlet distribution is the set of N -dimensional discrete distribu-
tions, which constitutes the N − 1 simplex. Introduction of the Dirichlet distribution
allows us to specify the prior belief about the snapshots. The Bayesian learning problem
is now to estimate p(zn,fi) and p(xl, zn) from F given our prior belief α, and it can be
shown that Dirichlet distributions offer a tractable, well-posed solution to this problem
(Blei et al. 2003).

LDA is therefore based on the following representation:

(i) Each motif zn is associated with a multinomial distribution ϕn over the grid
cells (p (xl|zn) = ϕl,n). This distribution is modeled with a Dirichlet prior parametrized
with a Nx-dimensional vector β. The components βl of β control the sparsity of the
distribution: values of βl larger than 1 correspond to evenly dense distributions, while
values lower than 1 correspond to sparse distributions. In all that follows, we will assume
a non-informative prior, meaning that β = β1Nx

.
(ii) Each snapshot fi, is associated with a distribution of motifs θi such that θn,i =

p(zn|fi). The probabilities of each motif add up to 1 in each snapshot. This distribution is
modelled with a NT -dimensional Dirichlet distribution of parameter α. The magnitude of
α characterizes the sparsity of the distribution (low values of αn correspond to snapshots
with relatively few motifs). The same assumption of a non-informative prior leads us to
assume α = α1NT

.

The generative process performed by LDA with NT motifs is the following:

(i) For each motif zn, a cell-motif distribution ϕn is drawn from the Dirichlet distri-
bution of parameter β.

(ii) For each snapshot fi:
• a snapshot-motif distribution θi is drawn.
• each intensity unit 1 6 j 6 Ni where Ni is the total intensity with Ni =

∑
l fl,i

is then distributed among the different cells as follows:
◦ a motif zn is first selected from θi (motif zn occurs with probability θn,i in
the snapshot),
◦ for this motif, a cell l is chosen among the cells using ϕl,n and the intensity
associated with cell l is incremented by 1.
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The generative process can be summarized as follows:

Algorithm 1: LDA Generative Model.

for each of the NT motifs n do
sample ϕn ∼ Dir(β)

end
for each of the Ns snapshots i do

sample θi ∼ Dir(α)
for each of the Ni intensity units do

1. sample a motif zn from θn,i
2. for this motif sample a cell l from ϕl,n

end

end

The snapshot-motif distribution θi and the cell-motif distribution ϕn are determined
from the observed fi. They are respectively NT - and Nx-dimensional categorical distribu-
tions. Finding the distributions θi and ϕn that are most compatible with the observations
is an inference problem that can be solved by either a variational formulation (Blei et al.
2003) or a Gibbs sampler (Griffiths & Steyvers 2002). In the variational approach, the
objective function to minimize is the Kullback-Leibler divergence. The solution a priori
depends on the number of motifs and on the values of the Dirichlet parameters α and β.

We conclude this section with two remarks.
(i) LDA can generalize to new snapshots more easily than PLSA, due to the snapshot-

motif distribution formalism. In PLSA, the snapshot probability is a fixed point in the
dataset, which cannot be estimated directly if it is missing. In LDA, the dataset serves as
training data for the Dirichlet distribution of snapshot-motif distributions. If a snapshot
is missing, it can easily be sampled from the Dirichlet distribution instead.

(ii) An alternative viewpoint can also be adopted in interpreting the LDA in the form
of a regularized matrix factorization method. This is further discussed in Appendix A.

4. Application of LDA to turbulent flows

4.1. Numerical configuration

The idea of this paper is to apply this methodology to snapshots of turbulent flows
in order to determine latent motifs from observations of Q− events. We will consider
the configuration of turbulent channel flow at a moderate Reynolds number of Rτ =
uτh/ν = 590 (Moser et al. 1999; Muralidhar et al. 2019), where Rτ is the Reynolds
number based on the fluid viscosity ν, channel half-height h and friction velocity uτ . Wall
units based on the friction velocity and fluid viscosity will be denoted with a subscript

+. The streamwise, wall-normal and spanwise directions will be referred to as x, y and z
respectively. The horizontal dimensions of the numerical domain are (π, π/2)h. Periodic
boundary conditions are used in the horizontal directions. The resolution of (256)3 points
is based on a regular spacing in the horizontal directions and a hyperbolic tangent
stretching function for the vertical direction. The configuration is shown in Figure 1.
More details about the numerical simulation can be found in Muralidhar et al. (2019).

4.2. LDA inputs

In this section, we introduce the different parameters of the study. The python library
scikit-learn (Pedregosa et al. 2011) was used to implement LDA. The sensitivity of
the results to these parameters will be examined in a subsequent section.
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We first focus on 2-D vertical subsections of the domain, then present 3-D results.
The vertical extent of the domain of investigation was the half-channel height. Since this
is an exploration into a new technique, a limited range of scales was considered in the
horizontal dimensions: the spanwise dimension of the domain was limited to 450 wall
units. The streamwise extent of the domain was in the range of 450-900 wall units. The
number of realizations considered for 2-D analysis was Ns = 800, with a time separation
of 60 wall time units. The number of snapshots was increased to 2400 for 3-D analysis.

The scalar field f of interest corresponds to Q− events. It is defined as the positive part
of the product −u′v′ , where fluctuations are defined with respect to an average taken
over all snapshots and horizontal planes. The LDA procedure requires that the input
field consists of integer values: it was therefore rescaled and digitized and the scalar field
f was defined as:

f = [Aτ−],

where τ− = max (−u′v′, 0) and [·] represents the integer part. The rescaling factor A was
chosen in order to yield a sufficiently large, yet still tractable, total intensity. In practice
we used A = 40, which led to a total intensity

∑
i

∑
l fl,i of about 108 for plane sections.

The effect of the rescaling factor will be examined in a subsequent section.

LDA is characterized by a user-defined number of motifs NT , a parameter α which
characterizes the sparsity of prior Dirichlet snapshot-motif distribution, and a parameter
β which characterizes the sparsity of the prior Dirichlet motif-cell distribution. Results
were obtained assuming uniform priors for α and β with a default value of 1/NT . The
sensitivity of the results to the priors will be evaluated in Section 5.2.

4.3. LDA outputs

For a collection of Ns snapshots and a user-defined number of motifs NT , LDA returns
NT motif-cell distributions ϕn and Ns snapshot-motif distributions θi. Each motif is
defined by a probability distribution ϕn associated with each grid cell. It is therefore
analogous to a structure or a portion of structure since it contains spatial information -
note however that its definition is different from standard approaches. The motif-snapshot
distribution θi characterizes the prevalence of a given motif in the snapshot.

As will be made clear below, the motifs most often consist of single connected regions,
although occasionally a couple of distinct regions were identified. In most cases, the motifs
can thus be characterized by a characteristic location xc and a characteristic dimension
in each direction Lj , j ∈ {x, y, z}.

To determine these characteristics, we first define for each motif a mask associated with
a domain D. The origin of the domain was defined as the position xm) corresponding to
its maximum probability pm = ϕn(xm). The dimensions of the domain in each direction
(for instance Lx) were defined as the segment extending from the domain origin over
which the probability remained larger than 1% of its maximum value pm. The position
and characteristic dimension of a motif for instance in the x-direction are then defined
as:

xc =

∫
D
xϕndD∫

D
ϕndD

, (4.1)

L2
x = 2

∫
D

(x− xc)2ϕndD∫
D
ϕndD

. (4.2)

Analogous definitions can be given for yc and zc.
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Figure 1: Numerical domain D. The shaded surfaces correspond to the two types of
planes used in the analysis. The volume considered for 3D analysis is indicated in bold
lines.

5. Results

5.1. Vertical planes

In order to investigate in detail the vertical organization of the flow, LDA was first
applied to vertical sections of the flow. Both cross-flow (y, z) and longitudinal (x, y)
sections were considered. Due to the horizontal homogeneity of the flow, we do not
expect significant changes in the cell-motif and the motif-document distributions when
the sections are translated in the horizontal direction.

5.1.1. Cross-flow planes

The dimensions of the cross-sections were dz+ = 450 and dy+ = 590. Figure 2 shows
selected motifs for a total number of motifs NT = 96 on a vertical plane at x = 0. The
motifs consist of isolated regions, the dimensions of which increase with the wall distance.
This is confirmed by Figure 3, which represents characteristic sizes of LDA motifs of a
succession of four vertical planes separated by a distance of 100 wall units (+). We
point out that observing motifs which are detached from the wall does not infirm the
presence of wall-attached structures, as they would be consistent with a cross-section of
a wall-attached structure elongated in the streamwise direction. Results for several motif
numbers (three different motif numbers NT = 48, 96, 144 are shown in Figure 3), it was
found that both spanwise and vertical dimensions increase linearly with the wall distance
in the region y+ > 100. Again, this is in agreement with Townsend (1961)’s hypothesis of
a hierarchy of structures of increasing dimensions, which was also confirmed numerically
by Flores & Jimenez (2010).

The aspect ratio Lz/Ly is constant with the wall distance above y+ > 100, with a
typical value of about 1. We note that Lozano-Duran et al. (2012) found with a different
definition that Q− events were characterized by nearly equal spanwise and vertical sizes
∆z ∼ ∆y, while Alamo et al. (2006) found a scaling of ∆z ∼ 1.5∆y for vortex clusters.

Figure 4 (left) shows the distribution of the vertical location p(ym) of the motif
maximum probability. Comparison of two different plane locations x confirms that results
do not depend on the location of the plane, which reflects the statistical homogeneity of
the flow in the horizontal direction. The probability decreases as the inverse of the wall
distance on all planes. This is in agreement with Townsend’s self-similarity hypothesis
that the number of structures decreases with the wall distance in 1/y (Townsend 1961;
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Figure 2: Selected motifs in a cross-flow plane for a number of motifs NT = 96.

Woodcock & Marusic 2015). Figure 4 (right) shows that a good fit is p(y) ' c
y − γ, with

γ = 0.0006 and c = 0.4.

5.1.2. Longitudinal planes

We now examine results for the longitudinal sections (x, y). The streamwise and vertical
dimensions of the sections are respectively dx+ = 900 and dy+ = 590 wall units, although
some tests were also carried out for a streamwise extent of 450 units. Figure 5 presents
selected motifs for the longitudinal planes for NT = 96. As in the cross-flow plane, the
dimensions of the motifs increase with the wall distance, which is confirmed by Figure 6.
The characteristic dimensions seem essentially independent of the total number of motifs
(see also next section). There is a wide disparity in streamwise characteristic dimensions
near the wall. The motif aspect ratio is highest near the wall and decreases sharply in the
region 0 < y+ < 50. The vertical dimension increases linearly with the wall distance in
the region y+ > 100, as well as the streamwise dimension, with an aspect ratio of Lx/Ly
on the order of 2.

Figure 7 shows the distribution of the motif maximum probability location for two
different sets NT = 48, 96, and for two domain lengths. The shape of the distribution
does not appear to change, and again fits well with the distribution p ' c

y − γ with

c = 0.4 and γ = −0.0006 (Figure 7 right).

5.2. Sensitivity of the results

In this section we examine if and how the characteristics of the motifs depend on the
various parameters of LDA. We point out that the probabilistic framework of the model
makes exact comparison difficult, since there is no convergence in the L2 sense, and the
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Figure 3: Cross-plane motif characteristic sizes; Left: Vertical dimension Ly; Right :
Spanwise dimension Lz; Bottom: Aspect ratio Ly/Lz. Each dot corresponds to a motif.

Figure 4: Left: Distribution of the motif maximum location yc; Right: Compensated plot
of the distribution for different sets of motifs and different subdomains. The legend is
the same for the two figures.

Kullback-Leibler divergence, which measures the difference between two distributions is
not a true metric tensor (see Appendix).

The criteria we chose to assess the robustness of the results were the characteristic
size of the topics and the distribution of their locations. We first examine the influence
of various LDA parameters on the results obtained for cross-flow sections for a constant
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Figure 5: Selected motifs for a longitudinal plane with NT = 96 motifs.

Figure 6: Longitudinal motif characteristic dimensions; Left: Streamwise dimension Lx;
Right: Vertical dimension Ly; Bottom : Aspect Ratio Lx/Ly. Each dot corresponds to a
motif.

number of topics NT = 48. The reference case corresponded to an amplitude A = 40,
prior values of α = β = 1/NT and a total number of snapshots Ns = 800.

Figure 8 (top row) shows that the characteristic dimension is not modified when the
number of snapshots was reduced by 50%, indicating that the procedure has converged.
Figure 8 (bottom row) shows the characteristic vertical dimension Ly of the structures
when the rescaling parameter A was varied. Similar results (not shown) were found for Lz.
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Figure 7: Left: Histogram of the motif location yc; Right: Compensated plot of the
histogram for different sets of motifs and different subdomains. The legend is the same
for the two figures.

Although some fluctuations were observed in the individual characteristic dimensions, no
significant statistical change was observed. Figure 9 shows the characteristic dimensions
of the structures for different prior choices for α and β, which govern the sparsity of the
representation. No significant statistical trend was modified when α and β were made to
vary within 1/10 and up to 10 times their default values of 1/NT . Figure 10 shows that
the distribution of the maximum location of the motifs follows the same inverse law and
does not depend on the choice of parameters chosen for LDA.

We now study the sensitivity of the motifs to the choice of NT for both types of vertical
planes. We have seen in the previous sections that the motif dimensions appear essentially
independent of the number of motifs considered. To quantify this more precisely, we first
define a characteristic motif size LT as LT =

√
〈AT 〉 where AT is the area corresponding

to the ellipsoid with the same characteristic dimensions as the motif and 〈·〉 represents
the average over the motifs. Figure 11 summarizes how the motif size evolves with the
number of motifs for both vertical and longitudinal planes. In all cases, it was found that
the characteristic size varies slowly around a minimal value (Figure 11, left), and that the
characteristic area of the motif was minimum when the sum of the motif characteristic
areas NTAT was comparable with the total domain area AD (Figure 11, right).

5.3. 3-D Analysis

LDA was then applied to a volumic section of the flow of size 450×590×450 wall units.
Figure 12 shows the cross-sections views of three 3-D motifs. One can note the streamwise
coherence of the topics over different heights. We note that the small dimensions of the
volume may make it difficult to capture full-length structures, even at this comparatively
low Reynolds number, and results should be confirmed by a more extensive investigation
which is outside the scope of this paper.

The characteristic dimensions of the motifs are reported in Figure 13. Two different
regions can be identified. For y+ < 100 the region is characterized by a wide distribution
of Lx, with large values that can extend over the whole domain. Some relatively large
values of Lz can occasionally be observed. For y+ < 100 values of Lx are lower and Lz
grows linearly. Ly appears to grow linearly over both regions.

The ratio between the horizontal dimensions Lx and Lz is reported in Figure 13 (right).
We can see that the streamwise to spanwise aspect ratio decreases over 0 < y+ < 100
from an average value of 5 at the wall, which corresponds to the typical aspect ratio of
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Figure 8: Motif characteristic vertical dimension for NT = 48. Top row: Influence of
dataset size; Ns: Ns= 800 (left), Ns = 400 (right); Bottom row: Effect of rescaling
factor; A = 60 (left); A = 20 (right).

the streaks (Dennis 2015). It then decreases more slowly towards an aspect ratio of about
2 in the region 100 < y+ < 500. This ratio is consistent with results from analysis of
POD eigenfunctions in Podvin et al. (2010), as well as from vortex cluster analysis from
Alamo et al. (2006). 3-D motif characteristic sizes are consistent with those obtained for
vertical planes, which shows that information about the 3-D organization of the flow can
be obtained from analysis performed on 2-D sections. This is of particular interest as it
suggests that the LDA method could be usefully applied to PIV experimental data.

6. Field reconstruction and generation

6.1. Reconstruction

We now examine how the flow can be reconstructed using LDA. In all that follows,
without loss of generality, we will focus on one of the cross-flow planes examined in
Section 5, specifically the cross-section at x = 0 of dimensions dy+ = 590 and dz+ = 450.
As described in the algorithm presented in Section 3, both the motif-snapshot and the
cell-motif distributions can be sampled for the total intensity Ni =

∑
l fl,i in the i-th

snapshot. This total intensity is defined as the rescaled integral value of the Reynolds
stress (digitized and restricted to Q− events) over the plane. Since results were found to
be essentially independent of the rescaling, we can make the simplifying assumption that
Ni is large enough so that the distribution ϕn is well approximated by the samples. For
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α = 0.1/NT , β = 1/NT α = 10/NT , β = 1/NT

α = 1/NT , β = 0.1/NT α = 1/NT , β = 10/NT

Figure 9: Characteristic vertical motif length for different LDA priors, NT = 48.

Figure 10: Distribution p of motif/cell distribution maximum ym for different parameters.
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Figure 11: Left: motif characteristic dimension LT for different datasets as a function
of the number of motifs; Right: relative fraction of the area captured by the sum of the
topics NTAT /AD.

a given total intensity Ni, a reconstruction of the i-th snapshot can then be obtained at
each grid cell xl from

τR−LDA(x, ti) =
1

A
fi(x) =

Ni
A

NT∑
n=1

θn,iϕn(x),

where
• ϕn(x) is the motif-cell distribution,
• the snapshot-motif distribution θn,i represents the likelihood of motif zn in the i-th

snapshot.
It seems natural to compare this reconstruction with the POD representation of the

field which has a similar expression

τR−POD(x, ti) =

NPOD−1∑
n=0

an,iφn(x),

where
• φn(x) are the POD eigenfunctions extracted from the autocorrelation tensor Ci,i′

obtained from the Ns snapshots,
• an,i corresponds to the amplitude of the n-th POD mode in the i-th snapshot.

The first six fluctuating POD modes are represented in Figure 14. We note that the 0-th
POD mode represents the temporal average of the field. As expected, the fluctuating
POD modes consist of Fourier modes in that spanwise direction (due to homogeneity of
the statistics), and their intensity reaches a maximum at around y+ ' 25.

If the number of POD modes is equal to the number of motifs NT , by construction,
POD will provide a better representation of the statistics at least up to second-order
(Holmes et al. 1996). We note that, in terms of computational requirement, POD
may appear less expensive than LDA, as it requires solving an SVD problem versus
implementing an iterative Expectation Maximization algorithm (Dempster et al. 1977).
However the performance of the EM algorithm can be improved, in particular with online
updates (Hofmann 1999).

In terms of storage, a reconstructed snapshot requires NPOD modes for POD and NT
topics for LDA. However, storage reduction could be obtained in the case of LDA by
filtering out the motifs with a low probability θn,i, i.e., lower than a threshold κ. We
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x+ = 28 x+ = 142 x+ = 255

Figure 12: Cross-sections at different streamwise locations of three different 3D motifs
obtained for NT = 144; Top row: Motif index n = 34; Middle row: Motif index n = 7;
Bottom row: Motif index n = 24.
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Figure 13: Left: Characteristic dimensions of the 3D motifs, NT = 144; Right : Evolution
of ratio Lx/Lz with height for NT = 144 and NT = 48.

note that, in this case, it is necessary to store the indices n of the motifs as well as the
value of θn,i, so that if n modes (resp. topics) are kept, storage will consist of 2n variables
per snapshot. We see that storage reduction can be achieved if the fraction of retained
modes η = n/NT is sufficiently small. The LDA storage data length per snapshot 2ηNT
should then be compared with the POD data length NPOD.

For NT = 96, choosing a threshold of κ = 0.015 resulted in less than 8% difference
between the filtered and unfiltered LDA reconstructions (the L2 norm was used). The
average value for η was 0.2, which means that the number of POD modes that would
represent a storage equivalent to that of LDA with NT = 96 is NPOD ' 2ηNT ' 40.
We note that the total storage cost should further take into account the size of the LDA
basis {zn}n, which will be larger than the POD basis {φn}n since they are respectively
equivalent to NT and NPOD fields. However efficient storage of the LDA basis can be
achieved by making use of the limited spatial support of zn, in particular for motifs
located close to the wall.

In the remainder of this section we will compare a filtered LDA reconstruction of 96
motifs (where values of θn,i lower than κ = 0.015 are excluded from the reconstruction),
with a POD representation of NPOD = 48 modes, which captures about 75% of the total
energy. Figure 15 compares an instantaneous field with its LDA reconstruction and its
POD reconstruction. A more general assessment is provided by Figure 16, which shows
the correlation coefficient between each snapshot and its reconstruction based on POD as
well as that based on LDA. Although POD appears to be slighty superior, the correlation
coefficients are very close with respective average values of 0.75 for LDA and 0.77 for
POD.

6.2. Generation

LDA is a generative model, so it is straightforward to generate synthetic snapshots by
sampling from distributions θ and ϕ for a total intensity Ni =

∑
l fl,i, which is modeled

as a Poisson process with the same mean and standard deviation as the original database.
In contrast, POD is not a generative model per se. We will use a simplified version

of the probabilistic extension of POD (PPCA) derived by Tipping & Bishop (1999),
which is presented in Appendix B, where we will make the additional assumption that
no noise is present in the model, POD-based synthetic fields will be reconstructed from
deterministic spatial POD modes φn and random POD amplitudes an which are assumed
to be Gaussian variables. Examination of Figure 17, which represents the distribution of
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Figure 14: Contour plot of the first six fluctuating normalized POD spatial modes;
Contour values go from −0.03 to 0.03. Negative values are indicated by dashed lines.

Figure 15: Instantaneous Reynolds stress field (limited to Q− events) Left: True field;
Middle: POD-reconstructed field using 48 POD modes; Right: LDA-reconstructed field
using 96 modes.

the first fluctuating POD coefficients n > 1, suggests that it is quite acceptable as a first
approximation to assume Gaussian distributions for the amplitudes an — alternatively,
the amplitudes could be sampled from the empirical distributions. The amplitude of the
0-th mode, which corresponds to the average of the field over the snapshots, will be
assumed to be constant for all snapshots.

We can therefore compare the databases reconstructed from and generated with
LDA with those obtained from POD. The generated databases consist of Ns snapshots
corresponding to arbitrary instants t̃i. Overall, the statistics of five different databases
can be compared:

• the true database τ−(y, z, ti) corresponding to the actual values of the Q− events
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Figure 16: Distribution of the correlation coefficient between each original snapshot and
its reconstruction based on LDA (top) or POD (bottom).

• the POD-reconstructed (R-POD) or POD-projected database

τR−POD
− (y, z, ti) =

NPOD−1∑
n=0

ai,nφn(y, z),

where φn are the POD eigenfunctions and ai,n are the amplitudes of the n-th POD mode
in the i-th snapshot.
• the POD-generated (G-POD) database

τG−POD
− (y, z, t̃i) =

NPOD−1∑
n=0

ãi,nφn(y, z),

where ãi,0 = 〈ai,0〉, with 〈·〉 the average over all snapshots and ãi,n, n > 1, centered
Gaussian random variables with variance

〈
ã2i,n

〉
.

• the LDA-reconstructed database (R-LDA)

τR−LDA
− (y, z, ti) =

Ni
A

NT∑
n=1

θn,iϕn(y, z),

where Ni is the total intensity measured in the i-th snapshot, θn,i is the distribution of
motif n on the i-th snapshot and ϕn(y, z) is the identified distribution of the cell at (y, z)
on motif n.
• the LDA-generated database (G-LDA)

τG−LDA
− (y, z, t̃i) =

Ñi
A

NT∑
n=1

θ̃n,iϕn(y, z),

where Ñi is the total intensity, which is sampled from a Poisson process, ϕn(y, z) is the

identified distribution of the cell at (y, z) on motif n and θ̃n,i is sampled for each n from
the empirical distribution θn,i over the snapshots.

Figure 18 shows the statistics of the different databases as a function of the wall



21

Figure 17: Histograms of the normalized amplitudes of the first six fluctuating POD
modes and comparison with a sampled Gaussian distribution.

distance. Averages are taken over all snapshots and in the streamwise direction. The mean
value of the Reynolds stresses is correctly recovered by all methods. The second-order
statistics are slightly better recovered by the POD-reconstructed and POD-generated
snapshot sets, but both LDA approaches also capture a significant portion of the variance.
The POD databases capture 75% of the total variance, while the reconstructed and gen-
erated LDA databases respectively capture 68% and 60% of the variance. Figure 19 shows
the vertical spatial autocorrelation of τ− defined as R(y, y′) =

〈
τ−(x, y, z, t)τ(x, y

′, z, t)
〉

(where 〈·〉 represents an average taken in time and in the spanwise position). We can
see that the generated LDA autocorrelation is very similar to its reconstructed POD
counterpart, which shows that the LDA synthetic fields capture as much as the spatial
structure as the POD reconstructed ones. We note that the autocorrelation at large
separations is well reproduced by all datasets.

Figure 20 shows histograms of the fields at different heights. We note that unlike the
LDA approach, which is a non-negative decomposition (since it is based on probabilities),
some negative values are observed for the POD approach, even though the original field
values considered are always positive. We can see that at different wall distances the
POD-reconstructed database reproduces well the distribution of the original database,
but the POD-generated database does not. This failure is due to the fact that although
POD amplitudes are uncorrelated by construction, they are not independent. We note
that the same failure was observed when sampling the POD coefficients from their data-
observed distributions ai,n instead of Gaussian processes. In contrast, both reconstructed
and generated LDA methods yield very similar distributions, which reproduce the main
features of the original Reynolds stress values, such as the intermittency (sharp peak at
zero) and the asymptotic decay for positive values.
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Figure 18: Statistics of the different databases averaged over the spanwise direction and
the number of snapshots. Left: Mean value; Right: Standard deviation.

Figure 19: Spatial autocorrelation of the Reynolds stress (limited to Q− events) in the
vertical direction at different heights. The average is taken over snapshots and in the
spanwise direction.

7. Conclusion

This paper presents exploratory work about the application of Latent Dirichlet Al-
location (LDA) to the identification of coherent structures in turbulent flows. In the
probabilistic framework of LDA, latent factors or motifs are inferred from a collection of
snapshots. Each snapshot is characterized by a motif distribution, and each motif itself
is distributed over space. Implementation was carried out for a scalar field representing
Reynolds stress Q− events. Evidence of self-similarity was found in the motifs: the
spanwise and vertical dimensions of the motifs increase linearly with the wall distance
in the logarithmic region, and the number of structures evolves inversely with the
wall distance. This is in agreement with the eddy attached model hypotheses. The
characteristics of the motifs were established to be robust with respect to the LDA
parameters.

LDA yields a sparse, efficient reconstruction of the snapshots that compares reasonably
well with POD representation. Adding in the fact that the motifs have a local spatial
support, even when statistics are homogeneous, could make the LDA representation
of interest for estimation and control purposes. Further, a strong benefit of LDA is
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y+ = 19

y+ = 61

y+ = 157

y+ = 343

Figure 20: Histograms of the Reynolds stress (limited to Q− events) corresponding to
the different databases at different heights.

its inherent generative property, which makes it possible to generate a set of synthetic
snapshots which is statistically similar to the original one.

The first results obtained with the LDA method open up exciting prospects for data
analysis and modeling of turbulent flows. We plan to study larger domains at higher
Reynolds numbers in future work. Moreover, while the investigation was limited to a
positive scalar field in the present implementation, it would be useful to extend the
capabilities of LDA to fully real, as well as multi-dimensional fields. Finally, since the
technique appears well suited to describe intermittent phenomena, it would be interesting
to apply it to strongly inhomogeneous flow regions such as the turbulent/non-turbulent
interface (Philip et al. 2014) or other types of intermittency (Johnson & Meneveau 2017).
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Appendix A. LDA as a factorization method

To further shed light on the interpretation of LDA, we now adopt a different viewpoint
and briefly explore the connections between the decomposition methods discussed above
in the framework of Matrix Factorization (MF). Specifically, we now explain how model
decomposition methods, such as POD, K-means and LDA, can be interpreted in terms
of Matrix Factorization.

A.1. Matrix factorization

Letting F ∈ RNx×Ns be a data matrix to be approximated, MF consists in the following
decomposition:

F = XY, (A 1)

with X ∈ RNx×NT and Y ∈ RNT×Ns two real-valued matrices. Compression is achieved
whenever NT < min(Nx, Ns), which is considered hereafter. MF can be formulated as an
optimization problem:

(X,Y ) ∈ arg min
X̃∈SX ,Ỹ ∈SY

∥∥∥F − X̃Ỹ ∥∥∥2 +R
(
X̃, Ỹ

)
, (A 2)

with ‖·‖ a given norm, SX and SY admissibility sets for X and Y respectively, and R a
regularization term.

A.2. POD-MF equivalence

Let the singular value decomposition (SVD) of the Nx × Ns real-valued data matrix
F be

F = ΨΣBT, (A 3)

with Ψ and B two orthonormal matrices and Σ being diagonal. The Eckart-Young
theorem makes precise in which sense this decomposition is optimal, Eckart & Young
(1936). In particular, it follows that

ΨNT
,
(
ΣBT

)
NT
∈ arg min
Ψ̃TΨ̃=INT

∥∥∥F − Ψ̃ (Σ̃BT
)∥∥∥

F
, ∀NT 6 min (Nx, Ns) , (A 4)

where
(
ΣBT

)
NT

= ΣNT
BT
NT

and with ΨNT
and BNT

the restriction of Ψ and B to their

columns associated with the dominant NT singular values diag (ΣNT
).

From Eq. (A 3), it comes

FFTΨ = ΨNT
ΣNT

BT
NT
BNT

ΣT
NT
ΨT
NT
ΨNT

= ΨNT
Σ2
NT

= CNT
ΨNT

. (A 5)

Refering to Eqs. (2.1) and (2.2), the diagonal matrix Σ2
NT

and ΨNT
then directly



25

identify with the NT dominant eigenvalues Λ and POD modes Φ, respectively. Denoting
the Moore-Penrose pseudo-inverse with a + superscript, the POD projection coefficients
are:

A = Φ+F = ΦTF = ΨT
NT
F = ΣNT

BT
NT
, (A 6)

so that the POD decomposition is finally seen to satisfy the following matrix factorization
problem:

Φ,A ∈ arg min
ΦTΦ=INT

‖F − ΦA‖F , (A 7)

of the form of Eq. (A 2) with R ≡ 0 and SX such that XTX = INT
.

A.3. K-means-MF equivalence

Clustering is an unsupervised learning technique aiming at identifying groups (clusters)
in the data such that data points in the same group have similar features, while data
points in different groups have highly dissimilar features.

K-means is one of the simplest and popular clustering methods, MacQueen (1967);
Lloyd (1982). The algorithm tries to iteratively partition the dataset into NT predefined
distinct non-overlapping clusters {Cn}n. In its standard deterministic version, each data
point belongs to only one cluster. The key idea consists in assigning each data point to
the closest centroid (arithmetic mean of all the data points that belong to that cluster).
The distance is defined in terms of some chosen norm ‖·‖. Setting the number of clusters
NT , the algorithm starts with an initial guess for the NT centroids {cn}n, by randomly
selecting NT data points from the data set without replacement. It then iterates between
the data assignment step, assigning each data point fi to the closest cluster Cn?

i
and the

centroid update step, which computes the centroid of each cluster:

n?i ← arg max
16ñ6NT

‖cñ − fi‖2 , ∀ 1 6 i 6 Ns, (A 8)

cn ←
1

card [Cn]

∑
fi∈Cn

fi, ∀ 1 6 n 6 NT . (A 9)

K-means is guaranteed to converge to a local optimum but not necessarily to a global
optimum. Therefore, we choose to run the algorithm with different initializations of
centroids and retain the solution that yielded the lowest loss L :

L =

NT∑
n=1

∑
fi∈Cn

‖fi − cn‖2. (A 10)

Solving a clustering problem in the L2-sense means finding a set of {Cn}NT

n=1 disjoint

clusters (Cn
⋂
Cn′ = {∅}, n 6= n

′
), that minimizes the following cost function:

L =

NT∑
n=1

∑
fi∈Cn

‖fi − cn‖22 =

Ns∑
i=1

‖fi‖22 −
NT∑
n=1

∑
fi,fi′∈Cn

n−1n f
T
i fi′ , (A 11)

where {cn}NT

n=1 are the cluster centroids, cn :=
∑

fi∈Cn fi/nn, nn := card [Cn].

Let Y ∈ [0, 1]
Ns×NT be the normalized cluster indicator matrix, yn = n

−1/2
n 1{fi∈Cn}.

Disjointedness of clusters implies that columns of Y are orthonormal, Y TY = INT
. The
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clustering problem (A 11) may now reformulate in terms of Y > 0 as, Ding et al. (2005):

Y ∈ arg min
Ỹ>0,Ỹ TỸ=INT

Tr
[
FTF

]
− Tr

[
Ỹ TFTFỸ

]
,

∈ arg min
Ỹ>0,Ỹ TỸ=INT

∥∥FTF
∥∥2
F
− 2Tr

[
Ỹ TFTFỸ

]
+
∥∥∥Ỹ TỸ

∥∥∥2
F
,

∈ arg min
Ỹ>0,Ỹ TỸ=INT

∥∥∥FTF − Ỹ Ỹ T
∥∥∥2
F
. (A 12)

The Euclidean hard-clustering K-means problem hence stems from an orthogonal non-

negative matrix factorization form and the clusters are given by cn = n
−1/2
n Fyn, ∀n.

A.4. LDA-MF equivalence

We now focus on LDA and discuss the fact that, similarly to POD and K-means, it
can also be interpreted as a matrix factorization technique, under certain conditions.

Let us consider the variational LDA flavor, where infering the LDA parameters from
maximizing the posterior distribution p is substituted with an approximated posterior
q, easier to sample from. The inference problem then consists in minimizing the approx-
imation error, which is equivalent to maximizing the Evidence Lower Bound (ELBO)
L :

L = Eµq
[p]− Eµq

[q] . (A 13)

Provided suitable approximations in the inference problem are made, and under a
symmetric Dirichlet priors hypothesis (α = α1), Faleiros & Lopes (2016) have derived
an upper bound for the ELBO associated with variational LDA:

max L / min

Nx∑
l

Ns∑
i

(
Fl,i log

Fl,i
(XY )l,i

+

NT∑
n

R(Yn,i, αn)

)
, (A 14)

where X > 0 and Y > 0 are variational parameters to infer, normalized as
∑
lXl,n =∑

n Yn,i = 1, and regarded as normalized probability distributions. xn is related to β
while yi is related to the distribution θi of a document fi. The term R(Yn,i, αn) :=
(Yn,i − αn)(log Yn,i − Yn,i(log Yn,i − 1)) corresponds to the prior influence and induces
sparsity over the document-topic distribution.

From Eq. (A 14), it follows that maximizing the ELBO L under certain approx-
imations takes the form of a non-negative matrix factorization problem (NMF) of
F ≈ XY expressed in terms of the Kullback-Leibler divergence DI(F‖XY ) :=∑
l,i

(
Fl,i log

Fl,i

(XY )l,i
− Fl,i + (XY )l,i

)
, supplemented with a regularization term.

Details of the derivation are beyond the scope of this paper and one should refer to
Faleiros & Lopes (2016) for a more complete discussion.

Appendix B. Probabilistic PCA/ POD

In this section, we give a brief review of Probabilistic PCA (PPCA) (Tipping & Bishop
1999) which provides a density estimation framework for POD (or PCA/LSA), under
hypotheses that are different from those given in section 2.2 for PLSA.

We will assume that the data is zero-centered without loss of generality. The basic
idea of PPCA is to assume a Gaussian probability model for the observed data f ′. In
that formulation (see section 2.2), the motif-cell matrix Φ̃ of dimension Nx × NT does
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not have a probabilistic interpretation, but relates each noisy observation to a set of NT
independent normalized Gaussian variables following

f ′ = Φ̃ã+ ε (B 1)

where the variables ã are defined to be independent and Gaussian with unit variance and
ε represents noise.

An important assumption to proceed is that the model for the noise should be isotropic

< εε >= σ2I,

so that all the dependences between the observations are going to be contained in Φ̃. On
can then show using equation ( B 1) that

p(f ′) = N (0, C)

where C = Φ̃T Φ̃+ σ2I is the observation covariance matrix of dimension N2
x .

The issue is to determine Φ̃ and σ̃, given the observations of f ′. Under the assumption of
isotropic Gaussian noise, Tipping & Bishop (1999) showed that the maximum likelihood
estimators Φ̂ and σ̂2 can be obtained from standard POD analysis on the Ns snapshots.
They showed that

Φ̂ = Φ(Λnmode − σ2INT
)1/2R (B 2)

where Φ contains the first NT eigenvectors of the sampled covariance matrix C̃ where C̃
was defined in equation 2.4 (note that the dimension of C̃ is Ns

2), ΛNT
is a diagonal

matrix containing the NT first eigenvalues of C̃ and R is an arbitrary rotation matrix.
An estimate for the error variance can then be given by

σ̂2 =
1

Ns −NT

Ns∑
j=NT+1

λj , (B 3)

which represents the variance lost in the project and averaged over the lost dimensions.
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