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I. Introduction

Current state of the art in robotic assistance for surgical procedures [START_REF] Staderini | Robotic rectal surgery: State of the art[END_REF][START_REF] Diana | Robotic surgery[END_REF] has a considerable potential for augmenting the precision and capability of physicians, but technological challenges still need to be met in terms of optimized system architecture, software, mechanical design, imaging systems, and user interface design and management for maximum safety. Moreover, objective quantitative performance criteria need to be worked out for defining gold standards of true expert performance in this emerging realm of assistive technology for pushing optimal training programs for novice surgeons [START_REF] Dresp-Langley | Towards Expert-Based Speed-Precision Control in Early Simulator Training for Novice Surgeons[END_REF][START_REF] De Mathelin | Sensors for Expert Grip Force Profiling: Towards Benchmarking Manual Control of a Robotic Device for Surgical Tool Movements[END_REF]. In Previous work by ourselves and other [START_REF] Dresp-Langley | Towards Expert-Based Speed-Precision Control in Early Simulator Training for Novice Surgeons[END_REF][START_REF] De Mathelin | Sensors for Expert Grip Force Profiling: Towards Benchmarking Manual Control of a Robotic Device for Surgical Tool Movements[END_REF][START_REF] Dresp-Langley | Correlating Grip Force Signals from Multiple Sensors Highlights Prehensile Control Strategies in a Complex Task-User System[END_REF][START_REF] Dresp-Langley | Wearable Sensors for Individual Grip Force Profiling[END_REF][START_REF] Ml | Multi-finger prehension: control of a redundant mechanical system[END_REF][START_REF] Batmaz | Seeing virtual while acting real: Visual display and strategy effects on the time and precision of eye-hand coordination[END_REF] has exploited sensor data and, most recently, wireless wearable sensor technology to demonstrate how individual grip force profiling of bimanual simulator task performance of experts and novices using a robotic control device designed for endoscopic surgery permits to find benchmark criteria for telling true expert task skills from the skills of novices or trainees. Important universal criteria for expert performance are a stable speedprecision trade-off aimed at maximal precision, not speed, while executing a surgical task [START_REF] Batmaz | Getting nowhere fast: trade-off between speed and precision in training to execute imageguided hand-tool movements[END_REF], and minimized variability in performance scores relative to precision [START_REF] Batmaz | Seeing virtual while acting real: Visual display and strategy effects on the time and precision of eye-hand coordination[END_REF][START_REF] Batmaz | Getting nowhere fast: trade-off between speed and precision in training to execute imageguided hand-tool movements[END_REF][START_REF] Batmaz | Effects of 2D and 3D image views on hand movement trajectories in the surgeon's peripersonal space in a computer controlled simulator environment[END_REF], task execution speed [START_REF] Dresp-Langley | Towards Expert-Based Speed-Precision Control in Early Simulator Training for Novice Surgeons[END_REF][START_REF] De Mathelin | Sensors for Expert Grip Force Profiling: Towards Benchmarking Manual Control of a Robotic Device for Surgical Tool Movements[END_REF][START_REF] Dresp-Langley | Correlating Grip Force Signals from Multiple Sensors Highlights Prehensile Control Strategies in a Complex Task-User System[END_REF][START_REF] Batmaz | Seeing virtual while acting real: Visual display and strategy effects on the time and precision of eye-hand coordination[END_REF][START_REF] Batmaz | Getting nowhere fast: trade-off between speed and precision in training to execute imageguided hand-tool movements[END_REF][START_REF] Batmaz | Effects of 2D and 3D image views on hand movement trajectories in the surgeon's peripersonal space in a computer controlled simulator environment[END_REF], and hand grip forces [START_REF] De Mathelin | Sensors for Expert Grip Force Profiling: Towards Benchmarking Manual Control of a Robotic Device for Surgical Tool Movements[END_REF][START_REF] Dresp-Langley | Correlating Grip Force Signals from Multiple Sensors Highlights Prehensile Control Strategies in a Complex Task-User System[END_REF][START_REF] Dresp-Langley | Wearable Sensors for Individual Grip Force Profiling[END_REF][START_REF] Ml | Multi-finger prehension: control of a redundant mechanical system[END_REF], which by definition exhibit optimal prehensile synergy in a true expert. In this work here we show that 1) the variability of the bimanual grip forces of a true expert and a complete novice executing a robot-assisted surgical simulator task reveals a statistically significant difference as a function of task expertise, and 2) this difference is captured by a SOM with a bio-inspired functional architecture that maps the functional connectivity of the somatosensory hand-to-brain-and-back circuitry in the human primate [START_REF] Arber | Motor circuits in action: specification, connectivity, and function[END_REF]. The data-driven approach has potential for a parsimonious, economic, and functionally meaningful automated analysis of surgical task skill evolution. 

II. Material and methods

The robotic task system, the simulator task, and the wearable wireless grip force sensor gloves used here are described in full detail in [START_REF] De Mathelin | Sensors for Expert Grip Force Profiling: Towards Benchmarking Manual Control of a Robotic Device for Surgical Tool Movements[END_REF][START_REF] Dresp-Langley | Correlating Grip Force Signals from Multiple Sensors Highlights Prehensile Control Strategies in a Complex Task-User System[END_REF]. We analyzed a total of 239 710 grip force data sampled at the millivolt (mV) scale every 20 milliseconds from a surgical expert and a complete novice performing the robot-assisted simulator task in ten repeated sessions with their dominant or nondominant hands. The neural network architecture exploited for modeling the grip force data here follows from some of our previous work [START_REF] Wandeto | The quantization error in a Self-Organizing Map as a contrast and color specific indicator of single-pixel change in large random patterns[END_REF][START_REF] Wandeto | The quantization error in a Self-Organizing Map as a contrast and colour specific indicator of singlepixel change in large random patterns[END_REF][START_REF] Dresp-Langley | Pixel precise unsupervised detection of viral particle proliferation in cellular imaging data[END_REF] on functional properties of the Quantization Error (QE) in the output of a Self-Organizing Map (SOM), which is described formally as a nonlinear, ordered, smooth mapping of highdimensional input data onto the elements of a regular, low-dimensional array. The set of input variables is definable as a real vector , of n-dimension. With each element in the SOM array we associate a parametric real vector of n-dimension as a model. Assuming a general distance measure between and denoted by d( , ), the map of an input vector on the SOM array is defined as the array element that best matches (smallest d( , )). During the learning process, models topographically close in the map up to a certain geometric distance, denoted by will activate each other to learn something from their shared input . This will result in a local relaxation or smoothing effect on the models in this neighborhood, which in continued learning leads to global ordering. SOM learning is represented by the equation

(t+1)= (t) +α(t) [ (t)- (t)] (1)
where t =1,2,3...is an integer, the discrete-time coordinate, (t) is the neighborhood function, a smoothing kernel defined over the map points which converges towards zero with time, (t) is the learning rate. At the end of the winner-take-all learning process, each input vector becomes associated to its best matching model on the map mc. The difference between and , is reflected by the quantization error QE. The QE of is given by [START_REF] Diana | Robotic surgery[END_REF] where N is the number of input vectors . The SOM implemented to map the mechanoreceptor-to-brain network for this study here was a 7 by 7 map creating a fully connected network of 49 neurons where each of the ten sensors from which data were exploited here (Fig. 1) contributes to the synaptic weight of each neuron. The QE in the SOM output (SOM-QE) is used to model the variability in thousands of grip force data of a true expert and a novice. 

III. Results and discussion

Data variability was computed in terms of the standard deviations (STD) of the means per condition and session (Figure 2, top). The SOM-QE from the neural network analyses of the same data for each condition and session was computed (Figure 2, bottom). Further statistical analyses of the data yield significant effects of task expertise on STD (t(1,18)=22.34; p<.001 for dominant; t(1,18)=7.43; p<001 for non-dominant), mirrored by similar significant effects on the SOM-QE (t(1,18)=9.27; p<.001 for dominant; t(1,18)=4.09; p<.001 for nondominant), showing that task skill-related grip forces are reliably predicted by the brain-inspired SOM-QE.

IV. Conclusion

Combining grip force sensor technology with predictive modeling [START_REF] Wandeto | The quantization error in a Self-Organizing Map as a contrast and colour specific indicator of singlepixel change in large random patterns[END_REF][START_REF] Dresp-Langley | Pixel precise unsupervised detection of viral particle proliferation in cellular imaging data[END_REF][START_REF] Liu | Deep Reinforcement Learning for the Control of Robotic Manipulation: A Focussed Mini-Review[END_REF] by Artificial Intelligence, as shown here, promises for an economic, functionally meaningful automated analysis of surgical task skill evolution.

Figure 1 :

 1 Figure 1: Sensor locations corresponding to mechanoreceptor regions generating thousands of grip forces ( expert and novice data), exploited and modeled here.

Figure 2 :

 2 Figure 2: The variability (STD in mV) of individual grip forces in the task sessions of a true expert and a complete novice is reliably predicted by a functionally pertinent neural network metric from the brain-inspired Self-Organizing Map (SOM-QE).
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