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SUMMARY 
It is in theory possible to solve a full moment tensor from inversion of a few 
seismograms, using normal-mode data, surface waves or body waves. In fact, the 
isotropic component is usually set to zero in many inversions, in order to stabilize 
them. This approximation may be considered valid for tectonic earthquakes, but for 
other applications (such as the study of nuclear or volcanic explosions, deep earthquakes 
and induced seismicity), the determination of the volumetric component is a key point 
of the inversion. Our aim is to investigate under which practical conditions the 
determination of the isotropic component is feasible, and is mathematically and 
physically reliable. In the first part, we examine the question from a physical point of 
view and show that the classical interpretation of a full moment tensor for tectonic 
events implies rheological constraints that are not always realistic. We therefore propose 
an extended physical model which includes tectonic and non-tectonic volumetric 
variations. In the second part, we use the tools of inverse theory to infer mathematical 
constraints on the problem of full moment tensor inversions, from teleseimic surface- 
wave or body-wave spectra. In particular, we examine how much of the moment tensor 
can be solved, in relation to the eigenvalues, the condition number and the sampling 
of the inverse problem. In addition, the resolution and the correlation matrices show 
that, among a choice of possible constraints on the full tensor, a constraint on the 
isotropic component is most valuable. In the third part, we also show some applications 
of our theoretical developments to regional waveform inversions, using the 1992 April 
Roermond, the Netherlands, earthquake. In addition to physically reliable estimations 
of the tectonic and non-tectonic isotropic components in full moment tensor inversions, 
we finally propose extensions of the basic linear methods that can lead to particular 
models in subspaces of interest, such as tectonic models, or decompositions in a double- 
couple plus a volumetric part. By revisiting carefully the determination and inter- 
pretation of moment tensors, we provide new perspectives in the estimation of the 
model and of its error, for a more flexible tectonic and physical interpretation of source 
mechanisms. 

Key words: inverse problem, isotropic component, moment tensor. 

1 INTRODUCTION 

The linear relation between the six elements of a symmetric 
moment tensor and waveforms (or spectra) has been extensively 
used to invert directly the source mechanism from a set 
of seismograms [see Jost & Herrmann (1989) for a review of 
the techniques]. For example, moment tensor inversions of 
surface-wave spectra or of normal modes can be described 
by system ( l), and teleseismic body-wave moment tensor 
inversions, using the ray theory, by system (2). Both systems 
are presented in their simplest forms, linking the radiation 
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spectra % to combinations of the moment tensor elements 
M i j  which are common to surface waves and body waves 
(Kanamori & Stewart 1976; Dufumier 1996; Kawakatsu 1996). 
We have 

RRayl.Y = - k r I ( p R  + - i(r;  - kr2)qR + 2r;sR, 

%Rayl.L = - i ( -krI(PR + sR)- i(r; - kr2)qR + 2 r ; s R ) ,  

%Love = - W P L  + G q L ,  

(1) 

where k is the wavenumber and r , ,  r z ,  l,, r ; ,  rh, 1; are the 
eigenfunctions and their derivatives at the source depth h, as 
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defined in Aki & Richards (1980), and 

Sp = - sin2(ih)( pR + sR) - sin(2ih)q, + 2 cos2(ih)s,. 

where ih and j h  are the respective incidence angles of P and s 
waves at the hypocentre. Depending on the distances used, 
these radiation spectra should also include the contribution 
of the reflected phases, considering their reflection coefficients 
and phase delays. 

Here, pR, q,, s,, pL and qL are linear combinations of the 
moment tensor elements Mij, with coefficients depending on the 
station azimuth 4, as defined in Kanamori & Stewart (1976): 

Mop, = - cos2 4Mxx - sin(24)MX, -sin2 4Myy - MJ2, 

M,q, = - cos 4Mxz  - sin #My,, 

MopL = sin 4 cos #(My, - M,,) + cos(24)MX,, 

MoqL = cos 4Myz - sin q5Mxz. 

( 3 )  

We use here the orientation and sign conventions of Aki & 
Richards (1980), x, y and z denote, respectively, the north, east 
and downward axes, and the station azimuth 4 is measured 
clockwise from the north. 

In theory, the five elements pR, qR, s,, pL and qL can be solved 
from a single-station inversion, but to solve the six components 
of the moment tensor, at least two three-component stations 
are needed. In practice, more stations are needed, and an 
additional constraint is often applied in order to stabilize the 
system, by setting the isotropic component to zero: 

M,, + M y ,  + M,, = 0.  

This constraint is convenient for seismological applications 
when the earthquake source mechanism is supposed to match 
a dislocation model inside a fault plane. For more general 
applications, however, this approximation might not be appro- 
priate. For example, Foulger & Long (1984) study tensile crack 
formations associated with small seismic events in a geothermal 
field; Campus et al. (1996) are interested in point-source 
full moment tensor inversions in volcanic areas; Ekstrom & 
Richards (1994) and Wu & Chen (1996) analyse the parts of 
explosion and tectonic strain release in nuclear explosions; 
while Kawakatsu (1996) and Hara, Kuge & Kawakatsu (1996) 
examine the observability of the isotropic component of deep 
earthquakes. Even for tectonic earthquakes, the double-couple 
assumption of a slip direction purely parallel to the fault plane 
might be approximative. 

Our aim is to investigate under which practical conditions 
the determination of the isotropic component is mathematically 
and physically reliable. We treat these questions following a 
rather tutorial scheme, complemented by some illustrative 
applications referring to various moment tensor inversion 
methods. In the first part, we examine the question from a 
physical point of view. First, we discuss the general physical 
description of a moment tensor for tectonic events and its 
limitations. Then, we propose an extended model which 
includes possible non-tectonic volumetric variations. In the 
second part, we use the tools of inverse theory in order to 
infer mathematical constraints on the resolution of the moment 

tensor from teleseismic surface wave or body-wake spectra, 
In the third part, we also show some application of our 
theoretical developments to regional waveform inversions. We 
finally propose adaptations of the methods that can lead to 
reliable estimations of the tectonic and non-tectonic isotropic 
components, or of particular models of interest. 

2 P H Y S I C A L  C O N S T R A I N T S  O N  T H E  
D E S C R I P T I O N  OF A M O M E N T  T E N S O R  

2.1 
tectonic event 

In earthquake seismology, a generalized seismic source is 
usually described by a model of a fault plane with a slip vector 
s that might be out of the fault plane (Fig. 1 ) .  This model is 
rather appealing because of its simple geometric interpretation, 
but it is not as general as a full symmetric moment tensor 
and, additionally, it introduces artificial coupling between the 
rheological parameters i and p. 

In order to develop this argument, let us denote as n the 
normal to the fault plane, oriented outwards, a the angle 
between n and s, and t the projection of s onto the fault plane. 
The case a < 90" (cos a > 0) corresponds to a mechanism in 
extension, a > 90" (cos CI < 0) to a compression, and cos c( = 0 
to a pure double-couple. Then 

s =cos an + sin a t .  

Classical description of a moment tensor for a 

We consider the vectors n, t and s to be unitary, and denote 
as S the area of the fault plane and D the extension of the slip 
vector. The general expression of a symmetric seismic moment 
tensor for a tectonic event is then (e.g. Aki & Richards 1980, 
p. 52; Udias 1991): 

M = 1SD(s * n)ld + pSD(snL + ns') , (4) 

where - denotes the scalar product, I the transposed, and Id 
the identity tensor. 

Therefore we obtain the following expression for M in the 
reference frame (t, n, t A n), where A denotes the vectorial 
product: 

i cos a 

By diagonalization, we 

p sin a 

(1 + 2p) cos a : 1. ( 5 )  
0 i cos a 

can deduce the expression of the 

n 
4 

Figure 1. A classical model used to describe the non-double-couple 
mechanism of tectonic earthquakes. We denote n the normal to the 
fault plane, oriented outwards, s the slip vector, z the projection of s 
on the fault plane (all unitary vectors), and GI the angle between n and s. 
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moment tensor in the frame of the principal axes (P, N, T), 
which is more appropriate to decompose the tensor in 
s~bmechanisms: 

M(P.N.T> 
i cos x + ~ ( C O S  x ~ 1 )  0 0 

= S D [  0 2 cos a 0 

0 0 i cos x + p(c0s GI + 1 )  

(6) 

From this tensor are usually extracted uniquely the isotropic 
component I =  (3. + 2 p / 3 )  cos ct Id and the complementary 
deviatoric part (e.g. Pearce & Rogers 1989; Jost & Herrmann 
1989). A variety of decompositions of this type include the 
decomposition of the deviatoric part into two double-couples 
or into a double-couple plus a compensated linear vector 
dipole (e.g. Dziewonski, Chou & Woodhouse 1981; Jost & 
Herrmann 1989), or a physical diagram sketch of various 
possible sources (Pearce & Rogers 1989; Hudson, Pearce & 
Rogers 1989), or particular decompositions adapted to the 
study of deep earthquakes (Kawakatsu 1996). 

The eigenvalues vi of the full tensor (eq. 6) or the eigenvalues 
of the deviatoric tensor, v; = vi - (vl + v 2  + v3)/3,  give a direct 
measure of some characteristics of the model, such as: 

( 1 )  the ‘global seismic moment’ (Silver & Jordan 1982): 

(2) the seismic moment of the best double-couple 
(Dziewonski et al. 1981): 

I v k x  I + Ivkin I 
= p S D ;  

2 
M ,  = 

(3) the direction of the slip vector from the fault plane, 

or 
(4) the corresponding percentage of non-double-couple 

component in the deviatoric tensor (Dziewonski et al. 1981; 
Sipkin 1986; Kuge & Lay 1994a): 

IV’lmin 21~0s 4 
IV’lmax 3 + lcos a1 . 

E = - -  

We might consider a priori that any six-component tensor 
can be described by the six parameters of the tectonic model 
of Fig. 1 and eq. (4). Indeed, there is a unique relation (eqs 5 
and 6)  between the six M i j  and the six parameters of the 
model: ASD, pSD, a and the three orientation parameters. But, 
in order to explain any moment tensor, the six physical 
parameters, in particular ASD and pSD,  should be independent. 
This implies that the ratio A/p between the Lam6 parameters 
would also be determined by the tensor 

(7)  

For example, the tensor 

1 - 1  1 o \  1-4 0 o \  

corresponds to a = 45”, i.e. a double-couple of seismic moment 
M ,  = $, plus E = 38 per cent of non-double-couple com- 
ponent, plus an implosive component M,, + M y ,  + M,, = - 1, 
but also to ;L = -p, a rather non-physical constraint! 

Another illustrative example is that, in such a model, a 
purely deviatoric tensor can correspond only to Alp = - 213 
or to a pure double-couple, and a pure explosion would 
correspond to an infinite ratio Alp. 

Generally, one considers that the rheological properties of 
the Earth are given and would not worry about their com- 
patibility with the moment tensor. In this case, we should 
consider that the moment tensor has only five independent 
parameters. For example, if we consider the classical relation 
R = p(Vp/G = $), a given deviatoric tensor (which can be 
uniquely associated to p S D ,  a and three orientation parameters) 
would be necessarily flanked with an isotropic component 
M,, + M y ,  + M,, = 5 cos ctM,. In this case, the isotropic com- 
ponent does not reflect a physical volumetric variation, but a 
limit of the tectonic model used to describe moment tensors. 

Therefore, the tectonic interpretation of the full moment 
tensor obtained without the constraint of rheological plausibility 
has to face an alternative choice of constraints: either the 
solution must be constrained to be among the population of 
tensors described by five physically independent parameters, 
among which are the deviatoric moment tensors, but not the 
combinations of a double-couple plus a volumetric component 
(as can be easily seen from the model itself); or we need a 
model more sophisticated than the classical tectonic model 
described in Fig. 1. For example, Frolich, Riedersel & Apperson 
(1989) and Kuge & Lay (1994b) have related non double- 
couple parts to non-plane faults and inhomogeneous faults, 
respectively. Doornbos ( 1982) related first-degree moment 
tensors to 10 physical parameters, or second-degree moments 
to 20 source parameters. Other authors pointed out that the 
moment tensor is not appropriate to describe some indigenous 
sources (Kawakatsu 1989; Takei & Kumazawa 1994). 

We will propose now a simple extension of the previous 
general tectonic model to non-tectonic or semi-tectonic 
phenomena. 

2.2 Extended model including non-tectonic volumetric 
variations 

The previous physical incompatibility between the rheological 
properties of the Earth and the observed volumetric component 
in a tectonic model may result from the fact that the com- 
pressional or extensional component reflects more a limitation 
of the model than a physical phenomenon. It is, in particular, 
inadequate to represent major implosive or explosive processes, 
fluid intrusions and, more generally, events that are not purely 
tectonic. In such a context, the addition of a purely implosive/ 
explosive mechanism to the model seems natural. We therefore 
add to the previous general tectonic model a second isotropic 
component, E Id, of non-tectonic nature (‘E standing, for 
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example, for 'explosion'): 

M=iSD(s.n)Zd+pSD(snL+nsL)+EZd. (8)  

Any symmetric moment tensor can be described uniquely 
by the six independent parameters of this model, the two 
unitary (but not necessarily orthogonal) vectors n and s, the 
scalar moment M ,  = p S D ,  and an additional non-tectonic 
explosive/implosive component, without requiring undesirable 
physical assumptions on the Lame parameters i and p. In 
detail, the relations relating M to n, s, SD and E are provided 
in Appendix A. 

We are now able to model a wide range of processes, from 
the pure shear dislocation (LY = 90", E = 0) to pure explosions 
( S D  = O), and including isotropic components of tectonic and/or 
explosive origin. We present here some particular applications 
of this model. 

Concerning the interpretation of tectonic events, we note 
that the slip vector obtained with this model might differ from 
the one usually obtained by extraction of the 'best double- 
couple'. Being allowed to be off-fault, it may better fit a local 
stress field, acting on a given pre-existing fault plane. 

Another application of this model, adapted to the description 
of fluid intrusion in geothermal exploitation, is the model of 
Foulger & Long (1984), including a tensile crack opening 
perpendicular to the fissure (i.e. the model of Fig. 1 with 
s = n, or  LY = o"), plus a pore pressure drop (EZd). 

A general physical interpretation of nuclear events, equivalent 
to our model, is also given by Wu & Chen (1996). It is 
composed of the dominant explosive part (EZd) of the tectonic 
strain release (the double-couple part of our tectonic model) 
and of the spall, which includes a compensated linear vector 
dipole (Knopoff & Randall 1970) and the volumetric variation 
of a pre-existing tensional crack, i.e. the non-double-couple 
part of our tectonic model. They clearly fix the ratio l/p from 
other observations, and therefore consider a physical model 
including two isotropic parts. They also show that if the trace 
of the observed tensor is kept as the only volumetric variation, 
both the assumed amplitude of the explosion and the geometry 
of the double-couple may be in error. 

3 MATHEMATICAL CONSTRAINTS O N  
TELESEISMIC LINEAR MOMENT TENSOR 
INVERSIONS 

We now present linear moment tensor inversions in their very 
general form; from here on, M will represent a vector whose 
components are the six independent elements of the moment 
tensor: 

D = G M ,  

where 

and we investigate the problem of the reliability of the tensor 
M i j ,  using the tools of inverse theory. 

Such a simple linear problem usually refers to long-period, 
teleseismic, moment tensor inversions, when the (non-linear) 
effects of hypocentral mislocation and rupture complexity can 
be considered of the second order. We illustrate our analysis 
using two methods, one based on the inversion of surface- 
wave spectra (Dufumier & Cara 1995) and the second based 
on body-wave spectra using the ray theory (Dufumier 1996). 

The relation to the moment tensor being linear, the 
solution can be obtained by simple formulations of Lanczos' 
(1961) method, or, more classically. can be derived from the 
least-squares formalism 

M = (G' G ) - ~  G' D . (9)  

3.1 The conditioning 

The discrepancy between what can be solved in theory from 
an inverse problem and what can be solved in practice is 
usually related to the stability of the inversion and can be 
illustrated by the system conditioning. The condition number, 
which can be computed before the inversion, and even from 
the direct problem, is defined as the ratio between the largest 
and smallest singular values of the matrix G (e.g Tarantola 
1987): 

sup(singu1ar values(G)) sup(eigenvalues( G'G)) 
inf(singu1ar values(G)) = J inf(eigenvalues(G'C)) ' 

Cond= . 

A consequence is that the relative error em on the model 
may amount the relative error ed on the data amplified by the 
condition number, and therefore the solution may become 
very unstable for high condition numbers (Menke 1989): 

em 5 Cond x ed. 

Long-period moment tensor inversions are known to be ill- 
conditioned, the reason coming either from the behaviour of 
M,, and M y ,  at  shallow depths (Mendiguren 1977; Kanamori 
& Given 1981), from the poor resolution of M,, (Fitch, North 
& Shields 1981), or from various trade-offs with other 
parameters (Fitch et al. 1981; Langston, Barker & Pavlin 1982; 
Satake 1985). Our practical experience with long-period data 
has shown that the inversion becomes strongly unstable for 
condition numbers greater than 5. This value may seem quite 
restrictive (a value of 10 is more usual), but can be understood 
by considering the fact that the relative standard error ed on 
the observed spectra, measured comparing them with syn- 
thetics, is locally of a factor 2, i.e. of 200 per cent. Langston 
et al. (1982) also showed that, with a condition number of 10, 
the mechanism is very sensitive to the structure. 

We have computed the condition numbers for the teleseismic 
body-wave and surface-wave problems, described respectively 
by Dufumier (1996) and Dufumier & Cara (1995). The fre- 
quency bandwidths used are of 10-60s for body waves and 
30-300s for surface waves, as large as possible in order to 
optimize the condition number. Results are presented in Fig. 2 
for different configurations of stations and components and 
for various depths. The value of the condition number is coded 
by a grey scale. On the left-hand side the result for full moment 
tensor inversions is shown, and on the right-hand side, 
inversions under the constraint M,, = - M,, - M y ,  are shown. 

It appears clearly that it is not possible to solve with 
confidence full moment tensors from teleseismic inversions, 
whatever the waves and the azimuthal aperture used. However, 
it is possible to  retrieve stable deviatoric tensors using at least 
two three-component stations with a minimal azimuthal 
aperture of 60". Even mechanisms of shallow earthquakes can 
be solved using body waves if the isotropic component is 
constrained to be null. 

Note that the constraint M,, = -M,, - M y ,  is not 
unique, even if it might be considered as a good choice 
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Full Tensor, _S MiJ - 

V - V  O j , & u y V *  

Depth km Rayleigh 

Constrained Tensor, MJ 

stations 1 
distribution 

D e p t h  k m  Rayleigh 
0 0 

1 0  1 0  
20 20 
30 30 
40 40 
50 50 
60 60 
70 70 
80 80 
90 90 
100 1 0 0  

Love + Rayleigh Love + Rayleigh 
0 0 
1 0  1 0  
20 20 
30 30 
40 40 
50 50 
60 60 
70 70 
80 80 
90 90 
1 0 0  100 

P + S H  P + S H  
0 0 
1 0  1 0  
20 20 
30 30 
40 40 
50 50 

60 60 
70 70 
80 80 
90 90 
1 0 0  1 0 0  

SV + SH SV + SH 

P + SV + SH P + SV + SH 
0 0 
1 0  1 0  
20 20 
30 30 
40 40 
50 50 
60 60 
70 70 
80 80 
90 90 
100 1 0 0  

1 OK 5 unstable 5000 

Figure 2. Tables of condition numbers of teleseismic moment tensor inversions, using different combinations of stations and components The 
station distribution is symbolized on the top, and the grey scale codes the condition number as indicated at the bottom. The left part concerns full 
moment tensor inversions, the right part deviatoric ones. The values of the condition number are indicated for depths of 0-100 km. The period 
range IS 10-60 s for body waves and 30-300 s for surface waves. 
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because of the poor resolution of M,, with depth (Fitch et ul. 
1981). Other problems restricted to five unknowns can be 
solved with confidence from the mathematical point of view. 
As shown, for example, in Fig. 3, there are, for particular 
distributions of stations, safer ways of writing the condition 
M,, + M y ,  + M,, = 0 eliminating either M,, or M y ,  gives a 
better conditioning. 

3.2 Damping 

Reducing the number of unknowns is probably the most 
efficient way to stabilize an ill-conditioned problem, but one 
might also investigate other procedures, e.g. by choosing appro- 
priate data (inverting displacement, velocity or acceleration 
spectra for example), optimizing the signal-to-noise ratio, or 
even changing the parametrization (Dufumier & Cara 1995). 

Another common procedure used to reduce conditioning 
instabilities, known as the 'Levenburg-Marquardt inverse' or 
'damped least squares', is to introduce a damping factor O 2  in 
the inversion. Eq. (9) becomes (Tarantola & Valette 1982) 

M = (G'G + 02Zd)-' G'D. (10) 

The damping factor 0' can be related to the a priori standard 
errors c on the data and on the model ( 0 2 = a ~ / c ~ )  and is 
usually used to eliminate the instabilities due to the lowest 
eigenvalues of G'G (Menke 1989). As a consequence, the 
rank of the system solved by the data has to be reduced by 
the number of eigenvalues ,Ii eliminated (LCvgque, Rivera & 
Wittlinger 1993). 

For example, if we note 1, 5 1,< ... 5 L6 the eigenvalues of 
the matrix G'G, and if 0' eliminates 1, but not A,, five 
independent unknowns can be solved. More precisely, if rn, 
is the eigenvector associated to and mo is the solution of 
the stable subsystem of rank five, we get a line of solutions 
M = m, + km, in the 6-D space. 

This does not eliminate a priori tensors including an isotropic 
component, and even if it restricts the population of possible 
tensors, it also leaves one degree of freedom in the solution. 
Similarly, if two eigenvalues were very small and eliminated 

by the damping, only a tensor of degree four could be reliably 
solved, giving a plane of possible tensors. 

3.3 Resolution 

More information can be deduced from the resolution matrix 
(Tarantola 1987) 

R = (GI G + P -  ct G .  (11) 
On its diagonal appear the resolutions of each moment 

tensor element (Fig. 4, left): Rii = 0 indicates that M i  is not 
solved at all, Rii = 1 that it is perfectly determined by the data. 

The average number of parameters solved by the data is 
therefore given by the trace of the resolution matrix: 

We can deduce from this equation a limit on the damping 
allowing at least five parameters out of six to be solved, by 
developing it to the second order (this supposes that the 
damping factor is much lower than the third lowest eigenvalue, 
but if not, only a tensor of rank 3 could be solved): 

i.e. 

0 2 2  a. (13) 
The resolution matrices in Fig. 4 illustrate the influence 

of the damping on the average resolution of teleseismic 
surface-wave moment tensor inversions. On top, we use a 
strong damping (10 per cent of the largest eigenvalue), which 
eliminates largely the two lowest eigenvalues and gives 
consequently a rather poor average resolution: 0.63, equivalent 
to a proportion of four parameters on six. On the bottom 
matrix, we used a damping of 1 per cent, which eliminates 
only one eigenvalue and gives a better average resolution of 
0.82, i.e. an average of five resolved parameters out of six. 

Azimuth 

Figure 3. Azimuthal variation of the condition number of the single-station inverse problem, for three different formulations of the condition 
M,, + M y ,  + M,, = 0. 
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exact source depth and 
include a slight error on 
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Damped Least Squares At Exact Depth and Source Duration 

-I 0 10 

I (XI 0 xu -0 co -040 o 2 0  0 00 n 20 o 40 O M  080 I 00 

Resolution Matrix Correlation Matrix 

diagonal shows the resolution of each moment tensor element. Right: correlation matrices, showing the 
the different M i j .  Full moment tensor inversions of surface waves are presented. On top, the inversion is 

source duration, and using a damping of 10 per cent. Below, inversions are performed with a damping of 
the source depth and on the source duration. Interpretation is given in the text. 
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3.4 Correlations and trade-offs 

Looking in more detail at the matrices of Fig. 4, we can 
examine the distribution of the resolution of the moment 
tensor elements and their correlations. On the top figures, the 
different M i j  appear to be quite homogeneously resolved, and 
almost uncorrelated, whereas on the bottom figures, M,, is the 
unique unsolved parameter and is strongly coupled with M,, 
and M y y .  This is due to the fact that the first inversion is run 
for a synthetic configuration at exact source depth and source 
duration, while in the second case we ran the inversion with a 
slight shift in depth and source duration from the true model. 
This misestimation of the depth and source time function is 
systematically reflected as a strong correlation between the 
elements of the isotropic component, and among these elements 
M,, appears to be particularly poorly solved in surface-wave 
inversions, especially at shallow depths. This formalizes the 
trade-offs observed empirically between the isotropic part, 
the hypocentral depth and the source time function (Fitch 
et al. 1981; Stein & Wiens 1986). It also indicates that, when 
an additional constraint must be applied in order to  reduce 
the number of unknowns from six to five, choosing a con- 
straint on the isotropic part, and particularly the condition 
M,, = - M x x  - My,, is among the best possible choices. 

Another illustration of the trade-off between the isotropic 
component and the hypocentral depth and source duration 
is given in Fig. 5. This application concerns a surface-wave 
inversion, using five three-component stations and periods 
from 35 to 300 s. The linear inversion for the moment tensor 
is performed on each point of a grid in depth and source 
duration, illustrating the non-linear dependence of the global 
inversion on these source parameters. The correct source 
mechanism, indicated by stars, is retrieved at the exact source 
depth and duration. The deviatoric part of the mechanism 
remains stable all over the grid, while the isotropic component 
appears to be a pure artefact of errors in depth and source 
duration. An additional trade-off can be noted concerning the 
seismic moment, which varies by a factor of 20 over the grid. 

The same trade-offs can be observed for body waves, except 
that the deviatoric mechanism and the seismic moment remain 
stable on a small zone only (Dufumier 1996). 

4 APPLICATION TO REGIONAL 
WAVEFORM INVERSIONS 

We have presented in the second part some limitations on 
the resolution of a full moment tensor appearing in tele- 
seismic inversions, where P, S and surface waves can be easily 
separated. The question of mixing various data sets together, 
especially a t  regional scale, and of its effect on the non-double- 
couple part of the mechanism has been discussed by several 
authors. Kuge & Lay (1994a) note the dependence of the non- 
double-couple component on the type of inversion used (only 
body waves or combined body waves and surface waves). 
Pearce & Rogers (1989) note bias in the estimation of the 
isotropic component when P and S waves are used together, 
for example in full waveform inversion, due to the dominance 
of the S over the P amplitudes, whereas only the P waves 
carry information on the isotropic part. 

Therefore, even if more information is available in full 
waveforms than in isolated groups of waves, some method- 
ological precautions are also required in waveform inversions. 

This is emphasized by the fact that most regional inversions 
are non-linear, including the relocalization of the event or the 
precise determination of the rupture complexity, so that trade- 
offs between the isotropic component and other parameters 
become hard to control. For example, spurious isotropic 
components may be observed in time-variable moment tensor 
inversions, when the resolution of the source history becomes 
poor (Campus et NI. 1996). In such applications. an analysis 
of the resolution of the moment tensor components at each 
time step, similar to the one shown in Section 3.4, might be 
useful to discard spurious volumetric parts due to an 
unsufficient resolution. 

We present here an application of the theory developed in 
the first part of two results concerning full moment tensor 
inversions for the Roermond earthquake (the Netherlands, 
1992 April 13, M ,  = 5.4), using regional waveforms. 

Dufumier et a!. (1997) studied this earthquake using a 
Monte-Carlo search combined with an inversion for time- 
variable moment rate functions hj i j ( t ) ,  from which is extracted 
afterwards the average tensor M i j .  Although only the result of 
the constrained inversion for a deviatoric tensor was published, 
we present here the corresponding result of the full moment 
tensor inversion (Fig. 6a). The deviatoric part is very similar 
to the constrained solution, with E = 35 per cent of non-double- 
couple part, corresponding to an angle s( = 39" between the 
dislocation and the normal to the fault plane. In addition, we 
observed 14 per cent of isotropic component in compression 
( I  = +7.6 x 1OI6 N m). Supposing reasonably that this event is 
tectonic, this isotropic component would correspond to a ratio 
Alp of -0.45, and should therefore be considered spurious. 
Following our new approach, supposing that this event might 
include also a non-tectonic mechanism, such as fluid intrusion, 
we can determine the parts of tectonic and non-tectonic 
isotropic components for a given ratio L/p. Considering a ratio 
V,/V, = ,,6 at  the source (A = p),  the full moment tensor would 
correspond to a non-tectonic implosion E = - 5.2 x 1017 N m, 
compensated by a tectonic compression I - E = 5.9 x 10'' N m. 
These two isotropic components are as energetic as the tectonic 
seismic moment itself ( M ,  = 5.6 x 1017 N m) and are clearly 
unrealistic for an earthquake. O n  this basis also, we can affirm 
that the 14 per cent of the isotropic component observed 
here, which might have appeared to be reasonably small, is 
definitely spurious. 

The second full moment tensor inversion published for this 
event is from Braunmiller, Dahm .& Bonjer (1994), whose 
result is shown in Fig. 6(b). The mechanism is almost a pure 
double-couple (a = 88", E = 3 per cent), plus again about 15 
per cent of isotropic compression (I = + 1.4 x 10l6 N m). At 
that time, this component could be considered to belong to 
the tectonic process, since it would correspond to a ratio Alp 
of 3, possibly realistic (V,/V, = 2.2). Even considering a more 
reasonable ratio 2/p = 1, the non-tectonic and the tectonic 
isotropic parts would be both around + 7 x 10'' N m, e.g. only 
8 per cent of the total seismic moment each. Therefore the 
small compression observed in this earthquake mechanism 
cannot be rejected here on a realism criterion. 

The comparison of these two examples is illustrative, since 
they contained a priori the same amount of isotropic com- 
ponent, but considering the necessary compatibility with the 
rheology of the source, one appears to be definitely spurious 
while the second one cannot be rejected. 
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184 55 -35 / 296 62-140 333 33 -78 I 139 58 -98 
Mo= 5.6 x lO"17 Nm 
I = t7.6 x 10**16 Nm 
E= -5.2 x 10*'17 Nm 

Mo= 9.2 x 10**16 Nm 
I = t1.4 x lO"16 Nm 
E= +7.8 x 10*'15 Nm 

Figure 6. Full moment tensor inversions for the Roermond 
(1992 April 13) earthquake, after (a) Dufumier et al. (1997) and 
(b) Braunmiller et a/ .  (1994). The respective tensors are, in Aki & 
Richards' (1980) conventions (x, north; y ,  east; z, down): (a) M,,= 
1.68 x M,,=44.77 x lot6, M,,= 12.50 x M,,=48.13 X 

My, = 0.56 x loL6, M,, = -26.94 x 10l6 Nm; (b) M,, = 3.86 x loL6, 
M,, = 4.14 x 
-2.48 x M,, = -6.71 x 10l6 Nm. The radiation of the tensor is 
shown in the projection of Schmitt on the lower hemisphere, together 
with the nodal planes of the best double-couple, whose strike, dip and 
rake angles are indicated below. M ,  is the seismic moment of the 
deviatoric tensor, following Dziewonski et al. (1981), I is the observed 
volumetric variation (Trace(M)/3), and E the non-tectonic part of I ,  
as described in the text. 

M,, = - 3.03 x M y ,  = 7.08 x lot6, M y ,  = 

5 SYNTHESIS A N D  IMPROVEMENTS 

Synthesizing the various aspects of this study on the 
resolvability of the isotropic component, we now propose some 
improvements to the inverse problems which do not allow for 
full moment tensor retrieval. 

We have seen in the first part that the physical model 
classically used to describe moment tensors for tectonic events 
imposes a compatibility constraint between the isotropic com- 
ponent and the Earths rheology. When the moment tensor is 
considered as the representation of a tectonic event occurring 
as an arbitrary slip near a fault plane, it is necessary to check 
the reliability of the ratio 1/p  associated with the observed 
isotropic component. An alternative is to impose a constraint 
on the moment tensor in order to describe it by only five 
independent physical parameters. Among such models are the 
deviatoric tensors but not the combinations of a double-couple 
plus a volumetric component. However, if one wants to 
consider all the information contained in a full moment 
tensor, then another physical parameter should be added to 
the tectonic model, which can be, advantageously, a second 
volumetric component of non-tectonic origin (e.g. explosion, 
pore pressure drop). A wide range of phenomena can be 
explained by this unique model, such as pure shear dislocations, 
pure explosions, non-double-couple deviatoric tensors, off-fault 
tectonic slips, nuclear explosions and associated spall and 
stress release, tensile crack openings, fluid or magma intrusions, 
etc. An application of this model to two regional waveform 
inversions exhibiting a priori similar isotropic parts shows that 
an analysis in terms of tectonic and non-tectonic volumetric 
variations is essential for a pertinent interpretation of the 
isotropic component. 

The second critical analysis which has been carried out is 

from the mathematical point of view, since many methods 
offer poorly controlled results, whose careless interpretation 
might be misleading. For example, teleseisinic surface-wave 
and body-wave full moment tensor inversions appear to be ill- 
conditioned, whatever the distribution of stations used, while 
deviatoric moment tensor inversions are stable when using at 
least two stations separated by 60' in azimuth. 

When damping is used to stabilize the inversion, attention 
should be paid to the fact that fewer parameters can be solved 
(the number being easily deduced from the computation of the 
eigenvalues of the problem). In particular, a limit on the 
damping has been defined which allows us to solve five 
elements of the tensor out of six. Then the tensor becomes 
non-unique, but may be chosen from a line of solutions in the 
6-D space. 

Therefore, the constraint to be applied on the moment 
tensor is not necessarily zero volumetric variation. The less 
controlled parameter(s) can simply be fixed, limiting the space 
of the solutions to certain particular types of mechanisms: 
for example, Kanamori & Given (1981) proposed setting 
M,, = M y ,  = 0 at shallow depths and long periods, inverting 
for pure strike-slips or dip-slips. Such a simple linear constraint 
can be easily chosen looking to the relative resolution of the 
different parameters in the resolution matrix. It appears for 
example, that in teleseismic linear moment tensor inversions, 
a constraint on the isotropic component is most desirable (and 
particularly on M,, when using surface waves). In non-linear 
approaches, attention should be paid to the dependence of the 
isotropic component on the estimation of the depth and on 
the source time function. 

Among other possible constraints, reducing the number of 
parameters from six to five, Ekstrom & Richards (1994) 
suggested inverting for a double-couple plus an isotropic 
mechanism, a suitable choice for the study of nuclear 
explosions. This direct procedure is not linear, but a linearized 
two-step procedure can be proposed, thanks to the remaining 
degree of freedom. First, we invert linearly for a stable tensor 
mo of rank five, a procedure that can be safely damped, 
considering only the five greatest eigenvalues. Then any tensor 
mo + km, is a solution, m1 being the eigenvector associated with 
the sixth, eliminated, eigenvalue 1,. Following this direction of 
error, the deviatoric part of the tensor is projected on the 
subspace of the double-couples (Fig. 7), solving the condition 
of a zero determinant (which may give up to three solutions): 

1 
3 

(m, + km,)  - -Tr(m, + 

A similar method of projection can be proposed, in order 
to obtain a full moment tensor compatible with both a tectonic 
model and the Earth's rheology. As before, we invert for a 
stable five-parameter moment tensor m,, considering only the 
subsystem of the five greatest eigenvalues, and compute the 
sixth eigenvector m,. Then we search for the full tensor 
mo + km, corresponding to a given A/p ratio. For example, if 
we suppose 1 = p, we search for the unique value of k giving 

f2coscc-1 0 o \  

0 2 c o s a + 1  

(mo + h ) < P , N , T >  = PSD cos cc 

(15) 
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eigenvector mi associated to hi 

Figure 7. Schematic illustration of the procedures described in Section 5 to obtain reliable constrained moment tensors. The full space of 
parameters is 6-D and the surfaces represent 5-D or 4-D subspaces. An initial reliable solution is obtained using the subsystem of the five greatest 
eigenvalues. Then the solution can be projected onto the subspace of the tectonic moment tensors, following the line of possible solutions given by 
the eigenvector m, associated to the lowest eigenvalue AL (black dots). Alternatively, the deviatoric part of the initial tensor can be projected onto 
the subspace of the double-couples, in order to obtain finally the sum of a double-couple and of an isotropic mechanism (grey dots). 

Let us note also that similar procedures can be used to solve 
much more ill-conditioned problems, such as single-station 
inversions, or surface-wave moment tensor inversions for 
superficial events. In these cases, only four parameters of the 
moment tensor can be solved: for example, an initial deviatoric 
tensor can be obtained linearly and then projected onto the 
space of the double-couples. 

Without referring to constraining ‘exact’ conditions, one 
may prefer to find a tensor that ‘best’ fits a given model. 
Julian (1986) proposed such an approach, relying on linear 
programming methods, minimizing or maximizing a given 
function. For example, one can search for the most thrust-like, 
the most strike-slip-like or the most explosion-like mechanism, 
or the one achieving the best fit with some polarities. 

6 CONCLUSION 

We have presented several approaches which show that the 
interpretation of full moment tensors, and in particular their 
isotropic component, should be subject to caution. First, the 
classical tectonic model used to describe earthquake moment 
tensors may lead to isotropic components incompatible with 
the Earth’s rheology. We show that considering the trace of 
the observed moment tensor as the expression of a unique 
volumetric variation at the source is misleading, and that a 
decomposition in tectonic and non-tectonic isotropic com- 
ponents is more reliable and informative. This extended model 
allows us to explain most types of geophysical sources without 
facing physical restrictions. 

Concerning the inverse problem leading to the moment 
tensor, it appears that a constraint on the moment tensor is 

most often needed. First, teleseismic surface-wave and hody- 
wave inversions are too poorly conditioned to allow for the 
direct retrieval of a full moment tensor, and constraining the 
isotropic part appears to be a particularly suitable choice. 
Second, when applying damping in the inversion, the solution 
becomes non-unique. Taking advantage of this, the solution 
can he projected onto a preferred set of solutions, such as 
the combination of an explosion and a double-couple, or a 
‘tectonic’ tensor, whose direct determination could not be 
achieved linearly. 
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APPENDIX A: RELATING A MOMENT 
TENSOR TO SIX INDEPENDENT PHYSICAL 
PARAMETERS 

We provide here the equations relating uniquely a symmetric 
moment tensor M to the six independent parameters of the 
model proposed in Section 2.2, i.e. the vectors n, s and the 
amounts of energy release S D  and E. 

The isotropic and deviatoric parts of M are, respectively, 

( '41)  
I=-Trace(M)Zd= 1 

3 

Dev = M -  I =  p S D  (A21 

The normalized eigenvectors of the deviatoric part are 

u1 = ~ 02 = ~ u3 = ~ 

and the corresponding eigenvalues are 

n + s  n A s  n-s  
(In + sll ' (In A SII ' (In - sll ' 

2 
v;=(t(n.s)+l)pSD, v;=--(n-s)pLSD, 3 

v; = (:(n-s)- l)pSD, (v; 2 v; 2 v;, v; > 0, v; < 0 ) .  

Then 

- 3v; v; - v j  

v; - v; 2P 
n.s=- and SD=- 

E is given by 

and n and s are retrieved from 

1 
2 n = -[(n + s) + (n -s)] 

1 
2 s = -C(n + s) - (n - s)] 

( ' 4 5 )  
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