
HAL Id: hal-03258798
https://hal.science/hal-03258798v2

Submitted on 7 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalability of large neural network simulations via
activity tracking with time asynchrony and procedural

connectivity
Cyrille Mascart, Gilles Scarella, Patricia Reynaud-Bouret, Alexandre Muzy

To cite this version:
Cyrille Mascart, Gilles Scarella, Patricia Reynaud-Bouret, Alexandre Muzy. Scalability of large neural
network simulations via activity tracking with time asynchrony and procedural connectivity. Neural
Computation, 2022, 34 (9), pp.1915-1943. �10.1101/2021.06.12.448096�. �hal-03258798v2�

https://hal.science/hal-03258798v2
https://hal.archives-ouvertes.fr

Scalability of large neural network simulations via activity

tracking with time asynchrony and procedural connectivity

Cyrille Mascart1, Gilles Scarella1,2, Patricia Reynaud-Bouret2, and Alexandre Muzy1,*

1Université Côte d’Azur, CNRS, I3S, France.
2Université Côte d’Azur, CNRS, LJAD, France.

*E-mail: alexandre.muzy@univ-cotedazur.fr

Abstract

We present a new algorithm to efficiently simulate random models of large neural networks satisfying

the property of time asynchrony. The model parameters (average firing rate, number of neurons,

synaptic connection probability, and postsynaptic duration) are of the order of magnitude of a small

mammalian brain, or of human brain areas. Through the use of activity tracking and procedural

connectivity (dynamical regeneration of synapses), both computational and memory complexities

of this algorithm are proved to be theoretically linear with the number of neurons. These results are

experimentally validated by sequential simulations of millions of neurons and billions of synapses

running in few minutes using a single thread of an equivalent desktop computer.

Keywords: Brain neuronal networks; Random models; Point processes; Stochastic simulation;

Discrete event systems; Activity Tracking with Time Asynchrony and Procedural connectivity (ATi-

TAP); Hawkes processes.

1 Introduction

There are more and more vast research projects, whose objective is to simulate brain areas, or even

complete brains, in order to better understand their functioning. Examples are the Human Brain

1

Project (HBP) in Europe, the Brain Mapping by Integrated Neurotechnologies for Disease Studies

(Brain/MINDS) in Japan or the Brain Initiative in the United States. Several approaches can be

considered for this purpose. There is the biochemical approach (see for example [38]), which cannot

succeed for systems as complex as the brain. A more biophysical approach has been used (see for

example [13]) where cortical barrels have been successfully simulated. This approach is limited to

about 105 neurons. However, the human brain contains about 1011 neurons while a small monkey,

like marmosets [6], already has 6 · 108 neurons [22] and a larger monkey, like a macaque, has 6 · 109

neurons [22].

To simulate such huge networks, the models have to be simplified. In particular, a neuron has no

physical form and is just represented by a point in a network, possibly with a certain voltage. The

Hodgkin-Huxley equations [33] are able to reproduce the shape of the action potential by taking

into account the dynamics of the ion channels, but the complexity of these coupled equations [18],

makes the system quite difficult to simulate for huge networks. If the dynamics of the ion channels

are neglected, the simplest voltage model is the Integrate-and-Fire (IF) model. With such models,

it has been possible to simulate on supercomputers a neural network reaching about 68 ·109 neurons

[55].

However, there is another range of simplified models, which can simulate such massive networks.

Indeed, we can use much more random models to reproduce the essential dynamics of neurons: their

firing pattern. Randomizing not only the connectivity graph but also the dynamics on the graph

makes the model closer to real data and explains to some extent their variability. The introduction

of randomness is not new and has been done in the models mentioned above: Hodgkin-Huxley [12]

or Leaky Integrate-and-fire (LIF) [29].

Here we want to focus on particular random models: point processes [51], which model only

spike trains. Point processes have usually the property of time asynchrony, i.e., two different

neurons cannot produce spikes at exactly the same time. This includes Hawkes models and its

variants such as generalized linear models, Wold processes, Galves-Löcherbach models, and even

some random LIF models with random or soft thresholds [51, 4, 44, 41, 42, 14, 46]. As one can see

in these references, all these point process models have been used to study different real datasets.

Some of these point process models can be related to IF models. Indeed, as noted in [15] (Chapter

9), IF models can be made noisy, using "escape noise". In an escape noise model, IF neurons can

2

fire even if the threshold has not been reached or can remain quiescent even if the threshold has been

transiently exceeded. As indicated in the same book (chapter 10), this formulation is very close to

the generalized linear models [41], which are in fact known in mathematics as Galves-Löcherbach

models [14] or the more classical version without reset: Hawkes models [44]. In this sense, Hawkes

processes, which are used in the present work, can be seen as a noisy version of an IF model.

The time asynchrony property of point processes [2, 4], combined with the sparsity of the graph

led to a new algorithm for point process network simulation, whose computational complexity

is theoretically controlled. We called this algorithm ATiTA, for Actitivity Tracking with Time

Asynchrony, in [32]. Thanks to time asynchrony and activity tracking [34], we showed in particular

that, if the graph is sparse, the complexity cost of the calculation of a new point in the system is

linear with the number of neurons. However the memory cost of this former work was too high to

reach networks of 108 neurons.

In a preliminary work on the mathematical aspects of the mean field limits of LIFs [17], we also

found a way to optimize the memory cost in the framework of random graphs: it is enough not

to keep in memory the whole network but just to regenerate it when needed. However, this trick

was not put into practice and its memory cost was not theoretically calculated in [17]. Both new

aspects are treated in the present article. This approach is inspired by dynamic-structure discrete

event systems [36]. It has already been applied to track the activity and addition/deletion of cells

and neighborhood connectivity in cellular automata [35]. Recently, the same idea under the name

of procedural connectivity, has been successfully applied on LIF models using Graphics Processing

Units (GPU) [26]. Thanks to GPU parallel programming, and without using time asynchrony, the

authors of [26] were able to simulate in parallel a network of order 106 neurons and 1010 synapses

in a few tens of minutes on a GPU graphics card running thousands of parallel threads.

In comparison to [26], by combining procedural connectivity with activity tracking and time

asynchrony, the new algorithm of the present work, called ATiTAP, obtains a smaller memory cost

and a range of computational costs, which are much smaller than the sum of the costs of thousands

of threads, and this, by using a single thread.

Indeed, classical parallel computing generally uses a discrete simulation time and computes for

all neurons (or synapses) what happens at each time step in a parallel way. However, the spikes

must be transmitted between pre and post synaptic neurons, between two time steps. With more

3

advanced techniques such as hybrid parallel computation [19], the spikes are computed in parallel

for each neuron thanks to discrete event programming, which allows a large precision, while the

exchange at the level of the synapses can be done at a less fine scale in a discretized way [37, 3,

45, 50]. Using hybrid parallel computations, in [24] the authors were able to simulate a network of

order 106 neurons and 1010 synapses with parallel supercomputers capable to run in parallel tens

of millions of threads. Nevertheless, in both cases (classical or hybrid parallel computation), the

synchronization between neurons is necessary to propagate the spikes at the synapses, even if might

be done at a rougher time scale than the precision for the hybrid algorithm.

With ATiTAP, as a result of time asynchrony, we can exploit discrete event computations [56, 34]

to track the activity, not of each neuron independently, but of the whole neuronal network, over time,

by jumps (from one spike in the network to another spike in the network). Synaptic transmissions

are updated on the fly only for the neurons impacted by a spike. Therefore, a single thread can

be used to sequentially compute each spike and each synaptic transmission. Being alone, the single

thread can then compute the dynamics of the entire network as quickly as possible without waiting

for the synchronization with other threads. This reduces the overall computation time (compared

to the summed time of all threads), which makes our sequential computation technique competitive

with parallel computation techniques. Indeed, being able to simulate an entire large neural network

using a single thread opens the possibility of using the other threads to run simulation replicas in

parallel. It is then possible to simulate many models in parallel instead of a single model in parallel,

with reasonable execution time.

To summarize, ATiTAP, the new algorithm proposed here, allows simulating large neural net-

works through activity tracking with time asynchrony and procedural connectivity. Thus, a realistic

network of 108 neurons can be sequentially simulated on a single thread, with memory and compu-

tational costs roughly comparable to other available algorithms (which require a massive parallel

implementation on multiple threads) [24, 26, 47]. Moreover, these costs can be controlled analyti-

cally in advance: in particular, they remain linear with the number of neurons in the network.

In Section 2, after discussing more precisely the differences and links between Hawkes processes

and classical Integrate-and-Fire, we explain the main features of the benchmark (the hybrid simula-

tion algorithm for IF [19]) and the ones of our new algorithm ATiTAP. We also derive the theoretical

memory and computational costs and compare it to simulations on a realistic range of parameters

4

with respect to human brain areas. In Section 3, we give the main mathematical ingredients to

calibrate our simulations. In Section 4, we discuss the results we obtained in view of the various

benchmarks of the existing algorithms to simulate huge realistic neuronal networks.

2 Results

2.1 Models features

As said in the introduction, some point processes and especially Hawkes processes have some com-

mon features with more classical Integrate-and-fire models. Point processes are usually defined by

their conditional intensities, which describe the probability for a spike to happen on a given neuron,

given every other spikes that have happened in the network in the past [4]. It has been shown (see

for instance [23] with experiments on motor neurons), that the conditional intensity of a spike train

is a function of the membrane voltage. From a model point of view, we can assimilate more or less

one to the other: the higher the voltage, the more likely the neuron spikes. This is also the spirit

of the equivalence derived in chapters 9 and 10 of [15]. In this sense, one derives an equivalence

between the formula of the conditional intensity of a Hawkes process and the voltage dynamics of

an Integrate-and-Fire model. Modeling the activity of M neurons by a Hawkes process means that

the conditional intensity of neuron i, which models the spike train N i, is given by

λi(t) = Φ

νi +
M∑
j=0

∑
T∈N i,T<t

hj→i(t− T)

 , (1)

In this formula, from a point process point of view, νi represents the spontaneous activity of the

neuron i if the other neurons do not fire, whereas hj→i is the interaction function, that is hj→i(u)

is the increase (if positive) or decrease (if negative) that the firing rate of neuron i suffers due to

a spike on j, which has taken place u seconds before. The increasing function Φ is the transfer

function, which is usually the positive part, i.e. Φ(x) = max(x, 0). Indeed, if the interaction

functions hj→i are too negative, the overall sum might be negative and the positive part ensures

that the conditional intensity is just null in this case: this corresponds to the fact that the neuron

is so inhibited that it does not emit any spike anymore. Some authors also uses the exponential

transform Φ(x) = exp(x) (see [41] for instance).

5

From a voltage/IF point of view, we can interpret

νi +

M∑
j=0

∑
T∈N i,T<t

j→i(t− T)

as the voltage membrane of the neuron, νi being the resting potential and the functions hj→i, the

respective excitatory or inhibitory post-synaptic potentials that are summed after each received

spikes. In the IF model, especially the one used in [19], these functions are solutions of differential

equations (the most classic, the exponential, being represented in blue on Figure 1, less classic

functions with synaptic delays for the transmission being represented in black).

Figure 1: Examples of interaction functions hj→i from a neuron j to a neuron i: in red a piecewise
constant function with no delay; in green a piecewise constant function modeling a synaptic trans-
mission delay; in black a continuous interaction function with the same synaptic delay; in blue the
exponential interaction function, obtained in the most classic Integrate-and-Fire models.

Once this parallel is done, there are several features that Hawkes processes have that might help

to understand why we choose this model over various other representations.

First of all, because Hawkes processes are defined by a conditional intensity, they are simple [2]

and therefore do possess the time asynchrony property, that is, two neurons cannot produce spikes

at exactly the same time. This property is not satisfied by classical Integrate-and-Fire models,

which fire each time the voltage of a given neuron exceeds a given threshold. It has been shown

mathematically that unrealistic blow-up phenomena can appear for IF because of this absolute

rule: a massive proportion of the neurons can exceed the threshold at the exact same time, whereas

Hawkes models do not have this caveat [5, 7].

6

Second, and this is true for all point processes defined by a conditional intensity, one can always

thin a rougher process into a more complex one [39, 32]. Indeed as soon as we are able to simulate

a process with a larger intensity, we can reject some of the points, via a particular mathematical

procedure called thinning, to create a process with a smaller intensity.

Third, in the case of excitatory interaction functions and transfer function Φ(x) = x, we can

easily predict mathematically the number of spikes that will be produced (see Section 3 for more

details). This helps us design beforehand numerical experiments with a given highly variable dis-

tribution of the firing rates, as one can observe on real data.

Finally, in the case of non negative piecewise interaction functions, thinning is not necessary [32]

and we are able to precisely compute the theoretical memory and computational costs (see Sections

2.3 and 2.4) as a function of e.g. M , the number of neurons; d the average degree of the network;

m̄, the average firing rate in the network; τ , the largest possible interaction duration, that is the

maximal support of the functions hj→i and A, the maximal number of breakpoints in the piecewise

constant functions hj→i.

In the sequel, we restrict ourselves to non negative piecewise constant interaction functions

(and Φ(x) = x) for the computation and simulation. Note that taking negative piecewise constant

functions is not a problem for ATiTA and ATiTAP, and that the resulting process will always have

less points than the one without inhibition. Memory cost and numerical complexities are therefore

upper bounded by the pure excitatory case, where negative interaction functions are discarded.

Also it is always possible to thin this process into a more complex one with smoother interaction

functions for instance, as long as the interaction functions are upper bounded by piecewise constant

functions (see Figure 1). Again this procedure will only diminish the number of points. However the

theoretical complexity of this thinning step cannot be well evaluated. Therefore the benchmarks that

are given in the present work have to be understood as a proof of concept that such huge simulations

can be done using a single thread. Of course, we can also make the interaction functions smoother

by increasing the number of breakpoints of the piecewise interaction functions (A). However, it is

likely that this would be more time consuming than pure thinning.

7

2.2 Description of the algorithms

Parallel simulation and the hybrid algorithm The simulation of large neural networks is

usually performed in parallel with regular synchronizations of all the computing cores. Of course,

this depends on both the mathematical model and the simulation algorithm. However, for most

models, differential equations are used to compute the time evolution of the membrane voltage for

each individual neuron. Usually, these equations are (approximately) solved by classic discrete-

time numerical schemes [26]. One of the most advanced algorithms nowadays to simulate neuronal

networks is called hybrid parallel computing [19] and it works with an Integrate-and-Fire model.

It supersedes the previous discrete-time numerical schemes by using a discrete-event simulation to

directly produce the next spike of a neuron once all synaptic transmissions to this neuron have been

planned, and this with large precision.

The hybrid parallel algorithm is represented on the top part of Figure 2 (a. and b.). There are

two ways to understand the computations: either from a neuron point of view or from a hardware

point of view. From a hardware point of view we refer to Processing Units (PUs) as the minimal

hardware processing unit where one or more threads are executed, which would be a single Central

Processing Unit (CPU) core or an Nvidia GPU Streaming Multiprocessor (SM). From a neuron

point of view, when a presynaptic neuron emits a spike at continuous1 time t (red ticks on Figure

2a), the postsynaptic neurons receive this information at time t + Tcom (orange dots on Figure

2a), where Tcom is the minimal synaptic transmission delay in the network. Between two synaptic

transmissions, the membrane potential of a neuron evolves independently from the other neurons

and can be calculated in parallel (green dashed lines on the figure 2a). From a PU point of view

(cf. Figure 2b), a PU takes in charge the parallel computations of a group of neurons. Because of

the minimal delay Tcom, every multiple of Tcom, the PUs must synchronize to be able to anticipate,

over the next interval of length Tcom, the synaptic transmissions that are going to take place, before

computing independently the membrane voltage. Notice therefore that since the firing rate is quite

low in the network, a lot of PUs could have continued their computations without synchronization,
1Note that by "continuous" we mean that it is possible to compute the spiking time up to the usual double

numerical precision of 10−15. Indeed, as indicated in [19] this numerical precision can be decoupled from the global
computation time step, which corresponds to the minimal synaptic delay Tcom. As shown in [19], for a certain
accuracy, the hybrid simulation scheme with spikes in continuous time is much faster than a hybrid approach where
the computation time step limits the accuracy.

8

but are forced to wait. Hence the load of each PU is sub-optimal on average.

]

(a) Hybrid (discrete-time and discrete-event)
approach for parallel simulation (at neuronal
level)

(b) Hybrid (discrete-time and discrete-event)
approach for parallel simulation (at processor
level)

(c) Discrete-event approach for sequential sim-
ulation (at neuronal level)

(d) Discrete-event approach for sequential sim-
ulation (at processor level)

Figure 2: Schematic view of the hybrid algorithm [19] (Figures (a) and (b)) and ATiTA(P) (Figures
(c) and (d)). Figures (a) and (c) represent the neuronal network point of view, whereas the PU point
of view is displayed in Figures (b) and (d). Everywhere, spikes are in red, synaptic transmission
events in orange, prediction of next spike in green, thanks to integration of membrane potential or
intensity. For ATiTA(P), also grey refers to potential spikes that are computed and then discarded.
In (a) thanks to the synaptic delay of size Tcom spikes are received by the neurons in the next bin
of size Tcom and then integrated to compute the membrane potential. In (b) the computations per
PU are then done per bin of size Tcom and need to be synchronized every Tcom. Depending on the
number of PUs, it is likely that some PUs wait the other ones without computing much on each
thread and therefore their load is low. In (c), for ATiTA(P), the discrete-event approach is used at
the network level: the computation makes jumps to the next potential spikes. The smallest one is
kept as the actual next spike. Then synaptic transmission, update of the corresponding intensities
and new computations for the next potential spikes, are done only for the post synaptic neurons.
In (d), the different operations of (c) are put in the order of the successive operations that are
done by the single thread on the single PU, which has therefore a full load over time. Note that
both algorithms (hybrid and ATiTA(P)) have a time precision, which can be the classical numerical
precision of 1015 and in this sense, they both compute continuous times.

9

ATiTA and ATiTAP In [32], we proposed a discrete-event algorithm, ATiTA, to simulate point

processes with stochastic intensities. This algorithm is based on the theory of local independence

graphs [9], which corresponds to the directed neuronal network in our present case. ATiTAP follows

the same principle and we refer to both algorithms as ATiTA(P). Computationnally, ATiTA(P) work

as follows (see Figure 2c).

From a neuronal network point of view, the spike events happen in continuous time in the

system (up to the numerical precision). Once a spike on a particular presynaptic neuron happens

(red dots in Figure 2c), the postsynaptic neurons are updated (orange dots in Figure 2c). The

presynaptic and the post synaptic neurons compute their respective intensities and forecast their

evolution (green arrows in Figure 2c) if nothing in between occurs in the system. They are therefore

able to forecast their potential next spike (gray dots in Figure 2c). The algorithm maintains a

scheduler containing all potential next spikes on all neurons. This particular data structure [32]

can efficiently maintain a sorted list of numbers. ATiTA(P) decides that the next neuron to fire

effectively is the one corresponding to the minimum of these potential next spikes. For more details,

we refer to [32]. The computational gain comes from the fact that neurons that are not firing a lot,

do not require a lot of computations either. In particular we do not have to update all neurons at

each spike but only the pre and post synaptic neurons that are involved in the spiking event. This

is the main difference with the hybrid algorithm detailed above, which requires each PU to wait for

the others to finish at each bin of size Tcom, even if it does not receive any input. Note that the

whole algorithm is possible only because two neurons in the network will not spike at the same time:

the whole concept is based on time asynchrony to be able to jump from one spike in the system to

the next spike in the system. Of course, this is true only up to numerical precision: if two potential

next spikes (gray dots on Figure 2c) happen at the exact same time with double resolution 10−15,

by convention the neuron with the smaller index is said to fire. But the probability of such event

is so small that this is not putting the simulation in jeopardy. Also note that this does not prevent

neurons to eventually synchronize quite frequently over few milliseconds, as defined for instance in

[52] and the references therein.

From a PU point of view (cf. Figure 2d), a single thread of a single PU computes sequentially

(potential) spikes, synaptic and membrane potentials for all the neurons in the network. Notice

that the load of this single PU is always optimal, as it is computing all the activities in the network.

10

At the difference with the hybrid algorithm, no load balancing is required to attribute threads and

PUs to groups of neurons. Computational performances only depend on the capacity of a single PU

to compute activities as fast as possible.

The additional feature of ATiTAP with respect to ATiTA is the procedural connectivity [17,

26]. One of the memory burden of the hybrid algorithm and of ATiTA, comes from the fact that

a classic implementation stores the whole connectivity graph, which is huge for brain scale models.

If the connectivity is the result of a random graph and that each presynaptic neuron is randomly

connected to its postsynaptic neurons, one can store the random seed instead of the result of the

random attribution. Hence the whole graph is never stored in full but only regenerated when need

be. The random connectivity is regenerated at each spike taking advantage of the deterministic

nature of the pseudo-random generator used in the simulation. Storing the generator initial seed,

the seed of each neuron is computed based on initial seed value and neuron index (see Figure 3).

With this method, only the initial seed is stored in memory. Of course this dynamic regeneration

at each spike has a cost in terms of time complexity, but this cost is negligible with respect to the

other computations that need to be made and this saves memory. In the sequel, the random graphs

that are considered are Erdös-Renyii (see Section 3).

Figure 3: Time asynchrony and procedural connectivity at both computational and memory levels.
When a spike occurs in neuron i, corresponding seed is computed based on neuron index i and the
indices of the corresponding post-synaptic neurons are then generated. Later, the next potential
spikes of these post-synaptic neurons are computed. Colors represent the computational order of
magnitude: white meaning no computations, orange corresponding to the computation of the next
potential spike and red to the computation of the next potential spike plus the seed computation
and local regeneration of the graph.

11

2.3 Theoretical computational cost of ATiTA(P)

In [32], an accurate estimate of the complexity of ATiTA has been derived (cf. Equation 7 of [32]).

This can be completed to compute the computational complexity of ATiTAP, when the procedural

connectivity step is added. The overall time complexity of our algorithm is of the order of

O
(
TMm̄

[
d2Aτm̄+ d log(M) + d

])
(2)

More precisely, since M is the number of neurons, m̄ the average firing rate and T the simulation

time, the factor TMm̄ corresponds to the average number of points that are produced by the

algorithm. For each of these points, one needs to decompose the algorithm in a few steps to

understand the different elements of this complexity formula.

(a) Update of the intensities of the presynaptic neuron and of all the d (in average) post-synaptic

neurons and computation of their possible next point: The intensity of a given neuron is

piecewise constant, more precisely it is a sum of (in average) d piecewise constant functions,

corresponding to each interaction functions (see (1)). Moreover a term like
∑

T∈Nj ,T<t hj→i(t−

T) is piecewise constant in t with as many breakpoints as: A (number of breakpoints in hj→i)

times the number of spikes that are appearing in a range τ (support of the function hj→i).

So globally, the intensity of a given neuron is a piecewise constant function with (in average)

dAτm̄ breakpoints. Updating d + 1 intensities and computing for each of them, their next

potential point is therefore proportional to d2Aτm̄.

(b) Update of the scheduler containing all the possible M next points: Updating one time in a

scheduler requires log(M) iterations. Hence updating d + 1 points in the scheduler requires

d log(M) iterations.

(c) Procedural connectivity: This step is the only difference between ATiTA and ATiTAP. It does

not exist for ATiTA. For ATiTAP, at each spike, we regenerate the d (in average) postsynaptic

neurons of the random graph. This costs d. Note that step (c) is negligible with respect to

step (b) and therefore ATiTA and ATiTAP have roughly the same computational complexity.

Note that for general point processes, the main change in this evaluation would be the complexity

of the intensity in step (a), which would also impact the computation of the next point. If thinning

12

is involved, that is if we simulate a rougher process and then precisely reject all the unnecessary

points, the global factor will be larger than the actual number of points (TMm̄), since it would

count the number of points of the rougher process. However, if the evaluation of the more complex

intensity at a given point is not too time consuming [39], the complexity (for a given point of the

rougher process) of step (a), (b) and (c) can be roughly the same.

2.4 Theoretical memory cost of ATiTA(P)

In [32], the memory cost of ATiTA was not computed. Here we evaluate this cost for both ATiTA

and ATiTAP. There are several costs, some necessary whatever the aim of the simulation, some

depending on what is the purpose of the simulation.

(a) Library cost: As in [27, 24], some libraries and other code need to be stored in memory. We

denote this cost by ρ. Since there is only one PU and we are not using a parallel simulation,

we pay this cost only once.

(b) Random seed: For ATiTA or ATiTAP, random numbers are necessary to produce the points of

the process. For reproducibility purpose, one can store the first random seed and then obtain

the other ones based on neuron indexes. Hence only the first one needs to be stored. This

cost is η.

(c) Connectivity cost: For ATiTA, one can use the Yale format [11] to store the synaptic con-

nections of the neural network. This format consists of storing for each pre-synaptic neuron

the set of post-synaptic neurons (both of them represented as indices). So the memory cost

if dMω, with ω the number of bytes to store an index (integer or long integer). For ATiTAP,

we also need to store the first seed for the generation of the random graph. Then ,the other

ones, for each neuron of the graph, are obtained thanks to their index (see Figure 3). Finally,

at each iteration of the algorithm we need to store, in average, the d indices of the d post

synaptic neurons that are regenerated on the fly. The whole cost is therefore η + dω.

(d) Parameters cost: In general, for ATiTA, it should be necessary to store all the νi’s and all

the hj→i’s that are non zero. This would cost roughly MdAε, where ε is the number of bytes

necessary to represent a spiking time. In the set-up of the present simulation, for ATiTAP,

13

the νi’s are different to have a large heterogeneity in the spiking rates and we use the same

interaction functions for all neurons as soon as they are non zero. The cost is therefore

(M +A)ε.

(e) Storage of the intensities: As said previously in Section 2.3, an intensity has in average dAτm̄

breakpoints. Hence, storing all the M intensities roughly costs MdAτm̄ε.

(f) Scheduler of the possible next spikes: This scheduler is of size M , hence the cost is Mε.

(g) Storage of all the generated points: Depending on the problem, one might want to store all

the spikes that have been generated, or only summary statistics (like firing rates, etc.) that

are less costly. In the case where we want to store all the generated points, the cost is TMm̄ε.

Hence without counting case (g), we have for a general ATiTA algorithm with various interaction

functions a memory cost of

O(ρ+ η +Md(ω +Aε+Aτm̄ε) +Mε), (3)

whereas ATiTAP with one common interaction function is of memory cost

O(ρ+ η + dω +MdAτm̄ε+ (M +A)ε). (4)

Usually, η = ω = ε = 64bits, the precision of a double / long integer type.

2.5 Choice of brain scale parameters

Because of the precision of actual measurements and their intrinsic variability, it is difficult to

estimate quantitatively both physiological (number of synapses per neuron, etc.) and dynamic

parameters (average firing rate, etc.) of neuronal networks in primates [22] and humans [21]. Only

rough estimates are available. We give in this section, rough estimates of the main quantities of a

human brain in order to see the scalability of ATiTA(P) to reach human brain areas.

To our knowledge, the best documented region of the human brain is the (neo)cortex. Based on

the structural statistics (number of neurons and synaptic connections) of neuronal networks in the

(neo)cortex, we extrapolate here their representative parameter values for the whole brain.

14

The firing rate of a neuron in the brain can be estimated by the limited resources at its disposal,

especially glucose. Measures of ATP consumption have shown (see [30]) that the firing rate of a

neuron in human neocortex can be estimated around 0.16Hz. Still based on ATP consumption,

only 10% of the neurons in the neocortex can be active at the same time. So it seems coherent to

choose an average of 0.16Hz. These values can be extrapolated to the whole brain2, as follows.

The neocortex represents 80% of the volume of the brain [49] and consumes 44% of its energy

[30]. Considering that the energy consumed by the brain is proportional to the firing rate of the

neurons, we obtain that
Pcortex
Pbrain

∼ Vcortexm̄cortex

Vbrainm̄brain
,

with m̄cortex the mean firing rate of individual neurons in the neocortex (resp. in the brain) and

Vcortex the volume of the neocortex (resp. in the brain). The average firing rate of the brain then

consists of m̄brain = 0.8× 0.16
0.44 ' 0.3 Hz per neuron.

This average firing rate should not be confused with the fact that particular neurons may have a

much larger firing rate. Particularly, groups of neurons synchronize together to achieve a particular

cognitive task: this is the concept of neuronal assemblies [16]. In an assembly, neurons can usually

increase their rates to tens Hz (possibly 50Hz) over a short duration. Therefore, we choose a firing

rate distribution where most of the neurons have a firing rate of 0.3Hz but some have a much higher

firing rate (up to 50Hz) using an heavy tailed distribution (see Section 3).

The average number of synaptic connections in a human brain is hard to estimate and depends

heavily on the neuron types and brain regions. For example, in the brain, it is assumed that the

majority of neurons are cerebellum granule cells [48]. In [31], the number of synaptic connections

to granule neurons is estimated to an average of only 4 connections, matching those observed

anatomically. On the other hand, Purkinje neurons can have up to 200, 000 synapses on only one

dendrite in the human brain [48]. The approximate number of synapses in the cortex is 0.6 · 1014

[10]. Assuming that the volume of the cortex represents around 80% of the volume of the brain,

the number of synapses in the brain is of order 1014. Considering that the number of neurons in

the human brain is of order 1011 [21], we find that the average number of synapses is about 1, 000

2This calculus can be found on AI impact project webpage: https://aiimpacts.org/rate-of-neuron-firing/
(lastly verified: 02/09/2021)

15

synapses per neuron3. In the present work, the parameter d, the average number of pre / post

synaptic neurons, is therefore evolving between 250 and 1000.

Finally, an action potential arriving on one pre-synaptic neuron produces an Excitatory Post-

Synaptic Potential (EPSP), or an Inhibitory PostSynaptic Potential (IPSP), in the postsynaptic

neuron. The duration of these postsynaptic potentials is about τ = 20ms [48] (see Section 2.1 for

the link with the support of the interaction functions).

Therefore the parameters that we used in the simulation are indicated in Table 1.

Simulation duration T = 5s

Mean firing rate m̄ = 0.3Hz

Number of neurons simulated M ∈ {105, 106, 107, 108}

Synaptic connection in average d ∈ {250, 500, 1000}

Postsynaptic duration τ = 0.02s

Table 1: Parameters used in the simulation

2.6 Software and hardware configurations

The simulations have been run on a Symmetric shared Memory multiProcessor (SMP) computer,

called IRENE, equipped with Intel CascadeLake@2.6GHz processors4. This kind of computer is

used here to have access to larger memory capacities. At computational level, only one PU (i.e. a

single core running a single thread) was used for the sequential simulations. The implementation of

the algorithm is written in C++ (2011) programming language and compiled using g++ 9.3.0.

2.7 Firing rate at network level

As detailed above, the firing rates in the brain are highly inhomogeneous. Therefore, to be more

realistic, it was important to simulate this heterogeneity. Also this heterogeneity is advantageous to

ATiTA(P) since the whole algorithm does not spend time on almost silent neurons to concentrate
3Calculus on AI impact project webpage: https://aiimpacts.org/scale-of-the-human-brain/ (lastly verified:

02/09/2021).
4We used the partition v100l on Joliot-Curie supercomputer at TGCC as a Fenix Infrastructure resource. A dual-

socket mother board contains the 2 CPUs, Intel CascadeLake@2.6GHz processors, each with 18 cores. Sequential
simulations were run using only a single core. Each core has a memory of 10 GBytes, so the total amount of available
memory is 360 GBytes.

16

all the single-thread computations of the single PU on the most active neurons. Therefore, before

looking at execution time and memory imprint we wanted to check this heterogeneity.

Table 2 presents classical elementary statistics on the simulated firing rates, whereas Figure 4

presents the corresponding densities. As one can see in Section 3, the system is initialized with a

lot of neurons whose spontaneous spiking activity is null (see (1), with νi = 0). The system needs

to warm up to have almost all neurons spiking. This explains why the density at T = 5s is still

rippled whereas, at T = 50s, it looks much smoother. As detailed in Section 3, the parameters

of the Hawkes model (in particular the spontaneous spiking activity) have been fixed to achieve a

certain stationary distribution of the firing rates (with mean 0.3Hz), which is heavy tailed to achieve

records as large as 50 Hz. This is close to the distribution at T = 50 s. However these simulations

show that, even if at T = 5s the system is not warmed up yet with a lot of non spiking neurons,

one can still achieve the desired average firing rate and heterogeneity (extremal values) and that

this does not vary a lot with T (see Table 2). Note that the density plots are roughly the same for

all configurations: with ripples at T = 5s and smooth curves at T = 50s.

5e−03 5e−02 5e−01 5e+00

0
1

2
3

4
5

6

Hz

de
ns

ity

Figure 4: Densities (on a logarithmic scale) of the simulated firing rates in the network withM = 106

neurons and d = 1000 post-synaptic connections in average. In red, for T = 5s and in blue for
T = 50s. These densities are obtained with a Gaussian kernel estimator with bandwidth 0.02 Hz.

17

M d Average freq. Freq. min. Freq. max. Freq. std. Percentage
of non spik-
ing neuron

1e5 250 0.279 (0.279) 0 (0) 14 (13.94) 0.315 (0.222) 31.2 (0.01)
1e5 500 0.334 (0.333) 0 (0.02) 6.6 (5.76) 0.328 (0.218) 23.5 (0)
1e5 1000 0.399 (0.398) 0 (0.04) 10.4 (11.64) 0.345 (0.220) 16.9 (0)
1e6 250 0.267 (0.267) 0 (0) 19.2 (20.84) 0.308 (0.217) 33 (0.01)
1e6 500 0.322 (0.324) 0 (0) 38.4 (39.38) 0.329 (0.225) 25.1 (0.00)
1e6 1000 0.383 (0.387) 0 (0.02) 13.4 (12.9) 0.344 (0.223) 18.5 (0)
5e6 250 0.26 (0.261) 0 (0) 27.4 (28.5) 0.307 (0.217) 34.1 (0.02)
5e6 500 0.315 (0.316) 0 (0) 34.2 (34.1) 0.324 (0.220) 26 (0.00)
5e6 1000 0.377 0 19.8 0.342 19
1e7 250 0.258 (0.259) 0 (0) 23.2 (21.62) 0.306 (0.217) 34.4 (0.02)
1e7 500 0.311 0 21.6 0.322 26.4
1e7 1000 0.374 0 21.8 0.342 19.3
5e7 250 0.253 0 38.2 0.304 35.4
5e7 500 0.305 0 50.6 0.321 27.2
1e8 250 0.251 0 46.2 0.303 35.7

Table 2: Firing rates elementary statistics (average, minimum, maximum and standard deviation)
obtained by simulation for different sizes of neural networks and different numbers of synaptic
connections and T = 5s. The number between parentheses displays the results at T = 50s. We
were able to run these long simulations of 50s only for the less demanding set of parameters (typically
not 107 neurons and 1000 synapses).

.

2.8 Execution times and memory usage

Equation (2) has a leading term which is mainly Tm̄dM log(M), as soon as Aτm̄ is small, which is

the case in realistic simulations.

The simulation execution times are presented in Figure 5a for different M (number of neurons)

and different d (average number of pre/post synaptic connections). The experimental execution

times obtained are in agreement with (2): the curves (in the log scale) are almost linear, with slopes

around 1.1, which corresponds to the theoretical growth in dM log(M) with respect to the number

of neurons. Also since d, the number of post-synaptic connections, acts like a multiplicative factor,

this explains the parallel equispaced lines in the log-scale. Finally, Figure 5c shows that the ratio

of execution times is roughly around 10, which is in accordance with the linear dependency in T .

The total amount of used memory is displayed in Figure 5b. They are also in agreement with

ATiTAP theoretical memory complexity, computed in Equation (4): it is almost linear in M , with

18

slopes around 1, whatever d.

Note that a mouse cortex or a human hippocampus have roughly M = 107 neurons [54]. Figure

5 says that in this case, with d = 1000, we need a few hours and about 10 GigaBytes of memory

to simulate it. Because of the configuration we used, Figure 5 therefore shows that this could have

been achieved on a simple desktop computer.

105 106 107 108

Number of neurons

102

103

104

105

Ex
ec

ut
io

n
tim

e
(s

)

Execution time: Hawkes simulation (5s)
 Log scale

d=250 (slope 1.15)
d=500 (slope 1.15)
d=1000 (slope 1.12)

(a) Simulation execution times for different sizes of
networks.

105 106 107 108

Number of neurons

10 1

100

101

M
ax

im
um

 m
em

or
y

(in
 G

By
te

s)

Maximum memory: Hawkes simulation (5s)
 Log scale

d=250 (slope 0.96)
d=500 (slope 0.97)
d=1000 (slope 0.95)

(b) Memory usages for different sizes of networks.

d=250 d=500
M=1e5

d=1000 d=250 d=500
M=1e6

d=1000 d=250
M=5e6

d=500 d=250
M=1e7

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

ra
tio

 5
0s

/5
s

Ratio of execution times 50s/5s

(c) Ratio of execution times between T = 50s and
T = 5s.

Figure 5: Simulation execution times (5a) and memory usage (5b) of ATiTAP for different sizes of
networks and different simulation durations.

19

3 Material and Method

3.1 Details on the model

For a set of M neurons, we first design the graph of interactions by saying that neuron j influences

neuron i if a Bernoulli variable Zj→i of parameter p is non zero. The resulting network is an Erdös-

Rényii graph. Once the network is fixed, we design the spike apparition based on a Hawkes process

(see (1), with Φ(x) = x).

One of the advantage of (linear) Hawkes processes is that one can evaluate the firing rate

distribution and that this evaluation only depends on the integral of the interaction function. In

this sense, having piecewise constant functions, or shifted piecewise constant functions to take into

account synaptic delays, or even more intricate (like exponential etc.) interaction functions, will

absolutely not change the evaluations that are made as long as the integral is known (see Figure 1).

We are interested in a particular case of the Hawkes process where all the interaction functions

are always the same when they are non null. More precisely, we set the interaction function

hj→i = Zj→iθh,

where h is a fixed positive interaction function of integral 1 and θ is a tuning parameter that we

need to calibrate to avoid explosion of the process. We also set hi→i = 0 (no self interaction). We

take h = 50× 1[0,0.02], so that h is of integral 1 and non zero hj→i are of integral θ.

Let us denote Hj→i =
∫ +∞
0 hj→i(t)dt and H = (Hj→i)i,j=1,...,M the corresponding matrix (line

i corresponds to a postsynaptic neuron, column j to a presynaptic neuron).

Hawkes processes may explode that is, it produces an exponentially increasing number of points

per unit of time (see [8]), but this does not happen if the spectral radius of H is strictly smaller

than 1 [20]. In this case, a stationary version exists and the corresponding vector of mean firing

rates m = (mi)i=1,...,M is given by

m = (I −H)−1ν. (5)

Note also that if we start the simulation without points before 0 in this case, the process is not

stricto sensu stationary but it converges to an equilibrium given by the stationary state and that

the number of points that are produced in this case is always smaller than the stationary version.

20

Before running the simulation, we want to calibrate parameters so that (i) we avoid explosion

and (ii) we reach a certain realistic heterogeneous distribution of the firing rates (vector m), that

is an average around 0.3 Hz and records around 50 Hz. Both of these calibrations can be done

mathematically beforehand in the Hawkes model: we can guarantee the behavior of the whole

system even before performing the simulation, whereas this might be much more intricate for other

models such as LIF.

3.2 Choice of θ or how to avoid explosion

Note that H = θZ, with Z = (Zj→i)i,j=1,...,M . So if we can compute the largest eigenvalue of Z or

an upper bound, we can decide how to choose θ.

We can use Gershgorin circles [53] to say that any complex eigenvalue λ of Z satisfies (because

the diagonal is null),

|λ| ≤ max
i=1,...,M

∑
j 6=i

Zj→i.

Therefore the spectral radius is upper bounded by maxi=1,...,M Bi, where Bi =
∑

j 6=i Zj→i. This

random quantity can be computed for small networks but it is clearly too intensive in our setting:

indeed, with the procedural connectivity implementation, it is always easy to access the children `

of a given i, i.e. such that i→ ` is in the graph, but we need to look at all the neurons in the graphs

to find out the set of parents j of i, i.e. such that j → i is in the graph. However, probabilistic

estimates might be computed mathematically. Indeed Bi is a sum of i.i.d. Bernoulli variables. So

by Bernstein’s inequality [1], for all positive x,

∀i = 1, ...,M,

P(Bi ≥ (M − 1)p+
√

2(M − 1)p(1− p)x+ x/3) ≤ e−x,

and, by union bound,

P(max
i=1,...,M

Bi ≥ (M − 1)p+
√

2(M − 1)p(1− p)x+ x/3) ≤Me−x.

Therefore for a fixed level α (say 1%), and with x = log(M) + log(1/α), we obtain that with

21

probability larger than 1− α, the spectral radius of Z is upper bounded

ρmax = (M − 1)p+ ξα

with

ξα =
√

2(M − 1)p(1− p)[log(M) + log(1/α)]

+[log(M) + log(1/α)]/3

Note that ρmax is roughly (M − 1)p, which is the largest eigenvalue of E(Z). Finally if we take

θ < 1/ρmax, the process will not explode with probability larger than 1− α. In practice, to ensure

a strong enough interaction, we take θ = 0.9ρ−1max.

Choice of νi or how to constraint the distribution of the firing rates

The first step consists in deciding for a target distribution for the mi’s. We have chosen to pick the

mi’s independently as 0.1X where X is the absolute value of a student variable with mean 3 and 4

degrees of freedom. The choice of the student variable was driven by the wish of having a moderate

heavy tail, which will ensure records around 50 Hz and a mean around 0.3Hz.

The problem is that the mi’s are not parameters of the model, so we need to tune the νi’s to

get such mi’s. Note that by inverting (5), we get that

(I −H)m = ν

(see also [43]) that is for all i

νi = mi − θ
∑
j 6=i

mjZj→i.

This means that the spontaneous rate that we need to put is the mean firing rate mi minus what

can be explained with the parents of i.

So in theory, the Hawkes model is very easy to tune for prescribed firing rates since there is

a linear relationship between both. However, and for the same reasons as before, it might be too

computationally intensive to compute this explicitly.

22

One possible way is to again use concentration inequalities, but this time on
∑

j 6=imjZj→i and

not on Bi. However a simpler trick works well (as seen in Figure 4).

Indeed
∑

j 6=imjZj→i is a sum of about (M − 1)p ' 1000 i.i.d variables with mean m̄ = 0.3Hz.

Hence it should be close to m̄Bi. With the previous computations, we know already that νi should

therefore be larger than mi − θρmaxm̄.

Therefore, with the previous choice of θ = 0.9ρ−1max, we take the νi’s as follows:

νi = max(mi − 0.9m̄, 0).

Note that νi remains positive or null, which guarantees that the Hawkes process stays linear. How-

ever, this also means that a non negligible portion of the neurons start with a null spontaneous

firing rate, which explains the ripples of Figure 4.

With this choice, we cannot hope to have exactly the same distribution as the desired mi’s, but

it conserves the same heavy tail and roughly the same mean firing rate, as one can see on Table 2.

4 Discussion

The ATiTAP algorithm is based on Activity Tracking with Time Asynchrony and Procedural con-

nectivity and is derived from another algorithm, ATiTA [32] which has a much higher memory cost.

The aim of this study is a proof of concept that simulations of huge neuronal networks on single

PU are possible and that this may open the way for a new point of view on neuronal simulations.

More specifically, we have been able to theoretically compute ATiTA(P) computational cost and

memory burden (see Sections 2.3 and 2.4) and to perform simulations in a range of parameters that

are of the order of magnitude of human brain areas or small mammalian whole brains (see Section

2.5). Moreover we have been able to reproduce a large heterogeneity in the firing rates (see Section

2.7) and to prove that on a desktop computer we can easily reach 107 neurons, that is the size a

human hippocampus [54] or of a mouse.

Comparison with existing algorithms is tricky. First because the models are not completely

equivalent (for instance Integrate-and-Fire in [19, 26] versus Hawkes for ATiTA(P)), second because

the other algorithms use supercomputers or GPUs with massive parallel computations (cf. Table 3),

23

thirdly because depending on the model, it is more or less difficult to compute theoretical memory

and computational costs (see for instance [27, 24]).

In Section 2.1, we have shown the similarities and dissimilarities between Hawkes processes and

Integrate-and-Fire. We believe that it is a matter of taste for preferring one to the other: Hawkes

processes have been shown to fit real data (see [44, 41]), Integrate-and-Fire models have a nice

voltage interpretation. But there are links between both, especially because the intensity of the

process can be thought as a function of the voltage.

Besides the fact that Hawkes processes allow us to compute theoretical complexities, we believe

that one of the main advantage of Hawkes processes is that they satisfy time asynchrony, which

allows us to spend computational time only on the neurons that are very active. Let us quantify this

more specifically. In Section 2.2, we have described in details the benchmark hybrid algorithm [19]

versus ATiTA(P). The main burden with parallelization, even in the hybrid algorithm, is that PUs

have to wait for each other every discretization step Tcom. The nice idea of the hybrid algorithm

is that this step is not the thinnest possible but of intermediate size, so that this synchronization

does not happen often (Tcom = 0.001s in their case). Still, at every discretization step, the whole

system has to check the state of all neurons, that is a total of MT/Tcom operations just for the

synchronization. For a classic network of M = 106 neurons and 1s of simulation, we end up with

109 operations, only for synchronization. To give an order of magnitude, ATiTA and ATiTAP have

a complexity cost of 6 · 109 thanks to (2) for 1000 post-synaptic neurons in average, for the full

simulation.

Table 3 compares both execution times and memory imprints of our simulation with the latest

simulations of large-scale spiking neural networks in the literature5. Because the models are very

close dynamically and structurally, it might be a good way to roughly compare the memory and

computational performances of corresponding simulators and hardware solutions. Structurally, net-

works of similar size and connectivity are compared. Dynamically, simulations in [26, 47, 24] use

LIF models that are dynamically very close to the Hawkes model used here (see Section 2.1). The

simulations we found in the literature have about d = 104 synapses and we used the theoretical

complexities to give an idea of how ATiTA(P) would scale. However we need to underline that
5Notice that in [24] two supercomputers, JUQUEEN and K, were used but we present here JUQUEEN results,

which are the most comparable ones. In [26] different GPU graphics cards were used however we refer here to the
best-result one, the Nvidia Titan RTX.

24

comparing completely these models is very tricky. First of all, they have very different firing rates

(up to 14.6 Hz in some of the models used in [47]). A first look at the main term Tm̄dM log(M) in

the theoretical computational complexity might let us think that we need to multiply by about 50

these execution times. However, we think this crude estimate might be biased, especially because

the models in [26, 47] are representing with a lot of details the visual cortex with different layers,

each layer having a different connectivity and number of neurons. For these highly heterogeneous

models, a mean firing rate and mean number of synapses might not represent to a full extent what

ATiTA(P) can do and we refer the interested reader to [32] for a more detailed formula in the case

of structured networks.

In any case, despite the difficulty of the exact comparison, we see that ATiTA(P) as GeNN, the

two algorithms implementing procedural connectivity, have a comparable and significant decrease

in memory imprints with respect to the other algorithms and that ATiTA (that is, the algorithm

that stores the connectivity graph), would have had a memory imprint comparable to NEST1 and

smaller than NEST2. Note that storing all the synaptic weights is a bottleneck that cannot be

easily passed as soon as one wants to simulate synaptic plasticity, which is not the purpose of the

present work.

In terms of execution times, ATiTA(P) is clearly the slowest with a factor 3 · 103 with respect

to the fastest one (NEST2)6, but ATiTA(P) only uses one thread with respect to the 6 · 104 threads

used in NEST2. This has to be put in perspective with respect to the purpose of simulations.

Indeed, especially for random models (but this can also hold as soon as we want to test several set

of parameters), the purpose of simulations is not to make just one simulation but to do replicas.

In this sense, it is important to think that if we use the totality of the threads to perform one

simulation, doing replicas can only be done in a serial way. In this sense, ATiTA(P) allows us

to have one thread per replica and one can perform parallel simulations of the different replicas

very easily. So even if the comparison in terms of execution times is purely qualitative, due to

the heterogeneity of the models that have been simulated. Table 3 shows that roughly speaking,

ATiTA(P) can simulate as many replicas as NEST2 in about the same amount of time: ATiTA(P)

would use the 6 · 104 threads to simulate the replicas, whereas NEST2 would use these threads to
6If we take into account the firing rate, we might want to multiply this by a factor 50, but as said before, this

might not be realistic.

25

simulate faster one replica and then would implement sequentially the various replicas. Notice that

the number of replicas can be limited by the memory capacity of the supercomputer used to run

the replicas. Indeed, each core hosting the threads should have enough memory to actually host

an ATiTAP simulation. Taking JUQUEEN supercomputer to run ATiTAP replicas, each node has

16 GiBytes of memory. This allows 16GB/8Threads = 2 GiBytes of available memory per running

thread. An ATiTAP instance consuming 8.7 GiBytes of memory according to Table 3. Thus one

ATiTAP instance actually consumes the memory resources of 8.7GiBytes/2GiBytes per core, i.e.,

4 cores. This actually reduces the possible number of parallel replicas run by ATiTA(P) by a

factor of 4: 65536/4=16384. The same could roughly apply to GeNN as well but notice that GPUs

are designed to run one simulation in parallel, they are not adapted to run several simulations in

parallel. For example, the Nvidia Titan RTX used by GeNN only has a total memory of 24 GiBytes

allowing only running 2 replicas in parallel.

The present work is therefore a proof of concept that optimized sequential algorithms based on

activity tracking and time-asynchrony might well offer another point of view on massive simulations

of brain-scale neural networks.

26

Simulator Machine Size order Memory Execution time Nb. Threads

NEST1 [47] JUQUEEN
1010 synapses

106 neurons
2 · 1012 Bytes 17min 1024*64=65536

NEST2 [24] JUQUEEN
1010 plastic synapses

106 neurons
1014Bytes 16s 8192*8= 65536

GeNN [26] GPU
1010 synapses

106 neurons
1.2 · 1010Bytes 14.4min 4608

ATiTAP IRENE
109 synapses

106 neurons
109Bytes 25min 1

ATiTAP (Th.) IRENE
1010 synapses

106 neurons
8.7 · 109Bytes 36*25mn= 15h 1

ATiTA (Th.) IRENE
1010 synapses

106 neurons
2.8 · 1012Bytes 36*25mn= 15h 1

Table 3: Comparison of execution times and total memory cost for each simulator and comparable
network sizes for 1s of biological time. For ATiTAP (see Section 2 and Figure 5) the case d = 1000,
M = 106 corresponds to a total number of synapses of 109. Note that in NEST1 and NEST2,
synapses are plastic, that is, a certain form of update of the synaptic weights is embedded in the
code and the whole network should be stored (this is also the case for ATiTA). The last two rows
correspond to what might have been the execution times and memory cost if we implemented
ATiTA(P) but with d = 104, that is 1010 synapses. To understand the theoretical scaling for
ATiTAP and ATiTA with 1010 synapses, we apply for the computational cost, the theoretical
multiplicative factor given by the ratio of (2) between d = 104 and d = 103. The same computation
is done for the memory cost with (4) in the case where ρ and η are neglected and where ω = ε,
that is same accuracy for a spiking time and an index in the network. NEST1 and NEST2 used
1 MPI process per node. For the number of threads of NEST1 and NEST2, we thus multiplied
the number of MPI processes that have been used by the number of used threads per node. For the
memory usage of NEST1 and NEST2, we multiplied the code memory usage per node, 2 GiBytes
and 12 GiBytes respectively, by the number of nodes used for the simulations. For GeNN, the
indicated number of threads is the number of CUDA cores since this simulation is done on GPU
cards. When several implementations were possible, we took each time the one with the smallest
execution time.

There is still room for improvements. Among the several possible improvements, ATiTA(P)

could be parallelized among the post-synaptic neurons (update and prediction of the next potential

spikes). This is particularly important if we want to pass from d = 103 to d = 104 post-synaptic

neurons in average (even if we showed that d = 104 seems not to be relevant for realistic simulations).

Next, new algorithms for Hawkes processes, based on Kalikow decomposition, have been proved to

work even if the neuronal network is infinite [40]. This would theoretically decrease the overall

27

complexity in terms of d. Finally, if we want to have synaptic plasticity, we are forced to work with

ATiTA and varying non zero interaction functions that need to be stored. Once they are stored, the

update of these functions seems to be as costly that the update of the intensities themselves (see for

instance [25] where only local firing rates are needed). Once all these improvements are done, one

might think to implement fully realistic models (such as the one of the visual cortex of [47]) with

variants of ATiTA(P). This is definitely a source for future work, which might lead to simulations,

whose execution time is smaller than biological time [28].

Acknowledgements

We would like to thank the anonymous reviewers, whose remarks allowed to greatly improve the

quality of this article.

This work is part of the project HyperBrain from Human Brain Project (HBP) EBRAINS

EU initiative. The simulations were run on Fenix Infrastructure resources, which are partially

funded from the European Union’s Horizon 2020 research and innovation program through the

ICEI project under the grant agreement No. 800858. Our research was supported by the French

government, through CNRS, the UCAJedi and 3IA Côte d’Azur Investissements d’Avenir managed

by the National Research Agency (ANR-15- IDEX-01 and ANR-19-P3IA-0002), directly by the ANR

project ChaMaNe (ANR-19-CE40-0024-02) and by the interdisciplinary Institute for Modeling in

Neuroscience and Cognition (NeuroMod) of the Université Côte d’Azur.

References

[1] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities. A nonasymp-

totic theory of independence, With a foreword by Michel Ledoux. Oxford University Press,

Oxford, 2013.

[2] P. Brémaud. Point processes and queues. Martingale dynamics, Springer Series in Statistics.

Springer-Verlag, New York-Berlin, 1981.

28

[3] Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Beeman, James M

Bower, Markus Diesmann, Abigail Morrison, Philip H Goodman, Frederick C Harris, et al.

“Simulation of networks of spiking neurons: a review of tools and strategies”. In: Journal of

computational neuroscience 23.3 (2007), pp. 349–398.

[4] E. N. Brown, R. Barbieri, V. Ventura, R. E. Kass, and L.M. Frank. “The Time-Rescaling

Theorem and Its Application to Neural Spike Train Data Analysis”. In: Neural Computation

14.2 (2002), pp. 325–346.

[5] Marıa J. Cáceres, José A. Carrillo, and Benoıt Perthame. “Analysis of nonlinear noisy integrate

& fire neuron models: blow-up and steady states”. In: J. Math. Neurosci. 1 (2011), Art. 7, 33.

[6] Malcolm R Dando. Japan’s Brain/MINDS Project. 2020.

[7] François Delarue, James Inglis, Sylvain Rubenthaler, and Etienne Tanré. “Global solvability

of a networked integrate-and-fire model of McKean-Vlasov type”. In: Ann. Appl. Probab. 25.4

(2015), pp. 2096–2133.

[8] S. Delattre, N. Fournier, and M. Hoffmann. “Hawkes processes on large networks”. In: Ann.

App. Probab. 26 (2016), pp. 216–261.

[9] V. Didelez. “Graphical models of markes point processes based on local independence”. In:

J.R. Statist. Soc. B 70.1 (2008), pp. 245–264.

[10] David A. Drachman. “Do we have brain to spare?” In: Neurology 64.12 (2005), pp. 2004–

2005. issn: 0028-3878. doi: 10.1212/01.WNL.0000166914.38327.BB. eprint: https://

n.neurology.org/content/64/12/2004.full.pdf. url: https://n.neurology.org/

content/64/12/2004.

[11] Stanley C Eisenstat, MC Gursky, Martin H Schultz, and Andrew H Sherman. Yale sparse

matrix package. i. the symmetric codes. Tech. rep. YALE UNIV NEW HAVEN CT DEPT OF

COMPUTER SCIENCE, 1977.

[12] Ronald F Fox. “Stochastic versions of the Hodgkin-Huxley equations”. In: Biophysical journal

72.5 (1997), pp. 2068–2074.

29

[13] Eyal Gal, Michael London, Amir Globerson, Srikanth Ramaswamy, Michael W. Reimann,

Eilif Muller, Henry Markram, and Idan Segev. “Rich cell-type-specific network topology in

neocortical microcircuitry”. In: Nature Neuroscience 20.7 (2017), pp. 1004–1013. issn: 1546-

1726. doi: 10.1038/nn.4576. url: https://doi.org/10.1038/nn.4576.

[14] A. Galves and E. Löcherbach. “Infinite Systems of Interacting Chains with Memory of Variable

Length—A Stochastic Model for Biological Neural Nets”. In: Journal of Statistical Physics

151.5 (June 2013), pp. 896–921. url: https://doi.org/10.1007/s10955-013-0733-9.

[15] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics:

From single neurons to networks and models of cognition. Cambridge University Press, 2014.

[16] F Grammont and Alexa Riehle. “Spike synchronization and firing rate in a population of

motor cortical neurons in relation to movement direction and reaction time”. In: Biological

cybernetics 88.5 (2003), pp. 360–373.

[17] Grazieschi, Paolo, Leocata, Marta, Mascart, Cyrille, Chevallier, Julien, Delarue, François, and

Tanré, Etienne. “Network of interacting neurons with random synaptic weights”. In: ESAIM:

ProcS 65 (2019), pp. 445–475. doi: 10.1051/proc/201965445. url: https://doi.org/10.

1051/proc/201965445.

[18] John Guckenheimer and Ricardo A Oliva. “Chaos in the Hodgkin–Huxley model”. In: SIAM

Journal on Applied Dynamical Systems 1.1 (2002), pp. 105–114.

[19] Alexander Hanuschkin, Susanne Kunkel, Moritz Helias, Abigail Morrison, and Markus Dies-

mann. “A General and Efficient Method for Incorporating Precise Spike Times in Globally

Time-Driven Simulations”. In: Frontiers in Neuroinformatics 4 (2010), p. 113. issn: 1662-5196.

doi: 10.3389/fninf.2010.00113. url: https://www.frontiersin.org/article/10.3389/

fninf.2010.00113.

[20] A. G. Hawkes and D. Oakes. “A cluster process representation of a self-exciting process”. In:

J. Appl. Probability 11 (1974), pp. 493–503.

[21] S. Herculano-Houzel and R. Lent. “Isotropic Fractionator: A Simple, Rapid Method for the

Quantification of Total Cell and Neuron Numbers in the Brain”. In: Journal of Neuroscience

25.10 (2005), pp. 2518–2521. issn: 0270-6474. doi: 10.1523/JNEUROSCI.4526- 04.2005.

30

eprint: https: //www. jneurosci. org/content /25/10 /2518. full.pdf. url: https:

//www.jneurosci.org/content/25/10/2518.

[22] Suzana Herculano-Houzel, Christine E. Collins, Peiyan Wong, and Jon H. Kaas. “Cellular

scaling rules for primate brains”. In: Proceedings of the National Academy of Sciences 104.9

(2007), pp. 3562–3567. issn: 0027-8424. doi: 10.1073/pnas.0611396104. eprint: https:

//www.pnas.org/content/104/9/3562.full.pdf. url: https://www.pnas.org/content/

104/9/3562.

[23] Patrick Jahn, Rune W. Berg, Jørn Hounsgaard, and Susanne Ditlevsen. “Motoneuron mem-

brane potentials follow a time inhomogeneous jump diffusion process”. In: J. Comput. Neu-

rosci. 31.3 (2011), pp. 563–579.

[24] Jakob Jordan, Tammo Ippen, Moritz Helias, Itaru Kitayama, Mitsuhisa Sato, Jun Igarashi,

Markus Diesmann, and Susanne Kunkel. “Extremely scalable spiking neuronal network simu-

lation code: from laptops to exascale computers”. In: Frontiers in neuroinformatics 12 (2018),

p. 2.

[25] Richard Kempter, Wulfram Gerstner, and J Leo Van Hemmen. “Spike-based compared to rate-

based Hebbian learning”. In: Advances in neural information processing systems 11 (1999),

pp. 125–131.

[26] James C Knight and Thomas Nowotny. “Larger GPU-accelerated brain simulations with pro-

cedural connectivity”. In: Nature Computational Science 1 (2021), pp. 136–142.

[27] Susanne Kunkel, Maximilian Schmidt, Jochen M. Eppler, Hans E. Plesser, Gen Masumoto, Jun

Igarashi, Shin Ishii, Tomoki Fukai, Abigail Morrison, Markus Diesmann, and Moritz Helias.

“Spiking network simulation code for petascale computers”. In: Frontiers in Neuroinformatics

8 (2014), p. 78. issn: 1662-5196. doi: 10.3389/fninf.2014.00078. url: https://www.

frontiersin.org/article/10.3389/fninf.2014.00078.

[28] Anno C Kurth, Johanna Senk, Dennis Terhorst, Justin Finnerty, and Markus Diesmann. “Sub-

realtime simulation of a neuronal network of natural density”. In: Neuromorphic Computing

and Engineering 2.2 (Mar. 2022), p. 021001. doi: 10.1088/2634-4386/ac55fc. url: https:

//doi.org/10.1088/2634-4386/ac55fc.

31

[29] Aurel A Lazar and Eftychios A Pnevmatikakis. “Reconstruction of sensory stimuli encoded

with integrate-and-fire neurons with random thresholds”. In: EURASIP Journal on Advances

in Signal Processing 2009 (2009), pp. 1–14.

[30] Peter Lennie. “The Cost of Cortical Computation”. In: Current Biology 13.6 (2003), pp. 493–

497. issn: 0960-9822. doi: https://doi.org/10.1016/S0960- 9822(03)00135- 0. url:

http://www.sciencedirect.com/science/article/pii/S0960982203001350.

[31] Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, and L.F.

Abbott. “Optimal Degrees of Synaptic Connectivity”. In: Neuron 93.5 (2017), 1153–1164.e7.

issn: 0896-6273. doi: https://doi.org/10.1016/j.neuron.2017.01.030. url: https:

//www.sciencedirect.com/science/article/pii/S0896627317300545.

[32] Cyrille Mascart, Alexandre Muzy, and Patricia Reynaud-bouret. Efficient Simulation of Sparse

Graphs of Point Processes. 2020. arXiv: 2001.01702 [stat.CO].

[33] David A McCormick, Yousheng Shu, and Yuguo Yu. “Hodgkin and Huxley model—still stand-

ing?” In: Nature 445.7123 (2007), E1–E2.

[34] A. Muzy. “Exploiting Activity for the Modeling and Simulation of Dynamics and Learning

Processes in Hierarchical (Neurocognitive) Systems”. In: Computing in Science Engineering

21.1 (Jan. 2019), pp. 84–93. issn: 1558-366X. doi: 10.1109/MCSE.2018.2889235.

[35] Alexandre Muzy, Eric Innocenti, Antoine Aiello, Jean-François Santucci, and Fernando J

Barros. “Efficient Simulation of Large Scale Dynamic Structure Cell Spaces”. In: 2003 Summer

Computer Simulation Conference. SCS. 2003, pp–378.

[36] Alexandre Muzy and Bernard P Zeigler. “Specification of dynamic structure discrete event sys-

tems using single point encapsulated control functions”. In: International Journal of Modeling,

Simulation, and Scientific Computing 5.03 (2014), p. 1450012.

[37] Alexandre Muzy, Bernard P Zeigler, and Franck Grammont. “Iterative specification as a

modeling and simulation formalism for I/O general systems”. In: IEEE Systems Journal 12.3

(2017), pp. 2982–2993.

[38] R. R. Netz and W. A. Eaton. “Estimating computational limits on theoretical descriptions of

biological cells”. In: PNAS 118.6 (2021).

32

[39] Y. Ogata. “On Lewis’ simulation method for point processes”. In: IEEE Transaction on In-

formation Theory 27.1 (1981), pp. 23–31.

[40] Tien Cuong Phi, Alexandre Muzy, and Patricia Reynaud-Bouret. “Event-Scheduling Algo-

rithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal Networks”.

In: SN Computer Science 1.1 (Jan. 2020). doi: 10.1007/s42979-019-0039-3. url: https:

//hal.archives-ouvertes.fr/hal-02321497.

[41] J. Pillow, J. Shlens, L. Paninski, A. Sher, E. Chichilnisky, and E. Simoncelli. “Spatio-temporal

correlations and visual signalling in a complete neuronal population”. In: Nature 454 (2008),

pp. 995–999.

[42] Christophe Pouzat and Antoine Chaffiol. “Automatic spike train analysis and report gener-

ation. An implementation with R, R2HTML and STAR”. In: Journal of Neuroscience Meth-

ods 181.1 (2009), pp. 119–144. issn: 0165-0270. doi: https : / / doi . org / 10 . 1016 / j .

jneumeth . 2009 . 01 . 037. url: https : / / www . sciencedirect . com / science / article /

pii/S0165027009001058.

[43] Patricia Reynaud-Bouret, Alexandre Muzy, and Ingrid Bethus. “Towards a mathematical

definition of functional connectivity”. 2021. url: https://hal.archives-ouvertes.fr/hal-

03093516.

[44] Patricia Reynaud-Bouret, Vincent Rivoirard, Franck Grammont, and Christine Tuleau-Malot.

“Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis”. In:

The Journal of Mathematical Neuroscience 4.1 (2014), p. 3.

[45] Michelle Rudolph and Alain Destexhe. “Analytical integrate-and-fire neuron models with

conductance-based dynamics for event-driven simulation strategies”. In: Neural computation

18.9 (2006), pp. 2146–2210.

[46] L. Sacerdote and M. T. Giraudo. “Stochastic Biomathematical Models”. In: vol. 2058. Lecture

Notes in Mathematics, Springer, 2013. Chap. Stochastic Integrate and Fire Models: A Review

on Mathematical Methods and Their Applications, pp. 99–148.

[47] Maximilian Schmidt, Rembrandt Bakker, Kelly Shen, Gleb Bezgin, Markus Diesmann, and

Sacha Jennifer van Albada. “A multi-scale layer-resolved spiking network model of resting-

33

state dynamics in macaque visual cortical areas”. In: PLOS Computational Biology 14.10 (Oct.

2018), pp. 1–38. doi: 10.1371/journal.pcbi.1006359. url: https://doi.org/10.1371/

journal.pcbi.1006359.

[48] Gordon M Shepherd. The synaptic organization of the brain. Oxford university press, 2004.

[49] Heinz Stephan, Heiko Frahm, and Georg Baron. “New and revised data on volumes of brain

structures in insectivores and primates”. In: Folia primatologica 35.1 (1981), pp. 1–29.

[50] Jonathan D Touboul and Olivier D Faugeras. “A Markovian event-based framework for stochas-

tic spiking neural networks”. In: Journal of computational neuroscience 31.3 (2011), pp. 485–

507.

[51] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown. “A Point Process

Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and

Extrinsic Covariate Effects”. In: Journal of Neurophysiology 93.2 (2005), pp. 1074–1089.

[52] Christine Tuleau-Malot, Amel Rouis, Franck Grammont, and Patricia Reynaud-Bouret. “Mul-

tiple Tests Based on a Gaussian Approximation of the Unitary Events Method with Delayed

Coincidence Count”. In: Neural Computation 26.7 (July 2014), pp. 1408–1454. issn: 0899-

7667. doi: 10.1162/NECO_a_00604. url: https://doi.org/10.1162/NECO_a_00604 (visited

on 06/06/2021).

[53] R.S. Varga.Gershgorin and his circles. Springer Series in Computational Mathematics. Springer-

Verlag, 2004.

[54] M.J. West and H. J. G. Gundersen. “Unbiased stereological estimation of the number of

neurons in the human hippocampus”. In: Journal of Comparative Neurology 296(1) (1990).

[55] Hiroshi Yamaura, Jun Igarashi, and Tadashi Yamazaki. “Simulation of a human-scale cere-

bellar network model on the k computer”. In: Frontiers in neuroinformatics 14 (2020), p. 16.

[56] B.P. Zeigler, A. Muzy, and E Kofman. Theory of Modeling and Simulation: Discrete Event &

Iterative System Computational Foundations. Academic Press, 2018.

34

