
HAL Id: hal-03258798
https://hal.science/hal-03258798v1

Preprint submitted on 23 Sep 2021 (v1), last revised 7 May 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation scalability of large brain neuronal networks
thanks to time asynchrony

Cyrille Mascart, Gilles Scarella, Patricia Reynaud-Bouret, Alexandre Muzy

To cite this version:
Cyrille Mascart, Gilles Scarella, Patricia Reynaud-Bouret, Alexandre Muzy. Simulation scalability of
large brain neuronal networks thanks to time asynchrony. 2021. �hal-03258798v1�

https://hal.science/hal-03258798v1
https://hal.archives-ouvertes.fr

Simulation scalability of large brain neuronal networks thanks to
time asynchrony

Cyrille Mascart, Gilles Scarella, Patricia Reynaud-Bouret and Alexandre Muzy

September 22, 2021

Abstract
We present here a new algorithm based on a random
model for simulating efficiently large brain neuronal
networks. Model parameters (mean firing rate, num-
ber of neurons, synaptic connection probability and
postsynaptic duration) are easy to calibrate further
on real data experiments. Based on time asynchrony
assumption, both computational and memory com-
plexities are proved to be theoretically linear with
the number of neurons. These results are experimen-
tally validated by sequential simulations of millions
of neurons and billions of synapses in few minutes on
a single processor desktop computer.

1 Introduction
There are more and more vast research projects,
whose aim is to simulate brain areas or even complete
brains to better understand the way it works. Let
us cite for instance: the Human Brain Project (1) in
Europe, the Brain Mapping by Integrated Neurotech-
nologies for Disease Studies (Brain/MINDS) (7) in
Japan or the Brain Initiative (25) in the United-
States. Several approaches are feasible. There is the
biochemical approach (34), which is doomed for sys-
tems as complex as the brain. A more biophysical
approach has been investigated, see for instance (14),
where cortical barrels have been successfully simu-
lated, but are limited to about 105 neurons. How-
ever, the human brain contains about 1011 neurons
whereas a small monkey, like marmosets (7), has al-
ready 6× 108 neurons (22) and a bigger monkey, like

a macaque, has 6× 109 neurons (22).
To simulate such huge networks, models reduction

have to be made. In particular, a neuron has no more
physical shape and is just represented by a point in
a network with a certain voltage. Hodgkin-Huxley
equations (31) are able to reproduce the physical
shape if it is combined to other differential equations,
representing the dynamic of ion channels, but the
complexity of these coupled equations that form a
chaotic system (19), makes the system quite difficult
to simulate for huge networks. If ion channels dy-
namic is neglected, the simplest model of voltage is
the Integrate-and-Fire model (26). With such mod-
els, it has been possible on supercomputers to simu-
late a human-scale cerebellar network reaching about
68× 109 neurons (49).

However there is another point of view, which
might allow us to simulate such massive networks
with simplified models. Indeed, one can use much
more random models to reproduce the essential dy-
namics of the neurons: their firing pattern. The ran-
domization of not only the connectivity graph but
also the dynamics on the graph is making the model
closer to the data at hand and explain to a certain
extent their variability. The introduction of random-
ness is not new and has been done in many models
including Hodgkin-Huxley (13) and Leaky Integrate-
and-fire (LIF for short) (27).

Here we want to focus on particular random mod-
els - point processes (46) - which have a particular
property: time asynchrony, that is the inability of the
model to have two spikes that are produced exactly
at the same time by two different neurons. This in-
cludes in particular Hawkes models and variants such

1

as GLM, Wold processes, Galves-Löcherbach models,
and even some random LIF models with random or
soft threshold, all of them having been used to fit real
data (5, 15, 36, 38, 39, 42, 46).
This property, which is well known in mathemat-

ics (3, 5), combined with graph sparsity lead us to
propose a new algorithm in (30). The computational
complexity of this new algorithm has been computed.
Thanks to time asynchrony and to the computa-
tional activity tracking of firing neurons (32), we have
shown in particular that if the graph is sparse, the
complexity cost of the computation of a new point in
the system is linear in the number of neurons. How-
ever the memory burden was too high to reach net-
works of 108 neurons.
In a preliminary work (18) focusing on the math-

ematical aspects of mean-field limits of LIFs, we for-
malized a way to deal with this memory aspect with-
out putting it into practice: the main point is to not
keep in memory the whole network, but to regener-
ate it when need be. Recently, the same idea, under
the name of procedural connectivity, has been applied
with success on LIF models in (24): using GPU-based
parallel programming, and without time asynchrony,
the authors have been able to simulate a network of
4× 106 neurons and 24× 109 synapses on a desktop
GPU computer.
But, as we show in the present article, the gain

of procedural connectivity is even huger when com-
bined with time asynchrony. Indeed, classical par-
allel programming usually uses a discrete simulation
time and computes for all neurons (or synapses) what
happens at each time step in a parallel fashion (even
if spikes can be communicated in between two time
steps (49)). At each time step, each process corre-
sponding to a different neuron has to wait for the
calculations of all the other processes to know what
needs to be updated before computing the next step.
With time asynchrony, we can leverage discrete-event
programming (4, 33, 41, 45) to track the whole sys-
tem in time by jumps: from one spike in the network
to another spike in the network. Since a very small
percentage of a brain is firing during a given unit of
time (28), the gain we have is tremendous in terms of
computations. Thanks to the procedural connectiv-
ity, the memory needed to access for the computation

of each new spike is also controlled. Hence, thanks
to procedural connectivity combined with time asyn-
chrony, we propose a new algorithm for time asyn-
chronous models, running sequentially on a single
processor, thus simulating a realistic network of 108

neurons for which computational complexity as well
as memory costs can be controlled beforehand.

Results

Time synchrony for parallel simulation
Brain simulation of large networks is usually done
in parallel based on simulation synchronization. Of
course, this depends on both the mathematical model
at hand and the simulation algorithm. However, for
most models, differential equations are used to de-
rive the time course of the membrane voltage for
each individual neurons. These equations are (ap-
proximately) solved by usual discrete-time numerical
schemes (cf. Figure 1a) (24).
In this kind of implementation, when one presy-

naptic neuron fires at a time t, i.e., emits a spike (red
dots in Figure 1a), the synaptic transmission to post-
synaptic neurons is done at the next time step t+ ∆t
(orange dots in Figure 1a). Between two synaptic
transmissions, the membrane potential of a neuron
evolves independently of the other neurons and can
be computed in parallel (green dots in Figure 1a).
However, since one does not know when a spike will
be emitted in the network in advance, the membrane
potential of all the neurons are classically computed
in a synchronous way to be able to eventually trans-
mit spikes, at each time step ∆t of the algorithm.

Time asynchrony for sequential simula-
tion
As said in the introduction, point processes models
of neuronal network may guarantee time asynchrony
if they have a stochastic intensity. Such processes
include Hawkes processes, GLM approaches, Wold
processes or Galvès Löcherbach models in continuous
time (15, 36, 38, 39, 46). Most of these models have
proved their efficiency in terms of goodness-of-fit with

2

respect to real spike train data (5, 12, 36, 38, 39, 46).
Often, the intensity in these models can be informally
interpreted as a function of the membrane voltage
and for more evidence, we refer the reader to (23),
where the spike train of a motor neuron has been
shown to be adequately modeled by a point process
whose stochastic intensity is a function of the mem-
brane voltage.
These point processes models differ from classical

LIF, mainly because the higher the intensity (or the
membrane potential) of a given neuron is, the more
likely it is that the neuron fires, but this is never for
sure. In classical LIF models, the neurons fire when
their membrane potential reaches a fixed threshold.
Therefore it may happen that if a presynaptic neu-
ron fires, and if the corresponding postsynaptic neu-
rons have a potential close to the threshold, then all
the postsynaptic neurons fire at the exact same time.
This phenomenon can be massive (6, 8): this cor-
responds to the mathematical phenomenon of blow-
up, which happens for some mean-field limits of such
models. In this case, no time asynchrony is possible
but such phenomenon is completely unrealistic from a
biological point of view. There are LIF models with
random or soft threshold (18, 42) which might not
have this problem and which may also satisfy time
asynchrony.
In (30), we proposed a discrete-event algorithm to

simulate point processes with stochastic intensities.
This algorithm is based on the theory of local inde-
pendence graph (10), which is the directed neuronal
network in our present case.
The algorithm works as follows (see Figure 1b).

The spike events happen in continuous time in the
system (up to the numerical precision). Once a spike
on a particular presynaptic neuron happens (red dots
in Figure 1b), the postsynaptic neurons are updated
(orange dots in Figure 1b). The presynaptic and
the post synaptic neurons compute their intensities
(assimilated to membrane potential) and forecast its
evolution (green arrows in Figure 1b) if nothing in
between occurs in the system. They are therefore
able to forecast their potential next spike (gray dots
in Figure 1b). The algorithm maintains a scheduler
containing all potential next spikes on all neurons and
decides that the next neuron to fire effectively is the

one corresponding to the minimum of these potential
next spikes. For more details, we refer to (30).

The gain comes from the fact that neurons that are
not firing a lot, do not require a lot of computation
either. In particular we do not have to update all neu-
rons at each spike but only the pre and post synap-
tic neurons that are involved in the spiking event.
This is the main difference with the parallel simula-
tion framework detailed above. The other difference
is that we can work with arbitrary precision, typi-
cally 10−15 if necessary, without impeding the time
complexity of the algorithm.

Note that the whole algorithm is possible only be-
cause two neurons in the network will not spike at
the same time: the whole concept is based on time
asynchrony to be able to jump from one spike in the
system to the next spike in the system. Of course,
this is true only up to numerical precision: if two
potential next spikes (gray dots on Figure 1b) hap-
pen at the exact same time with resolution 10−15, by
convention the neuron with the smaller index is said
to fire. But the probability of such event is so small
that this is not putting the simulation in jeopardy.

Also note that this does not prevent neurons to
eventually synchronize frequently over a small time
duration of a few milliseconds, as defined for instance
in (47) and the references therein.

Procedural connectivity
One of the memory burden of both methods (paral-
lel and time asynchrony) comes from the fact that a
classic implementation stores the whole connectivity
graph, which is huge for brain scale models.

If the connectivity is the result of a random graph
and that each presynaptic neuron is randomly con-
nected to its postsynaptic neurons, one can store the
random seed instead of the result of the random at-
tribution. Hence the whole graph is never stored in
full but only regenerated when need be (see Figure
1b). The random connectivity is regenerated at each
spike taking advantage of the deterministic nature
of the pseudo-random generator used in the simula-
tion. Storing the generator initial seed, the seed of
each neuron is computed based on initial seed value
and neuron index (see Figure 1c). With this method,

3

only the initial seed is stored in memory. Of course
this dynamic regeneration at each spike has a cost in
terms of time complexity, but this cost is negligible
with respect to the other computations that need to
be made and this saves memory.
This method has been evoked at first in (18) for

time asynchronous algorithms, without being put
into practice, whereas this method has been already
implemented with success on parallel programming
with GPU (24).

Computational and memory costs
In (30), we obtained an accurate estimate of the
complexity of the algorithm without procedural con-
nectivity, for the simulation of linear Hawkes pro-
cesses (cf. Equation 7 of (30)). This can be reused
to compute the computational complexity of the
same model, when the procedural connectivity step
is added. Thus the overall time complexity of our
algorithm is of the order of

O
(
T
[
Md2m̄2 + log(M)Mdm̄+Mdm̄

])
(1)

where M is the number of neurons, p the connection
probability, d = dpMe the average degree of the net-
work, m̄ the average firing rate of the network and T
the simulation duration. The last term in (1) corre-
sponds to the computational cost of the procedural
connectivity at each spike, which is indeed negligible
with respect to other terms, as explained before.
Note that such computational costs depend in par-

ticular on the intensity shape of the underlying point
process model. The linearity of the Hawkes processes
makes it easy to derive, whereas this can be much
more cumbersome with other models such as stochas-
tic LIF, which needs to compute the distribution of
the time at which the threshold is reached.
The maximal memory cost of the procedural con-

nectivity, without the spike times storage, is of the
order of O(dω) = O(pMω), with ω the number of
bits necessary for representing the index of a post-
synaptic neuron.
The memory cost of a static storage of the whole

graph is of the order of O(dMω) = O(pM2ω). We do

not include in this the memory costs for the storage
of each spike of each neuron. However, this cost is
the same whatever the method and it is of the order
of MTm̄ε, where ε is the number of bits necessary
to represent a spike, which depends on the numerical
precision with which time is recorded. If d is thought
to be a fixed parameter, the memory cost of our com-
plete algorithm with procedural connectivity is thus

O(dω +MTm̄ε) (2)

Conversely, the use of a static storage of the net-
work is O(dMω + MTm̄ε). Note however that de-
pending on what the program needs to return, we
might not want to have the whole set of points but
only summary statistics such as firing rates that will
cost in memory much less than O(MTm̄ε).

Choice of brain scale parameters

Because of the precision of the actual measurements
and the brain region and neuron variability, it is dif-
ficult to estimate quantitatively both physiological
(number of synapses per neuron, etc.) and dynamic
parameters (average firing rate, etc.) of neuronal net-
works in primates (22) and humans (21). Only rough
estimates are available. The human brain being the
more computationally intensive, we estimate here its
main parameters for simulation. Our goal is indeed
to show the algorithm scalability to simulate large
networks with such parameters.

To our knowledge, the best documented region of
the human brain is the (neo)cortex. Based on the
structural statistics (number of neurons and synaptic
connections) of neuronal networks in the (neo)cortex,
we extrapolate here their representative parameter
values at brain scale.

The firing rate of a neuron in the brain can be
estimated by the limited resources at its disposal, es-
pecially glucose. Measures of ATP consumption have
shown (see (28)) that the firing rate of a neuron in hu-
man neocortex can be estimated around 0.16Hz. Still
based on ATP consumption, only 10% of the neurons
in the neocortex can be active at the same time. So
it seems coherent to choose an average of 0.16Hz.

4

These values can be extrapolated to the whole brain1,
as follows.
The neocortex represents 80% of the volume of the

brain (44) and consumes 44% of its energy (28). Con-
sidering that the energy consumed by the brain is
proportional to the firing rate of the neurons, the
power ratio then consists of

Pcortex
Pbrain

∼ Vcortexm̄cortex

Vbrainm̄brain
,

with m̄cortex the mean firing rate of individual neu-
rons in the neocortex (resp. in the brain) and Vcortex
the volume of the neocortex (resp. in the brain).
The average firing rate of the brain then consists of
m̄brain = 0.8× 0.16

0.44 = 0.29 Hz per neuron.
This average firing rate should not be confused

with the fact that particular neurons can have a much
larger firing rate. Particularly, groups of neurons syn-
chronize together for achieving a particular cognitive
task: this is the concept of neuronal assemblies (17).
In an assembly, neurons can usually increase their
rates to tens Hz (possibly 50Hz) over a short dura-
tion. Therefore, we choose a firing rate in the brain
where most of the neurons have a firing rate of 0.3Hz
but some have a much higher firing rate (up to 50Hz)
using an heavy tailed distribution, see Materials and
Methods and Table 2.
The average number of synaptic connections in hu-

man brains is hard to estimate and depends heav-
ily on the neuron types and brain regions. For ex-
ample, in the brain, it is assumed that the major-
ity of neurons are cerebellum granule cells (43). In
(29), the number of synaptic connections to granule
neurons is estimated to an average of only 4 connec-
tions, matching those observed anatomically. On the
other hand, Purkinje neurons can have up to 200, 000
synapses on only one dendrite in the human brain
(43). The approximate number of synapses in the
cortex is 0.6× 1014 (11). Assuming that the volume
of the cortex represents around 80% of the volume
of the brain, the number of synapses in the brain is
of order 1014. Considering that the number of neu-
rons in the human brain is of order 1011 (21), we find

1This calculus can be found on AI impact project
webpage: https://aiimpacts.org/rate-of-neuron-firing/
(lastly verified: 02/09/2021)

that the average number of synapses is about 1, 000
synapses per neuron2. The synaptic connection prob-
ability thus depends on the number of neurons M :
pM = 1,000

M .
Finally, an action potential arriving on one pre-

synaptic neuron produces an Excitatory PostSynap-
tic Potential (EPSP), or an Inhibitory PostSynaptic
Potential (IPSP), in the postsynaptic neuron. The
duration of these postsynaptic potentials is about
τ = 20ms (43).

Therefore the parameters that we used in the sim-
ulation are indicated in Table 1. Notice that these
parameters are generic and intuitive and can be taken
easily into account in further studies, either at a bi-
ological or at theoretical model level.

Simulation duration T = 5s
Mean firing rate m̄ = 0.3Hz

Number of neurons simulated M = {105, 106, 107, 108}
Synaptic connection probability pM = 1000/M

Postsynaptic duration τ = 20ms

Table 1: Neuronal network parameters at human
brain scale level.

Software and hardware configurations
The simulations have been run on a Symmetric
shared Memory multiProcessor (SMP) computer
equipped with Intel CascadeLake@2.6GHz proces-
sors3. This kind of computer is used here to have ac-
cess to larger memory capacities. At computational
level, only one processor was used for the simulations.
For small sizes of networks requiring small amounts
of memory (cf. Figure 3b), e.g. a network of 106

neurons with a total of 109 synaptic connections, this
2Calculus on AI impact project webpage: https://

aiimpacts.org/scale-of-the-human-brain/ (lastly verified:
02/09/2021).

3We used v100l and v100xl partitions on Joliot-Curie super-
computer at TGCC as a Fenix Infrastructure resource. Each
node of v100l and v100xl has Intel CascadeLake@2.6GHz pro-
cessors. A node on v100l is a dual-socket one with 2x18 cores,
each core having a memory of 10 GBytes, so the total amount
of available memory is 360 GBytes. A node on v100xl is a
quad-socket one with 4x18 cores, each core having a memory
of 41.5 GBytes, so the total amount of available memory is 3
TBytes.

5

https://aiimpacts.org/rate-of-neuron-firing/
https://aiimpacts.org/scale-of-the-human-brain/
https://aiimpacts.org/scale-of-the-human-brain/

computer is equivalent to a simple desktop computer.
The simulation of such networks takes only 25 min-
utes for each biological second. This is of the order of
the 4.13× 106 neurons and 24.2× 109 synapses sim-
ulated on GPUs (24), which takes about 15 minutes
for each biological second. This GPU-based simula-
tion was already running up to 35% faster than on
1024 supercomputer nodes (one rack of an IBM Blue
Gene/Q) (16). Our simulation only requires a single
usual processor and no GPU.
The implementation of the algorithm is written in

C++ (2011) programming language and compiled us-
ing g++ 9.3.0.

Firing rate at network level
Table 2 presents classical elementary statistics on the
simulated firing rates, whereas Figure 2 presents the
corresponding densities. As one can see in Section
Material and Methods, the system is initialized with
a lot of neurons whose spontaneous spiking activity
is null. The system needs to warm up to have almost
all neurons spiking. This explains why the density at
T = 5s is still rippled whereas, at T = 50s, it looks
much smoother. This last case corresponds basically
to the stationary version of the process. Indeed, as
explained in Section Material and Methods, the pa-
rameters of the Hawkes model (in particular the spon-
taneous spiking activity) have been fixed to achieve
a certain stationary distribution of the firing rates
(with mean 0.3Hz), which is heavy tailed to achieve
records as large as 50 Hz. As one can see (even if at
T = 5s the system is not warmed up yet with a lot of
non spiking neurons), one can still achieve the desired
average firing rate and extremal values. These basic
statistics are not varying a lot with T (see Table 2).
Note that the density plots are roughly the same for
all configurations: with ripples at T = 5s and smooth
curve at T = 50s.
Our approach is particularly adapted to simulate

precisely and efficiently a huge disparity in frequency
distributions. Indeed, our simulation algorithm (32)
allows focusing efficiently the computing resources on
highly spiking neurons without computing anything
for almost silent neurons (cf. Figures 1a and 1b).
The last advantage of our approach is to be able to

M d Average freq. Freq. min. Freq. max. Freq. std. Percentage of
non spiking
neuron

1e5 250 0.279 (0.279) 0 (0) 14 (13.94) 0.315 (0.222) 31.2 (0.01)
1e5 500 0.334 (0.333) 0 (0.02) 6.6 (5.76) 0.328 (0.218) 23.5 (0)
1e5 1000 0.399 (0.398) 0 (0.04) 10.4 (11.64) 0.345 (0.220) 16.9 (0)
1e6 250 0.267 (0.267) 0 (0) 19.2 (20.84) 0.308 (0.217) 33 (0.01)
1e6 500 0.322 (0.324) 0 (0) 38.4 (39.38) 0.329 (0.225) 25.1 (0.00)
1e6 1000 0.383 (0.387) 0 (0.02) 13.4 (12.9) 0.344 (0.223) 18.5 (0)
5e6 250 0.26 (0.261) 0 (0) 27.4 (28.5) 0.307 (0.217) 34.1 (0.02)
5e6 500 0.315 (0.316) 0 (0) 34.2 (34.1) 0.324 (0.220) 26 (0.00)
5e6 1000 0.377 0 19.8 0.342 19
1e7 250 0.258 (0.259) 0 (0) 23.2 (21.62) 0.306 (0.217) 34.4 (0.02)
1e7 500 0.311 0 21.6 0.322 26.4
1e7 1000 0.374 0 21.8 0.342 19.3
5e7 250 0.253 0 38.2 0.304 35.4
5e7 500 0.305 0 50.6 0.321 27.2
1e8 250 0.251 0 46.2 0.303 35.7.

Table 2: Firing rates elementary statistics obtained
by simulation for different sizes of neural networks
and different numbers of synaptic connections and
T = 5s. The number between parentheses displays
the results at T = 50s for the less complex simula-
tions

store time stamps with a precision of 10−15s.

Execution times and memory usage
The simulation execution times are presented in Fig-
ure 3a for different sizes of neural networks and dif-
ferent numbers of synaptic connections (called chil-
dren). The experimental execution times obtained
are in agreement with (1) which predicts, for in-
stance, O(1012) operations for M = 107 and d = 103.
The curves are almost linear (with slopes around 1.1)
with respect to the number of neurons, for different
numbers of synaptic connections.

The total amount of memory used is displayed in
Figure 3b. They are in agreement with the procedu-
ral memory complexity of (2) and also almost linear
(with slopes slightly below 1). Note in particular that
for M = 107, d = 103, ω = 32 and ε = 64 (leading
to a 10−15 precision in time), the memory cost pre-
dicted by (2) isO(1011) for the static implementation,
whereas it is O(109) for the procedural connectivity
implementation. Besides notice that, as expected,
increasing the average number of post-synaptic con-
nections per neuron has few impact on the memory.
Indeed, within the network, only the post-synaptic
connections receiving spikes are dynamically gener-
ated.

6

Material and Methods
Model
For a set of M neurons, we first design the graph of
interaction by saying that neuron j influences neuron
i if a Bernoulli variable Zj→i of parameter p is non
zero. The resulting network is an Erdös-Rényii graph.
Once the network is fixed, we design the spike ap-

parition thanks to a Hawkes process, that is a point
process whose intensity is given by

λi(t) = νi +
M∑
j=1

∫ t

0
hj→i(t− τ)dN j

τ ,

with dN j the point measure associated to neuron j.
In this formula, νi represents the spontaneous fir-
ing rate of the neuron i if the other neurons do not
fire, whereas hj→i is the interaction function, that
is hj→i(u) is the increase (if positive) or decrease (if
negative) that the firing rate of neuron i suffers due
to a spike on j, which happens u seconds before.

We are interested in a particular case of the Hawkes
process where all the interaction functions are always
the same when they are non null. More precisely, we
set the interaction function

hj→i = Zj→iθh,

where h is a fixed positive interaction function of
integral 1, θ is a tuning parameter that we need
to calibrate to avoid explosion of the process. We
also set hi→i = 0 (no self interaction). We take
h = 501[0,0.02]: the interaction function is a constant
and non zero only on a small interval of length 20ms,
which corresponds to typical Post Synaptic Potentials
in the brain.
Let us denote Hj→i =

∫ +∞
0 hj→i(t)dt) and H =

(Hj→i)i,j=1,...,M is the corresponding matrix (line i
corresponds to a triggered neuron, column j to a trig-
gering neuron).
Note in particular that in this model, there are

only excitatory neurons : if in the brain, there are
inhibitory neurons, this will only reduce the number
of points without changing the complexity. Moreover
when all the interaction functions are non negative,
we can easily understand the explosion condition.

Indeed, this Hawkes process explodes, that is, it
produces an exponentially increasing number of point
per unit of time (see (9)) if the spectral radius of H
is larger than 1.

If (Condition Stat) the spectral radius is strictly
smaller than 1 (20), then a stationary version ex-
ists and the corresponding vector of mean firing rates
m = (mi)i=1,...,M is given by

m = (I −H)−1ν. (3)

Note also that if we start the simulation without
points before 0 in (Condition Stat), the process is
not stricto sensu stationary but it will converge to
an equilibrium given by the stationary state (ergodic
theorem) and that the number of points that will be
produced is always smaller than the stationary ver-
sion.

In the present case we want (i) to prevent explosion
and (ii) to reach a certain vector m which is biologi-
cally realistic (average around 0.3 Hz, records around
50 Hz). Both of these calibrations can be done math-
ematically beforehand in the Hawkes model : we can
guarantee the behavior of the whole system even be-
fore performing the simulation, whereas this might
be much more intricate for other models such as LIF.

Choice of θ or how to avoid explosion
Note that H = θZ, with Z = (Zj→i)i,j=1,...,M . So
if we can compute the largest eigenvalue of Z or an
upper bound, we can decide how to choose θ.

We can use Gershgorin circles (48) to say that any
complex eigenvalue λ of Z satisfies (because the di-
agonal is null),

|λ| ≤ max
i=1,...,M

∑
j 6=i

Zj→i.

Therefore the spectral radius is upper bounded by
maxi=1,...,M Bi, where Bi =

∑
j 6=i Zj→i. This ran-

dom quantity can be computed for small networks
but it is clearly too intensive in our setting: indeed,
with the procedural connectivity implementation, it
is always easy to access the children ` of a given i,
i.e. such that i → ` is in the graph, but we need
to look at all the neurons in the graphs to find out

7

the set of parents j of i, i.e. such that j → i is in
the graph. However, probabilistic estimates might be
computed mathematically. Indeed Bi is just a sum
of i.i.d. Bernoulli variables. So we can apply Bern-
stein’s inequality (2). This leads to, for all positive
x,

∀i = 1, ...,M,

P(Bi ≥ (M − 1)p+
√

2(M − 1)p(1− p)x+ x/3) ≤ e−x,

and, by union bound, for the maximum

P(max
i=1,...,M

Bi ≥ (M−1)p+
√

2(M − 1)p(1− p)x+x/3) ≤Me−x.

Therefore let us fix a level α, say 1%, and take
x = log(M) + log(1/α) in the previous equation. We
obtain that with probability larger than 1 − α, the
spectral radius of Z is upper bounded

ρmax = (M − 1)p+ ξα

with

ξα =
√

2(M − 1)p(1− p)[log(M) + log(1/α)]
+[log(M) + log(1/α)]/3

Note that ρmax is roughly (M − 1)p, which is the
largest eigenvalue of E(Z). Finally it means that if
we take θ < 1/ρmax, the process will not explode with
probability larger than 1 − α. In practice, to ensure
a strong enough interaction, we take θ = 0.9ρ−1

max.

Choice of νi or how to constraint the
distribution of the mean firing rates
The first step consists in deciding for a target dis-
tribution for the mi. We have chosen to pick the
mi’s independently as 0.1X where X is the absolute
value of a student variable with mean 3 and 4 degrees
of freedom. The choice of the student variable was
driven by the wish of having a moderate heavy tail,
which will ensure records around 50 Hz and a mean
around 0.3Hz.

The problem is that the mi’s are not parameters
of the model, so we need to understand how to tune
νi to get such mi’s. Note that by inverting (3), we
get that

(I −H)m = ν

that is for all i

νi = mi − θ
∑
j 6=i

mjZj→i,

which is very intuitive (40). Indeed the spontaneous
rate that we need to put is the mean firing rate mi

minus what can be explained with the parents of i.
So in theory, the Hawkes model is very easy to tune

for prescribed firing rates since there is a linear re-
lationship between both. However, and for the same
reasons as before, it might be too computationally
intensive to compute this explicitly.

One possible way is to again use concentration in-
equalities, but this time on

∑
j 6=imjZj→i and not on

Bi. However we decided to do something simpler,
which works well (as seen in Figure 2).

Indeed
∑
j 6=imjZj→i is a sum of about (M−1)p '

1000 i.i.d variables with mean m̄ = 0.3Hz. Hence it
should be close to m̄Bi. With the previous compu-
tations, we know already that νi should therefore be
larger than mi − θρmaxm̄.
With the previous choice of θ = 0.9ρ−1

max, we have
chosen to take the positive part for the νi’s in the
simulation, that is :

νi = max(mi − 0.9m̄, 0).

Therefore νi remains positive or null, which guar-
antees that the Hawkes process stays linear. How-
ever, this also means that a non negligible portion of
the neurons start with a null spontaneous firing rate,
which explains the ripples of Figure 2.

With this choice, we cannot hope to have exactly
the same distribution as the desired mi’s, but it con-
serves the same heavy tail and roughly the same mean
firing rate as the one we wanted, as one can see on
Table 2.

Discussion
Thanks to time asynchrony, we propose a new scal-
able algorithm to the simulate spiking activity of neu-
ronal networks. We are able to generate roughly the
same firing pattern as a real brain for a range be-
tween 105 and 108 neurons, in a few minutes on a

8

single processor, most parameters being tuned thanks
to general considerations inferred from the literature.
Corresponding computational and memory complex-
ities are shown to be both linear.
At simulation level, whereas usual simulations are

based on the continuous variation of the electrical
potentials of LIF neurons, point processes lead to
much more efficient simulations. In particular, in-
stead of computing the small continuous variations
for all neurons, only discrete spikes and their inter-
actions are simulated in the network. Between two
spikes no computations are done. Point processes also
lead to time asynchrony (two spikes cannot occur at
the same time in the network), which is a fundamen-
tal hypothesis for the algorithm to work.
Combining the time asynchrony hypothesis with

procedural connectivity drastically reduces the mem-
ory consumption and also, for the same network
activity, reduces the computations per spikes (cf.
Figures 1a and 1b). In particular, complexities
(both theoretical and concrete) can be computed and
proved to be almost linear in the number of neurons,
when Hawkes processes are generated, leading to sim-
ulation scalability of the whole approach without pre-
cision loss.
Both modeling and simulation results open many

research perspectives. We are currently developing
new discrete event algorithms that are able to simu-
late the spiking activity of neurons embedded in po-
tentially infinite neuronal networks (35). This paves
the path for simulation of parts of the brain as an
open physical system.
Furthermore, the minimal number of computations

and memory storage obtained here open new excit-
ing perspectives with respect to massive neuromor-
phic computers, by improving the energy saving con-
sumption of neuromorphic components (37).
Finally, if we have proved that the simulation is

doable, the point process model used here can be cal-
ibrated further on real data, by incorporating inhibi-
tion and more variability in the interaction functions.
Also, this model can be used for reconstructing the
functional connectivity of experimentally recorded
neurons (39, 40) to have access to more realistic inter-
action functions. Besides, as only few computing re-
sources (one single processor) is used with a minimal

memory amount, this opens new possibilities to run
in parallel many independent replications of stochas-
tic simulations of large networks. This is particularly
interesting for calibrating models based on real data
collections.

ACKNOWLEDGMENTS. This work is part of the
project HyperBrain from Human Brain Project (HBP)
EBRAINS EU initiative. The simulations were run on
Fenix Infrastructure resources, which are partially funded
from the European Union’s Horizon 2020 research and
innovation program through the ICEI project under the
grant agreement No. 800858. Our research was supported
by the French government, through CNRS, the UCAJedi

and 3IA Côte d’Azur Investissements d’Avenir managed
by the National Research Agency (ANR-15- IDEX-01
and ANR-19-P3IA-0002), directly by the ANR project
ChaMaNe (ANR-19-CE40-0024-02) and by the interdis-
ciplinary Institute for Modeling in Neuroscience and Cog-
nition (NeuroMod) of the Université Côte d’Azur.

References
[1] Katrin Amunts, Alois C Knoll, Thomas Lippert,

Cyriel MA Pennartz, Philippe Ryvlin, Alain Des-
texhe, Viktor K Jirsa, Egidio D’Angelo, and Jan G
Bjaalie. The human brain project—synergy between
neuroscience, computing, informatics, and brain-
inspired technologies. PLoS biology, 17(7):e3000344,
2019.

[2] Stéphane Boucheron, Gábor Lugosi, and Pascal Mas-
sart. Concentration inequalities. Oxford University
Press, Oxford, 2013. A nonasymptotic theory of in-
dependence, With a foreword by Michel Ledoux.

[3] P. Brémaud. Point processes and queues. Springer-
Verlag, New York-Berlin, 1981. Martingale dynam-
ics, Springer Series in Statistics.

[4] Romain Brette, Michelle Rudolph, Ted Carnevale,
Michael Hines, David Beeman, James M Bower,
Markus Diesmann, Abigail Morrison, Philip H Good-
man, Frederick C Harris, et al. Simulation of net-
works of spiking neurons: a review of tools and
strategies. Journal of computational neuroscience,
23(3):349–398, 2007.

[5] E. N. Brown, R. Barbieri, V. Ventura, R. E. Kass,
and L.M. Frank. The time-rescaling theorem and

9

its application to neural spike train data analysis.
Neural Computation, 14(2):325–346, 2002.

[6] María J. Cáceres, José A. Carrillo, and Benoît
Perthame. Analysis of nonlinear noisy integrate &
fire neuron models: blow-up and steady states. J.
Math. Neurosci., 1:Art. 7, 33, 2011.

[7] Malcolm R Dando. Japan’s brain/minds project,
2020.

[8] François Delarue, James Inglis, Sylvain Rubenthaler,
and Etienne Tanré. Global solvability of a net-
worked integrate-and-fire model of McKean-Vlasov
type. Ann. Appl. Probab., 25(4):2096–2133, 2015.

[9] S. Delattre, N. Fournier, and M. Hoffmann. Hawkes
processes on large networks. Ann. App. Probab., 26:
216 – 261, 2016.

[10] V. Didelez. Graphical models of markes point pro-
cesses based on local independence. J.R. Statist. Soc.
B, 70(1):245–264, 2008.

[11] David A. Drachman. Do we have brain to spare?
Neurology, 64(12):2004–2005, 2005. ISSN 0028-3878.
doi: 10.1212/01.WNL.0000166914.38327.BB. URL
https://n.neurology.org/content/64/12/2004.

[12] Aline Duarte, Antonio Galves, Eva Löcherbach, and
Guilherme Ost. Estimating the interaction graph
of stochastic neural dynamics. Bernoulli, 25(1):771–
792, 2019.

[13] Ronald F Fox. Stochastic versions of the hodgkin-
huxley equations. Biophysical journal, 72(5):2068–
2074, 1997.

[14] Eyal Gal, Michael London, Amir Globerson,
Srikanth Ramaswamy, Michael W. Reimann, Eilif
Muller, Henry Markram, and Idan Segev. Rich
cell-type-specific network topology in neocortical mi-
crocircuitry. Nature Neuroscience, 20(7):1004–1013,
2017. ISSN 1546-1726. doi: 10.1038/nn.4576. URL
https://doi.org/10.1038/nn.4576.

[15] A. Galves and E. Löcherbach. Infinite systems
of interacting chains with memory of variable
length—a stochastic model for biological neural
nets. Journal of Statistical Physics, 151(5):896–
921, Jun 2013. URL https://doi.org/10.1007/
s10955-013-0733-9.

[16] Marc-Oliver Gewaltig and Markus Diesmann. Nest
(neural simulation tool). Scholarpedia, 2(4):1430,
2007.

[17] F Grammont and Alexa Riehle. Spike synchroniza-
tion and firing rate in a population of motor cortical
neurons in relation to movement direction and re-
action time. Biological cybernetics, 88(5):360–373,
2003.

[18] Grazieschi, Paolo, Leocata, Marta, Mascart, Cyrille,
Chevallier, Julien, Delarue, François, and Tanré,
Etienne. Network of interacting neurons with ran-
dom synaptic weights. ESAIM: ProcS, 65:445–475,
2019. doi: 10.1051/proc/201965445. URL https:
//doi.org/10.1051/proc/201965445.

[19] John Guckenheimer and Ricardo A Oliva. Chaos
in the hodgkin–huxley model. SIAM Journal on
Applied Dynamical Systems, 1(1):105–114, 2002.

[20] A. G. Hawkes and D. Oakes. A cluster process
representation of a self-exciting process. J. Appl.
Probability, 11:493–503, 1974.

[21] S. Herculano-Houzel and R. Lent. Isotropic frac-
tionator: A simple, rapid method for the quan-
tification of total cell and neuron numbers in the
brain. Journal of Neuroscience, 25(10):2518–2521,
2005. ISSN 0270-6474. doi: 10.1523/JNEUROSCI.
4526-04.2005. URL https://www.jneurosci.org/
content/25/10/2518.

[22] Suzana Herculano-Houzel, Christine E. Collins,
Peiyan Wong, and Jon H. Kaas. Cellular scaling
rules for primate brains. Proceedings of the National
Academy of Sciences, 104(9):3562–3567, 2007. ISSN
0027-8424. doi: 10.1073/pnas.0611396104. URL
https://www.pnas.org/content/104/9/3562.

[23] Patrick Jahn, Rune W. Berg, Jø rn Hounsgaard,
and Susanne Ditlevsen. Motoneuron membrane po-
tentials follow a time inhomogeneous jump diffusion
process. J. Comput. Neurosci., 31(3):563–579, 2011.

[24] James C Knight and Thomas Nowotny. Larger gpu-
accelerated brain simulations with procedural con-
nectivity. Nature Computational Science, 1:136—-
142, 2021.

[25] Walter Koroshetz, Joshua Gordon, Amy Adams, An-
drea Beckel-Mitchener, James Churchill, Gregory

10

https://n.neurology.org/content/64/12/2004
https://doi.org/10.1038/nn.4576
https://doi.org/10.1007/s10955-013-0733-9
https://doi.org/10.1007/s10955-013-0733-9
https://doi.org/10.1051/proc/201965445
https://doi.org/10.1051/proc/201965445
https://www.jneurosci.org/content/25/10/2518
https://www.jneurosci.org/content/25/10/2518
https://www.pnas.org/content/104/9/3562

Farber, Michelle Freund, Jim Gnadt, Nina S Hsu,
Nicholas Langhals, et al. The state of the nih brain
initiative. Journal of Neuroscience, 38(29):6427–
6438, 2018.

[26] Louis Lapicque. Recherches quantitatives sur
l’excitation electrique des nerfs traitee comme une
polarization. Journal of Physiology and Pathololgy,
9:620–635, 1907.

[27] Aurel A Lazar and Eftychios A Pnevmatikakis.
Reconstruction of sensory stimuli encoded with
integrate-and-fire neurons with random thresholds.
EURASIP Journal on Advances in Signal Processing,
2009:1–14, 2009.

[28] Peter Lennie. The cost of cortical computation.
Current Biology, 13(6):493 – 497, 2003. ISSN 0960-
9822. doi: https://doi.org/10.1016/S0960-9822(03)
00135-0. URL http://www.sciencedirect.com/
science/article/pii/S0960982203001350.

[29] Ashok Litwin-Kumar, Kameron Decker Harris,
Richard Axel, Haim Sompolinsky, and L.F. Ab-
bott. Optimal degrees of synaptic connectivity.
Neuron, 93(5):1153–1164.e7, 2017. ISSN 0896-
6273. doi: https://doi.org/10.1016/j.neuron.2017.
01.030. URL https://www.sciencedirect.com/
science/article/pii/S0896627317300545.

[30] Cyrille Mascart, Alexandre Muzy, and Patricia
Reynaud-bouret. Efficient simulation of sparse
graphs of point processes, 2020.

[31] David A McCormick, Yousheng Shu, and Yuguo Yu.
Hodgkin and huxley model—still standing? Nature,
445(7123):E1–E2, 2007.

[32] A. Muzy. Exploiting activity for the modeling and
simulation of dynamics and learning processes in hi-
erarchical (neurocognitive) systems. Computing in
Science Engineering, 21(1):84–93, Jan 2019. ISSN
1558-366X. doi: 10.1109/MCSE.2018.2889235.

[33] Alexandre Muzy, Bernard P Zeigler, and Franck
Grammont. Iterative specification as a modeling and
simulation formalism for i/o general systems. IEEE
Systems Journal, 12(3):2982–2993, 2017.

[34] R. R. Netz and W. A. Eaton. Estimating computa-
tional limits on theoretical descriptions of biological
cells. PNAS, 118(6), 2021.

[35] Tien Cuong Phi, Alexandre Muzy, and Pa-
tricia Reynaud-Bouret. Event-Scheduling Al-
gorithms with Kalikow Decomposition for Sim-
ulating Potentially Infinite Neuronal Networks.
SN Computer Science, 1(1), January 2020. doi:
10.1007/s42979-019-0039-3. URL https://hal.
archives-ouvertes.fr/hal-02321497.

[36] J. Pillow, J. Shlens, L. Paninski, A. Sher,
E. Chichilnisky, and E. Simoncelli. Spatio-temporal
correlations and visual signalling in a complete neu-
ronal population. Nature, 454:995–999, 2008.

[37] Luis A Plana, Jim Garside, Jonathan Heathcote, Jef-
frey Pepper, Steve Temple, Simon Davidson, Mikel
Luján, and Steve Furber. spinnlink: Fpga-based
interconnect for the million-core spinnaker system.
IEEE Access, 8:84918–84928, 2020.

[38] Christophe Pouzat and Antoine Chaffiol. Automatic
spike train analysis and report generation. an im-
plementation with r, r2html and star. Journal of
Neuroscience Methods, 181(1):119–144, 2009. ISSN
0165-0270. doi: https://doi.org/10.1016/j.jneumeth.
2009.01.037. URL https://www.sciencedirect.
com/science/article/pii/S0165027009001058.

[39] Patricia Reynaud-Bouret, Vincent Rivoirard, Franck
Grammont, and Christine Tuleau-Malot. Goodness-
of-fit tests and nonparametric adaptive estimation
for spike train analysis. The Journal of Mathematical
Neuroscience, 4(1):3, 2014.

[40] Patricia Reynaud-Bouret, Alexandre Muzy, and In-
grid Bethus. Towards a mathematical definition of
functional connectivity. 2021. URL https://hal.
archives-ouvertes.fr/hal-03093516.

[41] Michelle Rudolph and Alain Destexhe. Analytical
integrate-and-fire neuron models with conductance-
based dynamics for event-driven simulation strate-
gies. Neural computation, 18(9):2146–2210, 2006.

[42] L. Sacerdote and M. T. Giraudo. Stochastic
Biomathematical Models, volume 2058, chapter
Stochastic Integrate and Fire Models: A Review
on Mathematical Methods and Their Applications,
pages 99–148. Lecture Notes in Mathematics,
Springer, 2013.

[43] Gordon M Shepherd. The synaptic organization of
the brain. Oxford university press, 2004.

11

http://www.sciencedirect.com/science/article/pii/S0960982203001350
http://www.sciencedirect.com/science/article/pii/S0960982203001350
https://www.sciencedirect.com/science/article/pii/S0896627317300545
https://www.sciencedirect.com/science/article/pii/S0896627317300545
https://hal.archives-ouvertes.fr/hal-02321497
https://hal.archives-ouvertes.fr/hal-02321497
https://www.sciencedirect.com/science/article/pii/S0165027009001058
https://www.sciencedirect.com/science/article/pii/S0165027009001058
https://hal.archives-ouvertes.fr/hal-03093516
https://hal.archives-ouvertes.fr/hal-03093516

[44] Heinz Stephan, Heiko Frahm, and Georg Baron. New
and revised data on volumes of brain structures in
insectivores and primates. Folia primatologica, 35
(1):1–29, 1981.

[45] Jonathan D Touboul and Olivier D Faugeras. A
markovian event-based framework for stochastic
spiking neural networks. Journal of computational
neuroscience, 31(3):485–507, 2011.

[46] W. Truccolo, U. T. Eden, M. R. Fellows, J. P.
Donoghue, and E. N. Brown. A point process frame-
work for relating neural spiking activity to spiking
history, neural ensemble, and extrinsic covariate ef-
fects. Journal of Neurophysiology, 93(2):1074–1089,
2005.

[47] Christine Tuleau-Malot, Amel Rouis, Franck Gram-
mont, and Patricia Reynaud-Bouret. Multiple Tests
Based on a Gaussian Approximation of the Unitary
Events Method with Delayed Coincidence Count.
Neural Computation, 26(7):1408–1454, July 2014.
ISSN 0899-7667. doi: 10.1162/NECO_a_00604.
URL https://doi.org/10.1162/NECO_a_00604.

[48] R.S. Varga. Gershgorin and his circles. Springer-
Verlag, 2004. Springer Series in Computational
Mathematics.

[49] Hiroshi Yamaura, Jun Igarashi, and Tadashi Ya-
mazaki. Simulation of a human-scale cerebellar
network model on the k computer. Frontiers in
neuroinformatics, 14:16, 2020.

dynamic1.pdf

(a) Discrete time approach for parallel simulation

dynamic2.pdf

(b) Discrete event approach for sequential simulation

structure.pdf

(c) Time asynchrony and procedural connectivity

Figure 1: Neuronal computations in time and in the
network

12

https://doi.org/10.1162/NECO_a_00604

1e+06neur1000enf.pdf

Figure 2: Densities (on a logarithmic scale) of the
simulated firing rates in the network with M = 106

neurons and d = 1000 post-synaptic connections in
average. In red, for T = 5s and in blue for T = 50s.
These densities are obtained with a Gaussian kernel
estimator with bandwidth 0.02.

13

times_log_log.pdf

(a) Simulation execution times for different sizes of net-
works.

memory_log_log.pdf

(b) Memory usages for different sizes of networks.

Figure 3: Simulation execution times (3a) and memory usage (3b) for different sizes of networks.

14

	Introduction

