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, investigated the existence and uniqueness of mild solutions for a fractional problem of the type Eqs.(1.1)-(1.3), however at the time, it was not considered the control function µ. In this paper, we impose control µ and through necessary and sufficient conditions, we investigate the results of controllability of fractional impulsive integro-differential control system in Banach spaces using the fixed point technique and the (α, θ)-resolvent operator.

Introduction

Over the years, the control theory has been highlighted in the scientific community. Controllability is one of the elementary concepts in mathematical control theory. It is well known that the question of controllability plays a fundamental role in the design of engineering control problems [START_REF] Vijayakumar | Approximate controllability results for abstract neutral integro-differential inclusions with infinite delay in Hilbert spaces[END_REF][START_REF] Anukiruthika | Approximate controllability of semilinear retarded stochastic differential system with non-instantaneous impulses: Fredholm theory approach[END_REF][START_REF] Zuazua | Controllability and observability of partial differential equations: some results and open problems[END_REF][START_REF] Berrahmoune | A variational approach to constrained controllability for distributed systems[END_REF]. In fact, the most important property of a control system is only controllability. It is possible to find numerous works of differential and integro-differential equations that discuss the controllability of solutions, as one can see in [START_REF] Priyadharsini | Controllability of fractional noninstantaneous impulsive integrodifferential stochastic delay system[END_REF][START_REF] Zuazua | Controllability and observability of partial differential equations: some results and open problems[END_REF][START_REF] Berrahmoune | Constrained controllability for lumped linear systems[END_REF][START_REF] Mokkedem | Approximate controllability of semi-linear neutral integro-differential systems with finite delay[END_REF] and references therein.

On the other hand, fractional calculus and fractional differential equations have been investigated extensively due mainly to their demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering such as physics, economics, medicine, control theory, aerodynamics and electromagnetics, [START_REF] Zhao | Controllability for a class of semilinear fractional evolution systems via resolvent operators[END_REF][START_REF] Kumar | Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses[END_REF][START_REF] Debbouche | Controllability of fractional evolution nonlocal impulsive quasilinear delay integrodifferential systems[END_REF][START_REF] Slama | Approximate controllability of fractional nonlinear neutral stochastic differential inclusion with nonlocal conditions and infinite delay[END_REF][START_REF] Zhang | Existence and controllability of fractional evolution equation with sectorial operator and impulse[END_REF][START_REF] Bragdi | Controllability for Systems governed by Semilinear Fractional Differential Inclusions in Banach Spaces[END_REF]. In this sense, what has been noted is that once you have control theory in hand, specifically controllability, it has been noted that investigating solutions of differential and integrodifferential equations with non-instantaneous, evolution and abstract impulses, began to be the target of studies in these last decades [START_REF] Kumar | Numerical approach to the controllability of fractional order impulsive differential equations[END_REF][START_REF] Wang | Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions[END_REF][START_REF] Sundaravadivoo | Controllability analysis of nonlinear fractional order differential systems with state delay and noninstantaneous impulsive effects[END_REF][START_REF] Debbouche | Controllability of fractional evolution nonlocal impulsive quasilinear delay integrodifferential systems[END_REF][START_REF] Kumar | Approximate controllability of fractional order semilinear systems with bounded delay[END_REF][START_REF] Sukavanam | Approximate controllability of fractional order semilinear delay systems[END_REF][START_REF] Vijayakumar | Approximate controllability results for abstract neutral integro-differential inclusions with infinite delay in Hilbert spaces[END_REF]. For a reading on some works, see [START_REF] Priyadharsini | Controllability of fractional noninstantaneous impulsive integrodifferential stochastic delay system[END_REF][START_REF] Anukiruthika | Approximate controllability of semilinear retarded stochastic differential system with non-instantaneous impulses: Fredholm theory approach[END_REF][START_REF] Debbouche | Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces[END_REF] and references therein. Controllability problems for different types of differential equations are considered in many papers [START_REF] Liu | Approximate Controllability of Fractional Evolution Systems with Riemann-Liouville Fractional Derivatives[END_REF][START_REF] Zhou | Controllability for fractional evolution inclusions without compactness[END_REF][START_REF] Wang | Controllability of fractional non-instantaneous impulsive differential inclusions without compactness[END_REF][START_REF] Feckan | Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators[END_REF][START_REF] Cheng | Existence and controllability for nonlinear fractional differential inclusions with nonlocal boundary conditions and time-varying delay[END_REF][START_REF] Sakthivel | Approximate controllability of nonlinear fractional dynamical systems[END_REF][START_REF] Mahmudov | On the approximate controllability of fractional evolution equations with compact analytic semigroup[END_REF][START_REF] Liang | Controllability of fractional integro-differential evolution equations with nonlocal conditions[END_REF]. In 2011 Debbouche and Baleanu [START_REF] Debbouche | Controllability of fractional evolution nonlocal impulsive quasilinear delay integrodifferential systems[END_REF], investigated the controllability result of a class of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems in a Banach space, using fixed point technique. Em 2015, Liu and Li [START_REF] Liu | Approximate Controllability of Fractional Evolution Systems with Riemann-Liouville Fractional Derivatives[END_REF], investigated the approximate controllability of the following fractional evolution control systems involving Riemann-Liouville fractional derivatives:

D α t x(t) = Ax(t) + Bu(t) + f (t, x(t)), t ∈ (0, b], 0 < α < 1, I 1-α t x(t)| t=0 = x 0 ∈ X where D α
t denotes the Riemann-Liouville fractional derivative of order α with the lower limit zero.

A : D(A) ⊂ X → X is the infinitesimal generator of a C 0 -semigroup T (t) t≥0 on a Banach space X. f : [0, b] × X → X is a given function to be specified. The control function u takes value in V = L p ([0, b], U ), p > 1 α , and U is a Banach space. B is a linear operator from V into L p ([0, b]; X).
Mu [START_REF] Mu | Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions[END_REF] investigated the existence of mild solutions for the impulsive fractional evolution equations of the form

   D α 0+ u(t) + Au(t) = f (t, u(t)), t ∈ I := [0, T ], t = t k u(0) + g(u) = u 0 ∆u| t=t k = I k (u(t k )), k = 1, 2, ..., m where D α
0+ is the Caputo fractional derivative with 0 < α < 1, A : D(A) ⊂ X → X is a linear closed densely defined operator, -A is the infinitesimal generator of an analytic semigroup of uniformly bounded linear operators (T (t) t≥0 ), 0 = t

0 < t 1 < t 2 < • • • < t m < t m+1 = T , f : I × X → X is continuous, g : P C(I, X) → X is continuous, the impulsive function I k : X → X is continuous, ∆u| t=t k = u(t + ) -u(t -,
where u(t + ), u(t -) represent the right and left limits of u(t) at t = t k , respectively.

On necessary and sufficient conditions, in 2021, Kumar et al. [START_REF] Kumar | Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses[END_REF], investigated the fractional stability damped differential system with non-instantaneous impulsive given by

           D α x(t) = AD β x(t) + M t, x(t), t 0 H(t, r, x(t))dr , t ∈ m i=0 (r i , t i+1 ] x(t) = I i (t, x(t - i ), t ∈ (t i , r i ], i = 1, 2, ..., m x (t) = G i (t, x(t - i ), , t ∈ (t i , r i ], i = 1, 2, ..., m x(0) = x 0 , x (0) = x 1
and for the controllability, was considered the following system

           D α x(t) = AD β x(t) + Bu(t) + M t, x(t), t 0 H(t, r, x(t))dr , t ∈ m i=0 (r i , t i+1 ] x(t) = I i (t, x(t - i ), t ∈ (t i , r i ], i = 1, 2, ..., m x (t) = G i (t, x(t - i ), , t ∈ (t i , r i ], i = 1, 2, ..., m x(0) = x 0 , x (0) = x 1
where D α e D β denote Caputo fractional derivatives of order 1 < α ≤ 2 and 0 < β ≤ 1, respectively. For more details on the parameters A, B, H, I i e G i , see reference [START_REF] Kumar | Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses[END_REF]. Other interesting considerations on controllability can be found at [34, 35, ?, 38, 39, 40] and references therein.

However, there are some problems and open questions when discussing the controllability of mild solutions for fractional operators that involve the ψ-Hilfer fractional derivative. Over the years, Sousa and Oliveira [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF], introduced the so-called ψ-Hilfer fractional derivative and due to the impact on the scientific community, this derivative served as a motivation to discuss various problems of differential equations. Here we highlight the type Leibniz I and II rule [START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF]; and the Laplace transform with respect to another function. In this sense, it allowed the discussion of mild solutions of fractional differential equations. However, there are still issues that prevent a closed form for the mild solution of fractional differential equations, which makes the theory still under construction.

Motivated by these questions and by the works presented above, in this present paper, we consider the fractional impulsive integro-differential control system of the form

(1.1) C D α 0+ θ(t) + A(t, θ(t))θ(t) = (Bµ)(t) + Φ(t, θ(t)) + 1 Γ(α) t 0 (t -s) α-1 g(t, s, θ(s))ds (1.2) θ(0) + Ξ(θ) = θ 0 (1.3) ∆θ(t i ) = I i (θ(t i )), i = 1, ..., n, 0 < t 1 < ... < t n < b
where C D α 0+ (•) is the Caputo fractional derivative of order 0 < α ≤ 1, t ∈ J := [0, b], the state θ(•) takes values in the Banach space Λ, θ 0 ∈ Λ, i = 1, 2, ..., n and Λ into Λ such that D(A) is independent of t, it is assumed also that -A(t, •) generates an addition in the Banach space Λ, the control function µ belongs to the spaces L 2 (J, U ) a Banach of admissible control functions with U as a Banach space and B : U → Λ is a bounded linear operator. In addition, we have Φ :

[0, b] × Λ → Λ, g : Ω × Λ → Λ, Ξ : PC([0, b], Λ) × Λ → Λ and ∆θ(t i ) = θ(t + i ) -θ(t - i ).
In 2020 Ramos et al. [START_REF] Ramos | Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations[END_REF], investigated the existence and uniqueness of mild solutions for a fractional problem of the type Eqs.(1.1)-(1.3), however at the time, it was not considered the control function µ. In this sense, we impose µ control to discuss the main objective of this paper. This paper is a natural continuation of the paper [START_REF] Ramos | Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations[END_REF].

For the discussion of the main result of this paper, we assume the following conditions:

H 1 The bound linear operator W : L 2 (J, U ) → Λ defined by W µ = b 0 R (α,θ) (b, s)(Bµ)(s) ds,
has an induced inverse operator W -1 which takes values in L 2 (J, U )/ ker W and there exist positive constants M 1 and

M 2 such that B ≤ M 1 and W -1 ≤ M 2 . H 2 h : PC(J; Ω) → Y is Lipschitz continuous in Λ and bounded in Y , that is, there exist constants K 1 > 0 and K 2 > 0 such that h(θ) Y ≤ K 1 , h(θ) -h(v) Y ≤ K 2 max t∈J θ -v PC , θ, v ∈ PC(J; Λ).
For conditions (H 3 ) -(H 5 ) let Z be taken as both Λ and Y . H 3 g : Ω × Z → Z is continuous and there exist constants

K 3 > 0 and K 4 > 0 such that 1 Γ(α) t 0 (t -s) α-1 g(t, s, θ) -g(t, s, v) Z ds ≤ K 3 θ -v Z , θ, v ∈ Z, K 4 = max t 0 g(t, s, 0) Z ds; (t, s) ∈ Ω . H 4 f : J × Z → Z is continuous and there exist constants K 5 > 0 and K 6 > 0 such that f (t, θ) -f (t, v) Z ≤ K 5 θ -v Z , θ, v ∈ Ω, K 6 = max t∈J f (t, 0) Z .
H 5 I i : Λ → Λ are continuous and there exist constants l i > 0, i = 1, 2, ..., m such that

I i (θ) -I i (v) ≤ l i θ -v , θ, v ∈ Λ. Let us take M 0 = max R (α,θ)(t,s) B(Z) , 0 ≤ s ≤ t ≤ b, θ ∈ Λ. H 6 There exist positive constants δ 1 , δ 2 , δ 3 ∈ (0, δ/3] such that δ 1 = M 0 θ 0 + M 0 K 1 , δ 2 = M 0 M 1 M 2 b θ 1 + M 0 θ 0 + M 0 K 1 + M 0 θ + M 0 ξ and δ 3 = M 0 θ + M 0 ξ, where ξ = m i=1 (l i δ + I i (0) ).
The main contribution of this paper is, through necessary and sufficient conditions, to attack the controllability of mild solutions of fractional impulsive integro-differential control system given by Eqs.(1.1)-(1.3). In other words, we will attack the following result: Theorem 1.1. Suppose that the operator -A(t, θ) generates an (α, θ)-resolvent family whit R (α,θ) (t, s) ≤ Me -σ(t-s) for some constant M, σ > 0. If hypotheses (H 1 )-(H 6 ) are satisfied, then the fractional control integro-differential system Eq.(1.1) with nonlocal condition Eq.(1.2) and impulsive condition Eq.(1.3) is controllable on J.

In the rest, the paper is organized as follows. Section 2 presents basic concepts of Riemann-Liouville fractional integral and ψ-Hilfer fractional derivative, in addition to some particular cases. In this sense, we present the concepts of mild solution and family (α, θ)-resolvent. In section 3, we investigate a fundamental Lemma and attack the main objective of the paper, that is, the controllability of mild solutions of fractional impulsive integro-differential control system.

Preliminaries

For the preparation of this paper, we will consider X and Y be two Banach spaces such that Y is densely and continuously embedded in X. For any Banach space Z, the norm of Z is denoted by ||

• || Z . Let p ∈ [1, ∞) ⊂ R and J = [a, b] ⊂ R.
The space of the real p-integrable functions, in the Lebesgue sense, L p (J), equipped with its canonical norm, is given by [2, 5]

L p (J) := f : J → R; b a |f (t)| p dt < ∞ e f p = b a |f (t)| p dt 1/p , respectively. The pair (L p (J), f p ) is a Banach space.
Consider the Banach space (E, • ) and n ∈ N. The space of continuous functions and the space of continuously differentiable functions n-times:

C(J, E) := {f : J → E; f : continuous} , f C := sup t∈J |f (t)| and C n (J, E) := f : J → E; f (n) ∈ C(J, E) , f C n := sup t∈J |f (n) (t)|
are Banach spaces.

Let J = [a, b] ⊂ R an interval, with 0 < a < b < ∞, then the space of the functions n-times absolutely continuous is given by

AC n (J, R) = AC n (J) = f : J → R; f (n-1) ∈ AC(J) .
Let E a Banach space and a = t 0 < t 1 < . . . < t n = b an n-partition of the interval J ⊂ R. The space of weighted continuous functions, is given by PC(J, E) := f : J → E; f (t) be continuous in t = t k , left continuous in t = t k there is the limit on the right, f (t + k ), f or k = 1, 2, . . . n.

, equipped with the standard f PC = {sup f (t) ; t ∈ J} is a Banach space. 

I α;ψ a + θ(t) = 1 Γ(α) t a ψ (s)(ψ(t) -ψ(s)) α-1 θ(s)ds.
The right-sided fractional integral is defined in an analogous form [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF][START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF]. Choosing ψ(t) = t in Eq.(2.1), we have the Riemann-Liouville fractional integral given by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF][START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF] (2.2)

I α a + θ(t) = 1 Γ(α) t a (t -s) α-1 θ(s)ds,
where Γ(•) is the gamma function and f ∈ L 1 (J, R).

If a = 0, we can write

I α θ(t) = (g α * θ)(t), where (2.3) 
g α (t) :=    1 Γ(α) t α-1 , t > 0 0, t ≤ 0
and as usual * denotes convolution of functions, also we have lim α→0 g α (t) = δ(t). From choosing ψ(•), we have another fractional integrals.

Here, we restrict to the Riemann-Liouville fractional integral to discuss the results of this paper. However, other formulations of fractional integrals can be obtained by choosing ψ(•) [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF][START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF].

Also, we begin with the definition of the ψ-Hilfer fractional derivative.

Definition 2.2. [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF][START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF] Let n -1 < α < n, with n ∈ N, let J be an interval such that -∞ ≤ a < b ≤ ∞ and let θ, ψ ∈ C n (J, R) be two functions, such that ψ is increasing and ψ (t) = 0, for all t ∈ J. The left-sided ψ-Hilfer fractional derivative H D α,β;ψ a+ (•) of a function θ, of order α and type 0 ≤ β ≤ 1 is defined by

(2.4) H D α,β;ψ a+ θ(t) := I β(n-α);ψ a+ 1 ψ (t) d dt n I (1-β)(n-α);ψ a+ θ(t).
The right-sided ψ-Hilfer fractional derivative is defined in an analogous form [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF][START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF]. Choosing ψ(t) = t and taking the limit β → 1, on both sides of the Eq.(2.4), we have the Caputo fractional derivative given by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF][START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF] (2.5)

C D α a+ θ(t) = I (n-α);ψ a+ d dt n θ(t) = I (n-α);ψ a+ θ (n) (t).
To investigate our main result, we use Caputo fractional derivative as in Eq.(2.5). 

θ µ (t) = R (α,θ) (t, 0)[θ 0 -h(θ)] (2.6) + t 0 R (α,θ) (t, s) (Bµ)(s) + f (s, θ(s)) + 1 Γ(α) s 0 (s -η) α-1 g(s, η, θ(η)) dη ds
for all t ∈ J, for all θ 0 ∈ Λ and admissible control µ ∈ L 2 (J, U ). Lemma 2.4. [START_REF] Ramos | Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations[END_REF] If the evolution family U θ (t, s) 0≤s≤t≤b is continuous and η ∈ L (J, R + ), then the set t 0 U θ (t, s)θ(s)ds , θ(s) ≤ η(s) for a.e. s ∈ J is equicontinuous for t ∈ J.

From [START_REF] Ramos | Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations[END_REF] we know that for any fixed u ∈ PC(J, Λ) there exists a unique continuous function U θ : J × J → B(Λ) defined on J × J such that

(2.7) U θ (t, s) = I + t s A θ (w)U θ (w, s)dw,
where B(Λ) denote the Banach space of bounded linear operator from Λ to Λ with the norm Θ = sup{ Θ(θ) ; θ = 1} and I stands for the identity operator on Λ, A θ = A(t, θ(t)), we have [START_REF] Ramos | Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations[END_REF] U

θ (t, t) = I, U θ (t, s)U θ (s, r) = U θ (t, r), (t, s, r) ∈ J × J × J and ∂U θ (t, s) ∂t = A θ (t)U θ (t, s)
, for almost all t, s ∈ J.

Let E be the Banach space formed from D(A) with the graph norm. Since, A(t) is a closed operator, it follows that A(t) is in the set bounded from E to Λ. Definition 2.5. [START_REF] Debbouche | Controllability of fractional evolution nonlocal impulsive quasilinear delay integrodifferential systems[END_REF][START_REF] Ramos | Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations[END_REF] Let A(t, θ) be a closed and linear operator with domain D(A) defined on a Banach space Λ and α > 0. Let ρ(A(t, θ)) be the resolvent set of A(t, θ). We call A(t, θ) the generator of an (α, θ)resolvent family if there exists w ≥ 0 and a strongly continuous function R (α,θ) : R 2 + → L (Λ) such that {λ α : Re(λ) > w} ⊂ ρ(A) and for 0 ≤ s ≤ t ≤ ∞, (2.8)

λ α I -A(s, θ) -1 ν = ∞ 0 e -λ(t-s) R (α,θ) (t, s) ν dt, Re(λ) > w, (θ, ν) ∈ Λ 2 .
In this case, R (α,θ) (t, s) is called the (α, θ)-resolvent family generated by A(t, θ).

Remark 2.6.

• We can deduce that Eqs.(1.1)-(1.3) is well posed if and only if A(t, θ) is the generator of (α, θ)-resolvent family.

• Here R (α,θ) (t, s) can be extracted from the evolution operator of the generator A(t, θ).

• The (α, θ)-resolvent family is similar to the evolution for non-autonomous differential equation in a Banach space. 

R (α,θ) (t, s)ω -R (α,v) (t, s)ω ≤ K ω Y t s θ(τ ) -v(τ ) dτ,
for every θ, v ∈ PC(J; Λ) with values in Ω and every ω ∈ Y .

Proof. See [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF].

Lemma 3.3. ϕ(t) ≤ θ, where ϕ(t) = t 0 f (s, θ(s)) + 1 Γ(α) s 0 (s -η) α-1 g(s, η, θ(η)) dη ds Proof. ϕ(t) = t 0 f (s, θ(s)) + 1 Γ(α) s 0 (s -η) α-1 g(s, η, θ(η)) dη ds = t 0 f (s, θ(s)) + 1 Γ(α) s 0 (s -η) α-1 (g(s, η, θ(η)) dη -g(s, η, 0) + g(s, η, 0)) + f (s, 0) -f (s, 0) ds ≤ t 0 f (s, η(s)) -f (s, 0) + f (s, 0) + 1 Γ(α) s 0 (s -η) α-1 g(s, η, θ(η)) -g(s, η, 0) dη + 1 Γ(α) s 0 (s -η) α-1 g(s, η, 0) dη ds.
Using (H 3 ) and (H 4 ), we obtain

φ(t) ≤ t 0 (K 5 θ(s) + K 6 + K 3 θ(s) + K 4 ) ds = K 5 t 0 θ(s) ds + K 6 t 0 ds + K 3 t 0 θ(s) ds + K 4 t 0 ds ≤ K 5 t 0 θ(s) ds + K 6 b + K 4 b + K 3 t 0 θ(s) ds.
Therefore, we concluded the proof. Now, let's attack our main result, that is, the proof of Theorem 1.1.

Proof. Using hypothesis (H 1 ), for an arbitrary function θ(•), we define the control

µ(t) = W -1 θ 1 -R (α,θ) (b, 0)θ 0 + R (α,θ) (b, 0)h(θ) - b 0 R (α,θ) (b, s) f (s, θ(s)) + 1 Γ(α) s 0 (s -η) α-1 g(s, η, θ(η)) dη ds - m i=1 R (α,θ) (b, t i ) I i (θ(t i )) (t).
We define an operator Ξ :

S δ → S δ by (Ξθ µ ) (t) = R (α,θ) (t, 0)θ 0 -R (α,θ) (t, 0)h(θ) + t 0 R (α,θ) (t, η) B W -1 θ 1 -R (α,θ) (b, 0)θ 0 + R (α,θ) (b, 0)h(θ) - b 0 R (α,θ) (b, s) f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ ds - m i=1 R (α,θ) (b, t i ) I i (θ(t i )) (η) dη + t 0 R (α,θ) (t, s) f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ ds + 0<ti<t R (α,θ) (t, t i ) I i (θ(t i )).
Using this controller the operator Ξ has a fixed point, then a solution of Eq.(2.8). On the other hand, note that, clearly Ξθ µ (b) = θ 1 , which means that the control µ of the system Eqs.(1.1)-(1.3) from the initial state θ 0 to θ 1 in time b, provided we can obtain a fixed of the nonlinear operator Ξ. Now we show Ξ maps S δ into itself.

(Ξθ µ ) (t) ≤ R (α,θ) (t, 0)θ 0 + R (α,θ) (t, 0)h(θ) + t 0 R (α,θ) (t, η) B W -1 θ 1 + R (α,θ) (b, 0)θ 0 + R (α,θ) (b, 0)h(θ) + b 0 R (α,θ) (b, s) f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ + m i=1 R (α,θ) (b, t i ) {I i (θ(t i )) -I i (0) + I i (0) } dη + t 0 R (α,θ) (t, s) f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ ds + 0<ti<t R (α,θ) (t, t i ) I i (θ(t i )) -I i (0) + I i (0) .
Using (H 1 ), (H 2 ), (H 5 ), (H 6 ) and Lemma 3.3, yields

(Ξθ µ ) (t) ≤ M 0 θ 0 + M 0 K 1 + t 0 M 0 M 1 M 2 θ 1 + M 0 θ 0 + M 0 K 1 + b 0 M 0 f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ ds + M 0 m i=1 (I i δ + I i (0) ) dη + M 0 t 0 f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ ds + M 0 m i=1 (I i δ + I i (0) ) ≤ M 0 θ 0 + M 0 K 1 + M 0 M 1 M 2 t 0 θ 1 + M 0 θ 0 + M 0 K 1 + M 0 τ + M 0 m i=1 (I i δ + I i (0) ) dη + M 0 τ + M 0 m i=1 (I i δ + I i (0) ) = M 0 θ 0 + M 0 K 1 + M 0 M 1 M 2 t 0 θ 1 + M 0 θ 0 + M 0 K 1 + M 0 τ + M 0 ξ dη + M 0 τ + M 0 ξ ≤ M 0 θ 0 + M 0 K 1 + M 0 M 1 M 2 b ( θ 1 + M 0 θ 0 + M 0 K 1 + M 0 τ + M 0 ξ) + M 0 τ + M 0 ξ,
where ξ = m i=1 (I i δ + I i (0) ). From assumption (H 6 ), we get (Ξθ µ ) (t) ≤ δ. Thus, Ξ maps S δ into itself. Now for θ, v ∈ S δ , we have

(3.1) (Ξθ µ ) (t) -(Ξv µ ) (t) ≤ I 1 + I 2 + I 3 + I 4 ,
where

I 1 = R (α,θ) (t, 0)θ 0 -R (α,v) (t, 0)θ 0 + R (α,θ) (t, 0)h(θ) -R (α,v) (t, 0)h(v) , I 2 = t 0 R (α,θ) (t, η) B W -1 θ 1 -R (α,θ) (b, 0) θ 0 + R (α,θ) (t, 0) h(θ) - b 0 R (α,θ) (b, s) f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ ds - m i=1 R (α,θ) (b, t i )I i (θ(t i )) -R (α,v) (t, η) B W -1 θ 1 -R (α,v) (b, 0) θ 0 + R (α,v) (b, 0) h(v) - b 0 R (α,v) (b, s) f (s, v(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, v(τ )) dτ ds - m i=1 R (α,v) (b, t i )I i (v(t i ))
,

I 3 = t 0 R (α,θ) (t, s) f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ -R (α,v) (t, s) f (s, v(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, v(τ )) dτ ds and I 4 = m i=1 R (α,θ) (t, t i )I i (θ(t i )) -R (α,v) (t, t i )I i (v(t i )) .
Applying Lemma 3.2 and (H 2 ), we have

I 1 ≤ R (α,θ) (t, 0)θ 0 -R (α,v) (t, 0)θ 0 + R (α,θ) (t, 0)h(θ) -R (α,v) (t, 0) h(v) + R (α,v) (t, 0) h(θ) -R (α,v) (t, 0) h(v) ≤ K θ 0 Y t 0 θ(τ ) -v(τ ) dτ + K h(θ) t 0 θ(τ ) -v(τ ) dτ + R (α,v) (t, 0) h(θ) -h(v) ≤ K θ 0 max τ ∈J θ(τ ) -v(τ ) a + KaK 1 max τ ∈J θ(τ ) -v(τ ) + M 0 K 2 max τ ∈J θ(τ ) -v(τ ) = (K θ 0 a + KaK 1 + M 0 K 2 ) max τ ∈J θ(τ ) -v(τ ) (3.2)
Consider Ã(θ) and B(v) given by

Ã(θ) = θ 1 -R (α,θ) (b, 0) θ 0 + R (α,θ) (b, 0) h(θ) - b 0 R (α,θ) (b, s) f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ ds - m i=1 R (α,θ) (b, t i )I i (θ(t i )) and B(v) = θ 1 -R (α,v) (b, 0) θ 0 + R (α,v) (b, 0) h(v) - b 0 R (α,v) (b, s) f (s, v(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, v(τ )) dτ ds - m i=1 R (α,v) (b, t i )I i (v(t i )).
Using Lemma 3.2 and the condition (H 1 ), we have

I 2 ≤ t 0 R (α,θ) (t, η)B W -1 Ã(θ) -R (α,v) (t, η)B W -1 Ã(v) dη ≤ B W -1 K2 max Ã(θ), B(v) t 0 θ(τ ) -v(τ ) dτ ≤ M 1 M 2 K2 max Ã(θ), B(v) Y a 2 max τ ∈J θ(τ ) -v(τ ) . (3.3) Note that, max Ã(θ), B(v) Y ≤ Ã(θ) Y + B(v) Y .
Using Lemma 3.2, the conditions (H 2 ), (H 5 ) and (H 6 ), yields R (α,θ) (t, t i )I i (θ(t i )) -R (α,v) (t, t i )I i (v(t i )) + R (α,v) (t, t i )I i (θ(t i ))

Ã(θ) Y = θ 1 -R (α,θ) (b, 0) θ 0 + R (α,θ) (b, 0) h(θ) - b 0 R (α,θ) (b, s) f (s, θ(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ ds - m i=1 R (α,θ) (b, θ) I i (θ(t i )) -I i (0) + I i (0) ≤ θ 1 Y + R (α,θ) (b, 0) Y θ 0 Y + R (α,θ) (b, 0) Y h(θ) Y + b 0 R (α,θ) (b, s) f (s, θ(s)) ds + b 0 R (α,θ) (b, s) 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, θ(τ )) dτ ds + m i=1 M 0 I i (θ(t i )) -I i (0) + I i (0) ≤ θ 1 Y + M 0 θ 0 Y + M 0 K 1 + M 0 τ + M 0 m i=1 I i δ + I i (0) ≤ θ 1 Y + M 0 θ 0 Y + M 0 K 1 + M 0 τ + M 0 ξ, ( 3 
I 2 ≤ M 1 M 2 K2 max Ã(θ), B(v) Y a 2 max τ ∈J θ(τ ) -v(τ ) ≤ M 1 M 2 2Ka 2 { θ 1 Y + M 0 ( θ 0 Y + K 1 + τ + ξ)} max τ ∈J θ(τ ) -v(τ ) .

Definition 2 . 1 . [ 1 , 4 , 6 ]

 21146 Let (a, b) (-∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real line R and let α > 0. In addition, let ψ(t) be an increasing and positive monotone function on (a, b], having a continuous derivative ψ (t) on (a, b). The left-sided fractional integral of function θ with respect to another function ψ on [a, b] is defined by (2.1)

Definition 2 . 3 .

 23 By a mild solution of system Eqs.(1.1)-(1.3) we mean a function θ ∈ PC([0, b]; Λ) with values in Ω satisfying the integral equation

3. Controllability result Definition 3 . 1 .

 31 We shall say that the fractional system Eqs.(1.1)-(1.3) is controllable on the interval J = [0, b] if for all θ 0 , θ 1 ∈ Λ, there exists a constant µ ∈ L 2 (J, U ), such that the mild solution θ(•) of systems Eqs.(1.1)-(1.3) corresponding to µ, verifies: θ(0)+h(θ) = θ 0 , ∆θ(t i ) = I i (θ(t i )), i = 1, 2, ..., m and θ µ (b) = θ 1 . Lemma 3.2. Let R (α,θ)(t,s) be the (α, θ)-resolvent family for the fractional problem Eqs.(1.1)-(1.3). There exists a constant K > 0 such that

. 4 ) 0 R 0 R

 400 where ξ = m i=1 (I i δ + I i (0) ) andB(θ) Y = θ 1 -R (α,v) (b, 0) θ 0 + R (α,v) (b, 0) h(v) -b (α,v) (b, s) f (s, v(s)) τ ) α-1 g(s, τ, v(τ )) dτ ds -m i=1 R (α,v) (b, t i )I i (v(t i )) ≤ θ 1 Y + R (α,v) (b, 0) Y θ 0 Y + R (α,v) (b, 0) Y h(v) Y + b (α,v) (b, v) f (s, v(s)) τ ) α-1 g(s, τ, θ(τ )) dτ ds + m i=1 R (α,v) (b, t i ) I i (v(t i )) -I i (0) + I i (0) ≤ θ 1 Y + M 0 θ 0 Y + M 0 K 1 + M 0 τ + M 0 m i=1 I i δ + I i (0) ≤ θ 1 Y + M 0 θ 0 Y + M 0 K 1 + M 0 τ + M 0 ξ,(3.5)where ξ = m i=1 (I i δ + I i (0) ). Substituting the inequalities (3.4) and (3.5) in the inequality (3.3), yields

3 ≤ t 0 RM 0 t 0 f

 300 3.2 and Lemma 3.3, (H 3 ), (H 4 ) and (H 6 ), yieldsI (α,θ) (t, s) f (s, θ(s)) τ ) α-1 g(s, τ, θ(τ )) dτ -R (α,v) (t, s) f (s, θ(s)) τ ) α-1 g(s, τ, θ(τ )) dτ + R (α,v) (t, s) f (s, v(s)) + 1 Γ(α) s 0 (s -τ ) α-1 g(s, τ, v(τ )) dτ -R (α,v) (t, s) f (s, v(s)) τ ) α-1 g(s, τ, v(τ )) dτ ds τ ) α-1 g(s, τ, θ(τ )) dτ Y t s θ(τ ) -v(τ ) dτ ds + (s, θ(s)) -f (s, v(s)) τ ) α-1 g(s, τ, θ(τ )) dτ -g(s, τ, v(τ )) dτ ds ≤ K τ a max τ ∈J θ(τ ) -v(τ ) + M 0 K 1 t 0 θ(s) -v(s) ds + M 0 K 3 max τ ∈J θ(τ ) -v(τ ) ≤ Kτ a max τ ∈J θ(τ ) -v(τ ) + M 0 K 1 a max τ ∈J θ(τ ) -v(τ ) + M 0 K 3 a max τ ∈J θ(τ ) -v(τ ) = Kτ a + M 0 K 1 a + M 0 K 3 a max τ ∈J θ(τ ) -v(τ ) . (3.7)Now, we conclude using Lemma 3.2, (H 5 ) and (H 6 ),I 4 ≤ m i=1

Substituting the inequalities (3.2), (3.6), (3.7) and (3.8) in the inequality (3.1), we obtain

Therefore, Ξ is a contraction mapping and hence there exists a unique fixed point θ ∈ Λ, such that Ξθ(t) = θ(t). Any fixed point of Ξ is a mild solution of Eqs.(1.1)-(1.3) on J which satisfies θ(a) = θ 1 . Thus, system Eqs.(1.1)-(1.3) is controllable on J.
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