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This paper is divided into two stages. In the first stage, we investigated a new approach for the ψ-Riemann-Liouville fractional integral and the Faa di Bruno formula for the ψ-Hilfer fractional derivative. In addition, other properties will be discussed involving the ψ-Hilfer fractional derivative and the ψ-Riemann-Liouville fractional integral. On the other hand, Bernstein polynomials involving the ψ(•) function are presented and the ψ-Riemann-Liouville fractional integral and ψ-Hilfer fractional derivative from the Bernstein polynomials are evaluated. We also discussed the relationship between the ψ-Hilfer fractional derivative with Laguerre polynomials and hypergeometric functions, and a version of the fractional mean value theorem with respect to another function. Motivated by the Bernstein polynomials, the second stage uses the Bernstein polynomials to approximate the solution of a fractional integro-differential equation with Hilfer fractional derivative and concluding with a numerical approach with its respective graph.

Introduction

In the middle of 2021, more than 300 years after the first idea about fractional calculus, what we have today is a theory that is well grounded and consolidated in several areas of science, both in the theoretical sense and in the pratical sense which involves applications [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF][START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF][START_REF] Gorenflo | Fractional calculus. Fractals and fractional calculus in continuum mechanics[END_REF][START_REF] Sabatier | [END_REF][START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Diethelm | Analysis of fractional differential equations[END_REF][START_REF] Petráš | Fractional-order nonlinear systems: modeling, analysis and simulation[END_REF][START_REF] Herrmann | Fractional calculus: an introduction for physicists[END_REF][START_REF] Bagley | A theoretical basis for the application of fractional calculus to viscoelasticity[END_REF]. During these years, numerous definitions of fractional integrals and fractional derivatives were introduced, always with the objective of solving some type of problem or complementing certain gaps presented during that period in the fractional calculus [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | On the Ψ-fractional integral and applications[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF][START_REF] Jarad | Caputo-type modification of the Hadamard fractional derivatives[END_REF].

With the vast number of definitions of fractional derivatives introduced so far and how to know the best choice to discuss certain objectives, Sousa and Oliveira [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF], were motivated to introduce the ψ-Hilfer fractional derivative in order to unify a wide class of fractional operators in a unique fractional operator, and preserving the properties of their respective particular cases. In this sense, in 2019 the same authors, complemented the mentioned article, presenting different versions of the Leibniz rule divided into two types I and II, which would make the necessary and sufficient points complete, for a given operator to be understand fractional. Other works on fractional integrals and fractional derivatives with respect to another function where also obtained. For a reading on fractional operators of variable order, we suggest [START_REF] Sousa | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF][START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF][START_REF] Oliveira | Hilfer-Katugampola fractional derivatives[END_REF][START_REF] Oliveira | On a Caputo-type fractional derivative[END_REF] and references therein.

To discuss problems of differential equations, it is often necessary and sufficient to work with approximations of fractional integrals and fractional derivatives [START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF][START_REF] Tavares | Caputo derivatives of fractional variable order: numerical approximations[END_REF][START_REF] Pooseh | Numerical approximations of fractional derivatives with applications[END_REF][START_REF] Pooseh | Approximation of fractional integrals by means of derivatives[END_REF][START_REF] Atanacković | Expansion formula for fractional derivatives in variational problems[END_REF]. In 2013 Arab and Torres [START_REF] Khosravian-Arab | Uniform approximation of fractional derivatives and integrals with application to fractional differential equations[END_REF], discussed approximations of fractional integrals and fractional derivatives to study convergence and stability of solutions of fractional differential equations using numerical method and some examples were given in order to validate the results. On the other hand, it is worth noting that Tavares et al. [START_REF] Tavares | Caputo derivatives of fractional variable order: numerical approximations[END_REF], have also been dedicated a particular study to discuss approximations of fractional integrals and fractional derivatives by means of classical polynomials.

In 2016, Chatterjee et al. [START_REF] Chatterjee | Numerical solution of Volterra Type Fractional order integrodifferential equations in Bernstein polynomial basis[END_REF], discussed a new method for obtaining an approximate numerical solution of a singular fractional integro-differential equation with Cauchy kernel using Bernstein polynomials as a basis. The properties of Bernstein polynomials are used to reduce the integral differential equation of fractional order to the solution of algebraic equations. In 2017, Khader and Alqahtani [START_REF] Khader | Approximate solution for system of fractional non-linear dynamical marriage model using Bernstein polynomials[END_REF], discussed approximate solution for system of fractional nonlinear dynamical marriage model using Bernstein polynomials. The proposed method is dependent on the use of useful properties of the operational matrices of Bernstein polynomials.

It is also worth mentioning the work discussed by Chen et al. [START_REF] Chen | Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials[END_REF], on the numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials. There are many works involving approximations of polynomials for problems associated with fractional differential equations, which can be blue seen in the following references [START_REF] Daacioglu | Solving fractional Fredholm Integro-Differential equations by Laguerre polynomials[END_REF][START_REF] Bayram | A method for fractional Volterra integro-differential equations by Laguerre polynomials[END_REF][START_REF] Mahdy | Numerical solution of fractional integro-differential equations by least squares method and shifted Laguerre polynomials pseudo-spectral method[END_REF][START_REF] Nemati | A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels[END_REF][START_REF] Lei | Numerical Solution of Fractional Integro-differential Equations with Weakly Singular Kernels via Bernstein Polynomial[END_REF][START_REF] Mirevski | On some fractional generalizations of the Laguerre polynomials and the Kummer function[END_REF][START_REF] Jafari | Fractional order optimal control problems via the operational matrices of Bernstein polynomials[END_REF]. Also, in 2016 Rostamy and Karimi [START_REF] Khader | Approximate solution for system of fractional non-linear dynamical marriage model using Bernstein polynomials[END_REF], investigated a new numerical analysis to obtain numerical solutions of the fractional heat and wave equation, and discussed a general formulation for the operational matrix of Bernstein fractional derivatives. In this sense, numerical examples are proposed and discussed in order to elucidate the results obtained. For fractional differential equations and polynomials, we recommend some papers [START_REF] Abdelkawy | An operational matrix of fractional derivatives of Laguerre polynomials[END_REF][START_REF] El-Sayed | Laguerre polynomials of arbitrary (fractional) orders[END_REF][START_REF] Bin-Saad | Fractional calculus and generalized Laguerre polynomials of arbitrary order[END_REF][START_REF] Yu | The Laguerre-Hermite spectral methods for the time-fractional sub-diffusion equations on unbounded domains[END_REF][START_REF] Alshbool | Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions[END_REF][START_REF] Chatterjee | Numerical solution of Volterra Type Fractional order integrodifferential equations in Bernstein polynomial basis[END_REF][START_REF] Bhrawy | A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations[END_REF][START_REF] Loh | New operational matrix via Genocchi polynomials for solving Fredholm-Volterra fractional integro-differential equations[END_REF][START_REF] Mirzaee | A numerical approach for solving weakly singular partial integro-differential equations via two-dimensional-orthonormal Bernstein polynomials with the convergence analysis[END_REF].

In 2019 Almeida [START_REF] Almeida | Further properties of Osler's generalized fractional integrals and derivatives with respect to another function[END_REF], discussed new properties for the Riemann-Liouville fractional integral and the Caputo fractional derivative with respect to another function. At the present time, some new relationships have been proven and examples addressed.

In view of the works discussed so far, there are still countless properties and paths to be addressed when it comes to the ψ-Hilfer fractional derivative and the ψ-Riemann-Liouville fractional integral. Then the following question arises: whether there are, in fact, relevant and important properties to be addressed via such fractional operators? Through the work on polynomial approximations, discussions of numerical solutions of fractional differential equations via polynomials and other questions involving fractional operators, is it really the new properties discussed here that are important and interesting for fractional calculus? A priory, the answer is yes. Firstly, due to the impact that the ψ-Hilfer fractional derivative has caused and has been providing to the fractional calculus. Second, for the consequences and advantages when discussing problems involving the ψ-Hilfer fractional derivative, as it is a global and general operator that contains a wide class of particular cases.

In this sense, motivated by the works above and by these issues pointed out and future consequences, next we will point out what are the main results obtained in this paper. The first step of the article is to obtain the results as below, namely:

(1) We first discuss an approximation for the ψ-Riemann-Liouville fractional integral. In this sense, we evaluate the ψ-Riemann-Liouville fractional integral of Bernstein polynomials. (2) We investigated the Faa di Bruno formula for the ψ-Hilfer fractional derivative and calculated the ψ-Hilfer fractional derivative of Bernstein polynomials. (3) We present new properties for the ψ-Hilfer fractional derivative and discuss its relationship with Laguerre polynomials and hypergeometric functions. (4) The version of the fractional mean value theorem with respect to another function is also presented.

Motivated by the first stage of the paper, and by elucidating one of the essential ideas of this article, that is, the approach of the fractional integral and fractional derivative involving the Bernstein polynomial, in this second stage, we will discuss via Bernstein polynomial to approximate the solution of fractional integro-differential equation with Hilfer fractional derivative, given by (1.1)

   H D α,β + w(x) I 1-γ a+ w(a) = = f (x) + b a k(x, t)w(t)dt w a
where H D α,β + (•) is the Hilfer fractional derivative of order 0 < α ≤ 1 and type 0 ≤ β ≤ 1, f (x), k(x, t) are given function, x and t, are real variables in [0, 1].

The paper is organized as follows: Section 2, as preliminaries, some function spaces, the basic concepts about the ψ-Riemann-Liouville fractional integral, the ψ-Hilfer fractional derivative and some essential results are presented. In Section 3, we investigate a new approximation for the ψ-Riemann-Liouville fractional integral and present Benrstein polynomials involving the ψ(•) function and evaluate the ψ-Riemann-Liouville fractional integral of this polynomial. In Section 4, we present a new Faa di Bruno formula for the ψ-Hilfer fractional derivative and new properties for the ψ-Hilfer fractional derivative and the ψ-Riemann-Liouville fractional integral. In this sense, we evaluate the ψ-Hilfer fractional derivative of Bernstein polynomials and discuss the relationship between the ψ-Hilfer fractional derivative with Laguerre polynomials and hypergeometric functions and a version of the fractional mean value theorem with respect to another function. Motivated by the Bernstein polynomials, in Section 5, via these polynomial an approximate solution for fractional integro-differential equations with Hilfer fractional derivative is obtained and a numerical approach with its respective graph is presented.

Preliminaries

Some definitions and important results for the development of this paper are presented. We will not prove the results, but they can be found in their respective references.

Let J = [a, b] ⊂ R + be an interval, with 0 < a < b < ∞. The weight space C γ;ψ (J, R) of the functions f on (a, b] is defined by [1] C γ;ψ (J) = f : (a, b] → R; ψ(x) -ψ(a) γ f (x) ∈ C(J) , 0 ≤ γ < 1
with the norm given by

f C γ;ψ (J) = ψ(x) -ψ(a) γ f (x) C(J) = max t∈J ψ(x) -ψ(a) γ f (x) .
When ψ is an identity function (ψ(x) = x) and J = [0, b], we have the weighted space:

C γ (J) = {f : (0, b] → R; t γ f (x) ∈ C(J)} , 0 ≤ γ < 1. Let α ∈ R + , a ∈ Ω, E an interval, E ⊂ Ω such that, a ≤ x, ∀x ∈ E. Then we write (2.1) I α;ψ a+ (E) = f ∈ F (Ω) , I α;ψ a+ f (x) exists and it is finite ∀x ∈ E and (2.2) D α,β;ψ a+ (E) = f ∈ F (Ω) ; H D α,β;ψ a+ f (x) exists and it is finite ∀x ∈ E ,
where F (Ω) stands for the set of real functions of a single real variable with domain in Ω. Let α ∈ (0, 1) and

f ∈ L 1 [a, b] , [a, b] be a finite or infinite interval of the real line R (-∞ ≤ a < b ≤ ∞)
. Also let ψ (•) be an increasing and positive continuous function on [a, b] , having a continuous derivatives ψ (x) = 0 on (a, b). The left-sided fractional integrals of a function f with respect to another function ψ on [a, b], is defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF] (2.3)

I α;ψ a+ f (x) = 1 Γ (α) x a ψ (s) (ψ (t) -ψ (s)) α-1 f (s) ds.
A fractional integral Eq.(2.3), can be written as follows [START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] (2.4)

I α;ψ a+ f (x) = ∞ n=0 -α n f (n) (x) (ψ (x) -ψ (a)) α+n Γ (α + n + 1)
where f (n) is the nth derivative of integer order and x > a.

From a numerical point of view, we will consider the Eq.(2.4) (in finite sum) and the following approximation [3]

I α;ψ a+ f (x) ≈ N n=0 -α n f (n) (x) (ψ (x) -ψ (a)) α+n Γ (α + n + 1
) .

On the other hand, another way to write the fractional integral Eq.(2.3), is by means of

I α;ψ a+ f (x) = 1 Γ (α) ∞ k=0 (-1) k (ψ (x) -ψ (a)) α+k (α + k) k! f (k) (x) ,
and the respective approximation, by

I α;ψ a+ f (x) ≈ 1 Γ (α) N k=0 (-1) k (ψ (x) -ψ (a)) α+k (α + k) k! f (k) (x) .
Lemma 2.1.

[1] Let α > 0 and δ > 0. Then, we have the following semigroup property given by

I α;ψ a+ I δ;ψ a+ f (x) = I α+δ;ψ a+ f (x) . Lemma 2.2. [1] Let α > 0 and δ > 0. If f (x) = ψ(x) -ψ(a) δ-1 , then I α;ψ a+ f (x) = Γ(δ) Γ(α + δ) ψ(x) -ψ(a) α+δ-1 .
Proposition 2.3. (

) f ∈C γ ([a, b]) with 0 ≤ 1 -(m + 1) α ≤ γ ≤ 1. (3) f ∈C γ ([a, b]) with 0 ≤ 1 -(m + 1) α ≤ γ 2 
and it is a-singular of order α, then the relation On the other hand, let n -1 < α < n, with n ∈ N, I = [a, b] , is an interval such that -∞ ≤ a < b ≤ ∞ and there exist two functions f, ψ ∈ C n ([a, b] , R) such that ψ is increasing and ψ (x) = 0, for all x ∈ I. The ψ-Hilfer fractional derivatives left-sided H D α,β;ψ a+,x (•) function of order α and type 0 ≤ β ≤ 1 is defined by [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] (2.6)

H D α,β;ψ a+,x f (x) = I β(n-α);ψ a+,x 1 ψ (x) d dx n I (1-β)(n-α);ψ a+,x f (x) .
The ψ-Hilfer fractional derivatives defined as above can we written in the following form [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF] H D α,β;ψ a+,x f (x) = I γ-α;ψ a+,x D γ;ψ a+,x f (x) where

D γ;ψ a+,x (•) is left-sided ψ-Riemann-Liouville fractional derivative. Theorem 2.4. [1] Let n -1 < α < n, n ∈ N and 0 ≤ β ≤ 1. If f ∈ C n [a, b], then H D α,β;ψ a+,x f (x) = D n-β(n-α);ψ a+,x I n-γ;ψ a+,x f (x) - n-1 k=0 (ψ (x) -ψ (a)) k k! D γ;ψ a+,x f (a) with γ = α + β (n -α). Lemma 2.5. [1] Let α > 0 and δ > 0. If f (x) = ψ(x) -ψ(a) δ-1 , then H D α,β;ψ a+ f (x) = Γ(δ) Γ(α -δ) ψ(x) -ψ(a) α-δ-1 . Theorem 2.6. [1] Let f ∈ C 1 ([a, b] , R), α > 0 and 0 ≤ β ≤ 1,
and we have

H D α,β;ψ a+,x I α;ψ a+,x f (x) = f (x) . Theorem 2.7. [1] If f ∈ C n ([a, b] , R), n -1 < α < n and 0 ≤ β ≤ 1, then (2.7) I α;ψ a+,x H D α,β;ψ a+,x f (x) = f (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) f [n-k] ψ I (1-β)(n-α);ψ a+,x f (a) with f [n-k] ψ (x) := 1 ψ (x) d dx n-k f (x). Remark 2.8. [1] If f (a) = f (b) = 0, then we have I α;ψ a+,x H D α,β;ψ a+,x f (x) = H D α,β;ψ a+,x I α;ψ a,x f (x) = f (x). Similarly, it is also valid for I α;ψ x,b-(•) and H D α,β;ψ x,b-(•). Theorem 2.9. [5] Let n -1 < α < n, n -1 < δ < n, 0 ≤ β ≤ 1 and n ∈ N. Consider f ∈ C n γ ([a, b]
). Then, we have

H D α,β;ψ a+ H D δ,β;ψ a+ f (x) = H D α+δ,β;ψ a+ f (x) - n k=1 (ψ(x) -ψ(a)) 1-ξ-k-n Γ(2 -ξ -k -n) f [n-k] ψ I (1-β)(n-δ);ψ a+ f (a) with ξ = α + β[(δ -α) -(n + α)].
Consider the Gel'fand-Shilov function, given by

(2.8) Φ q+1 (x) =    x q Γ (q + 1) , x > 0 0, x ≤ 0 .
We are going to introduce the function ψ into the function (2.8), and so we have the Ge'fand-Shilov type function with respect to another function, given by

Φ q+1 (x) =    ψ (x) q Γ (q + 1) , x > 0 0, x ≤ 0 . Remembering that (2.9) H D α,β;ψ a+ (ψ (x) -ψ (a)) q Γ (q + 1) = (ψ (x) -ψ (a)) q-α Γ (q + 1 -α) , t > a.
Taking q = 0 in Eq.(2.9), we obtain (2.10)

H D α,β;ψ a+ (H ψ (ψ (x) -ψ (a))) = H D α,β;ψ a+ (1) = (ψ (x) -ψ (a)) -α Γ (1 -α) , t > a.
The Eq.(2.10), when taking ψ (x) = x, is said of Heaviside.

Definition 2.10. [START_REF] Trujillo | On a Riemann-Liouville generalized Taylor's formula[END_REF] Let a ∈ Ω. The function f is called a-singular of order α if

(2.11) lim x→a f (x) |x -x 0 | α-1 = k < ∞, and k = 0. Definition 2.11. [15] Let f a Lebesgue measurable function in Ω, α ∈ [0, 1) and x 0 ∈ Ω. f is called α-continuous in x 0 if there exists λ ∈ [0, 1 -α) for which g (x) = |x -x 0 | λ f (x) is a continuous function in x 0 . Moreover, f is called 1-continuous in x 0 if it is continuous in x 0 .
Therefore, as we known "f is an α-continuous" on Ω if f is α-continuous for every x in Ω, and it is denoted:

(2.12) C α (Ω) = {f ∈ F (Ω) : f is α -continuous in Ω} with C 1 (Ω) =C(Ω).

Properties of the ψ-Riemann-Liouville fractional integral

Due its importance, we first discuss some properties of the ψ-Riemann-Liouville fractional integral. We start doing the integration by parts (three times), in the Eq.( 2.3),

I α;ψ a+ f (x) = (ψ (x) -ψ (a)) α Γ (α + 1) f (a) + 1 Γ (α + 1) x a (ψ (x) -ψ (s)) α f (s) ds = (ψ (x) -ψ (a)) α Γ (α + 1) f (a) + (ψ (x) -ψ (a)) α+1 Γ (α + 2) ψ (a) f (a) + 1 Γ (α + 2) x a (ψ (x) -ψ (s)) α+1 f (s) ψ (s) ds = (ψ (x) -ψ (a)) α Γ (α + 1) f (a) + (ψ (x) -ψ (a)) α+1 Γ (α + 2) f (a) ψ (a) + (ψ (x) -ψ (a)) α+2 Γ (α + 3) f (a) (ψ (a)) 2 (3.1) + 1 Γ (α + 3) x a (ψ (x) -ψ (s)) α+2 f (s) (ψ (s)) 2 ds. (3.2)
The fractional integral of the Eq.(3.1), can be rewritten. So, first, we note that

(ψ (x) -ψ (s)) α+2 = 1 + ψ (a) -ψ (s) ψ (x) -ψ (a) α+2 (ψ (x) -ψ (a)) α+2 = (1 + x) α+2 (ψ (x) -ψ (a)) α+2 (3.3) with x = ψ (a) -ψ (s) ψ (x) -ψ (a) and ψ (s) -ψ (a) ψ (x) -ψ (a) p ≤ 1.
Using the binomial formula and the relation

-β p = (-1) p Γ (β + p) Γ (β) p! , we have [3] (1 + x) α+2 = ∞ p=0 α + 2 p x p = ∞ p=0 Γ (p -α -2) Γ (-α -2) p! (ψ (s) -ψ (a)) p (ψ (x) -ψ (a)) p . (3.4)
Now, by means of Eq.(5.12) and Eq.(3.4), we get

1 Γ (α + 3) x a (ψ (x) -ψ (s)) α+2 (ψ (s)) 2 f (s) ds = 1 Γ (α + 3) x a (ψ (x) -ψ (a)) α+2 (1 + x) (ψ (s)) 2 f (s) ds = (ψ (x) -ψ (a)) α+2 Γ (α + 3) ∞ p=0 Γ (p -α -2) Γ (-α -2) p! 1 (ψ (x) -ψ (a)) p × x a (ψ (s) -ψ (a)) p f (s) (ψ (s)) 2 ds. (3.5)
Substituting the Eq.(3.5) into the Eq.(3.1), we have

I α;ψ a+ f (x) = (ψ (x) -ψ (a)) α Γ (α + 1) f (a) + (ψ (x) -ψ (a)) α+1 Γ (α + 2) f (a) ψ (a) + (ψ (x) -ψ (a)) α+2 Γ (α + 3) f (a) (ψ (a)) 2 + (ψ (x) -ψ (a)) α+2 Γ (α + 3) ∞ p=0 Γ (p -α -2) Γ (-α -2) p! 1 (ψ (x) -ψ (a)) p × x a (ψ (s) -ψ (a)) p f (s) (ψ (s)) 2 ds = (ψ (x) -ψ (a)) α Γ (α + 1) f (a) + (ψ (t) -ψ (a)) α+1 Γ (α + 2) f (a) ψ (a) + (ψ (x) -ψ (a)) α+2 Γ (α + 3) f (a) (ψ (a)) 2 + (ψ (x) -ψ (a)) α+2 Γ (α + 3) x a f (s) (ψ (s)) 2 ds + (ψ (x) -ψ (a)) α+2 Γ (α + 3) ∞ p=0 Γ (p -α -2) Γ (-α -2) p! 1 (ψ (x) -ψ (a)) p x a (ψ (s) -ψ (a)) p f (s) (ψ (s)) 2 ds. (3.6) Note that (3.7) x a f (s) (ψ (s)) 2 ds = f (t) (ψ (x)) 2 - f (a) (ψ (a)) 2 + 2 x a ψ (s) (ψ (s)) 4 f (s) ds. Consider (3.8) A = x a (ψ (s) -ψ (a)) p f (s) (ψ (s)) 2 ds.
Realizing the integration by parts in integral Eq.(3.8), we have

x a (ψ (s) -ψ (a)) p f (s) (ψ (s)) 2 ds = (ψ (x) -ψ (a)) p (ψ (x)) 2 f (2) (x) -p x a (ψ (s) -ψ (a)) p-1 ψ (s) f (s) ds. (3.9)
Substituting the Eq.(3.9) into the Eq.(3.6) and using the Eq.(3.7), we get

I α;ψ a+ f (x) = (ψ (x) -ψ (a)) α Γ (α + 1) f (a) + (ψ (t) -ψ (a)) α+1 Γ (α + 2) f (a) ψ (a) + (ψ (x) -ψ (a)) α+2 Γ (α + 3) f (x) (ψ (x)) 2 + 2 (ψ (x) -ψ (a)) α+2 Γ (α + 3) × x a ψ (s) (ψ (s)) 4 f (s) ds + (ψ (x) -ψ (a)) α+2 Γ (α + 3) ∞ p=1 Γ (p -α -2) Γ (-α -2) p! f (x) (ψ (t)) 2 - (ψ (x) -ψ (a)) α+2 Γ (α + 3) ∞ p=1 Γ (p -α -2) Γ (-α -2) p! p (ψ (x) -ψ (a)) p x a (ψ (s) -ψ (a)) p-1 ψ (s) f (s) ds = (ψ (x) -ψ (a)) α Γ (α + 1) f (a) + (ψ (t) -ψ (a)) α+1 Γ (α + 2) f (a) ψ (a) + (ψ (x) -ψ (a)) α+2 Γ (α + 3) f (x) (ψ (x)) 2 1 + ∞ p=1 Γ (p -α -2) Γ (-α -2) p! + (ψ (x) -ψ (a)) α+1 Γ (α + 2) x a f (s) ψ (s) ds - (ψ (x) -ψ (a)) α+2 Γ (α + 2) ∞ p=2 Γ (p -α -2) Γ (-α -1) (p -1)! 1 (ψ (x) -ψ (a)) p × x a (ψ (s) -ψ (a)) p-1 ψ (s) f (s) ds + A 1 (3.10)
where

A 1 = 2 (ψ (x) -ψ (a)) α+2 Γ (α + 3) x a ψ (s) (ψ (s)) 4 f (s) ds.
From the procedure previously performed, i.e., integrating by parts the remain integral, we have,

(3.11) x a (ψ (s) -ψ (a)) p-1 ψ (s) f (s) ds = f (x) (ψ (x) -ψ (a)) p-1 ψ (x) -(p -1) x a (ψ (s) -ψ (a)) p-2 f (s) ds and (3.12) x a f (s) ψ (s) ds = f (x) ψ (x) - f (a) ψ (a) + x a ψ (s) (ψ (s)) 2 f (s) ds.
As before, substituting the Eq.(3.11), Eq.(3.12) into the Eq.(3.10), we get

I α;ψ a+ f (x) = (ψ (x) -ψ (a)) α Γ (α + 1) f (a) + (ψ (x) -ψ (a)) α+1 Γ (α + 2) f (x) ψ (x) 1 + ∞ p=2 Γ (p -α -2) Γ (-α -1) (p -1)! + (ψ (x) -ψ (a)) α+2 Γ (α + 3) f (x) (ψ (x)) 2 1 + ∞ p=1 Γ (p -α -2) Γ (-α -2) p! + (ψ (x) -ψ (a)) p Γ (α + 1) x a f (s) ds + (ψ (x) -ψ (a)) α+2 Γ (α + 1) ∞ p=3 Γ (p -α -2) Γ (-α) (p -2)! 1 (ψ (x) -ψ (a)) p × x a (ψ (s) -ψ (a)) p-2 f (s) ds + A 1 + A 2 (3.13)
where

A 1 = 2 (ψ (x) -ψ (a)) α+2 Γ (α + 3) x a ψ (s) (ψ (s)) 4 f (s) ds.
and

A 2 = (ψ (x) -ψ (a)) α+1 Γ (α + 2) x a ψ (s) (ψ (s)) 2 f (s) ds.
Therefore, integrating by parts Eq.(3.13), we can write (3.14)

x a (ψ (s) -ψ (a)) p-2 f (s) ds = f (x) (ψ (x) -ψ (a)) p-2 -(p -2) x a ψ (s) (ψ (s) -ψ (a)) p-3 f (s) ds.
Substituting the Eq.(3.14) in Eq.(3.13), we get

I α;ψ a+ f (x) = (ψ (x) -ψ (a)) α Γ (α + 1) f (x) 1 + ∞ p=2 Γ (p -α -2) Γ (-α) (p -2)! + (ψ (x) -ψ (a)) α+1 Γ (α + 2) f (x) ψ (x) 1 + ∞ p=2 Γ (p -α -2) Γ (-α -1) (p -1)! + (ψ (x) -ψ (a)) α+2 Γ (α + 3) f (x) (ψ (x)) 2 1 + ∞ p=1 Γ (p -α -2) Γ (-α -2) p! + (ψ (x) -ψ (a)) α+2 Γ (α) ∞ p=3 Γ (p -α -2) Γ (-α + 1) (p -3)! 1 (ψ (x) -ψ (a)) p × x a ψ (s) (ψ (s) -ψ (a)) p-3 f (s) ds + A 1 + A 2 with A 1 = 2 (ψ (x) -ψ (a)) α+2 Γ (α + 3) x a ψ (s) (ψ (s)) 4 f (s) ds.
and

A 2 = (ψ (x) -ψ (a)) α+1 Γ (α + 2) x a ψ (s) (ψ (s)) 2 f (s) ds.
Thus, the ψ-Riemann-Liouville fractional integral can be expanded as follows

I α;ψ a+ f (x) = Θ 0 (α) (ψ (x) -ψ (a)) α f (x) + Θ 1 (α) (ψ (x) -ψ (a)) α+1 f (x) ψ (x) + Θ 2 (α) (ψ (x) -ψ (a)) α+2 f (x) (ψ (x)) 2 + ∞ p=3 C (α, p) (ψ (x) -ψ (a)) α+2-p V p (x) + A 1 (α) + A 2 (α) (3.15)
where

Θ 0 (α) = 1 Γ (α + 1) 1 + ∞ p=3 Γ (p -α -2) Γ (-α) (p -2)! , Θ 1 (α) = 1 Γ (α + 2) 1 + ∞ p=2 Γ (p -α -2) Γ (-α -1) (p -1)! , Θ 2 (α) = 1 Γ (α + 3) 1 + ∞ p=1 Γ (p -α -2) Γ (-α -2) (p)! , A 1 = 2 (ψ (x) -ψ (a)) α+2 Γ (α + 3) x a ψ (s) (ψ (s)) 4 f (s) ds, A 2 = (ψ (x) -ψ (a)) α+1 Γ (α + 2) x a ψ (s) (ψ (s)) 2 f (s) ds, (3.16) 
C (α, p) = Γ (p -α -2) Γ (α) Γ (1 -α) (p -2)! , and 
(3.17) V p (x) = x a (p -2) ψ (s) (ψ (s) -ψ (a)) p-3 f (s) ds.
Through the discussion done above, we present the following theorem:

Theorem 3.1. Let n ∈ N, 0 < α < 1 and x ∈ C n [a, b]. Then I α;ψ a+ f (x) = n-1 i=0 Θ i (α) (ψ (x) -ψ (a)) α+i f (i) (x) (ψ (x)) i + ∞ p=n C (α, p) (ψ (x) -ψ (a)) α+n-1-p V p (x) + n-2 k=0 2 k (ψ (t) -ψ (a)) α+k+1 Γ (α + k + 2) x a ψ (s) (ψ (x)) 2 (k+1) f (k+1) (x) ds (3.18) where (3.19) B i (α) = 1 Γ (α + i + 1)   1 + ∞ p=n+i Γ (p -α -m + 1) Γ (-α -i) (p -n + 1 + i)!   i = 0, ..., n -1. (3.20) C (α, p) = Γ (p -α -m + 1) Γ (α) Γ (1 -α) (p -n + 1) V p (x) = x a (p -n + 1) ψ (s) (ψ (s) -ψ (a)) p-n f (s) ds and for n = 1 n-2 k=0 2 k (ψ (x) -ψ (a)) α+k+1 Γ (α + k + 2) x a ψ (s) (ψ (s)) 2 (k+1) f (k+1) (s) ds = 0.
The fractional integral Eq. (3.18), has an approximation given by

I α;ψ a+ f (x) ≈ n-1 i=0 Θ i (α, N ) (ψ (x) -ψ (a)) α+i f (i) (t) (ψ (x)) i + N p=n C (α, p) (ψ (x) -ψ (a)) α+n-1-p V p (x) + n-2 k=0 2 k (ψ (t) -ψ (a)) α+k+1 Γ (α + k + 2) x a ψ (s) (ψ (x)) 2 (k+1) f (k+1) (x) ds
where

Θ i (α, N ) = 1 Γ (α + i + 1)   1 + N p=n+i Γ (p -α -n + 1) Γ (-α -i) (p -n + 1 + i)!  
and C (α, p) and V p (x) are given by Eq.(3.19) and Eq.(3.20), respectively.

Note that the proof of the Theorem 3.1, is the discussion done before of the Theorem 3.1.

Theorem 3.2. Let α > 0, p > max 1, 1 α and φ ∈ L p [a, b] . Suppose that ψ (s) q ≤ ψ (s) and ψ (x + h) - ψ (x) ≤ Lψ (h) . Then, (3.21) I α;ψ a+ φ (x) = O (ψ (x) -ψ (a)) α-1 p as x → a+. If additionally α -1 p / ∈ N, then I α;ψ a+ φ ∈ C α-1 p [a, b].
Proof. For a given p, we introduce the conjugate exponent q ∈ [1, ∞) by the relation

1 p + 1 q = 1.
Then, by definition of the ψ-Riemann-Liouville fractional integral and the Holder inequality, we have

I α;ψ a+ φ (x) ≤ 1 Γ (α) x a ψ (s) (ψ (x) -ψ (s)) α-1 |φ (s)| ds ≤ 1 Γ (α) x a |φ (s)| p ds 1 p x a ψ (s) (ψ (x) -ψ (s)) (α-1)q ds 1 q = 1 Γ (α) x a |φ (s)| p ds 1 p (ψ (x) -ψ (a)) (α-1)q+1 (α -1) q + 1 1 q = 1 Γ (α) x a |φ (s)| p ds 1 p (ψ (x) -ψ (a)) α-1 p ((α -1) q + 1) 1 q = O (ψ (x) -ψ (a)) α-1 p .
For the proof of the smoothness result, we discuss the case α -1 p < 1, first. Here, we find that

I α;ψ a+ φ (x + h) -I α;ψ a+ φ (x) = B 1 + B 2 where B 1 = 1 Γ (α) x+h x ψ (s) (ψ (x + h) -ψ (s)) α-1 φ (s) ds and B 2 = 1 Γ (α) x a ψ (s) (ψ (x + h) -ψ (s)) α-1 -(ψ (x) -ψ (s)) α-1 φ (s) ds.
Using the Holder inequality, we have

|B 1 | ≤ 1 Γ (α) x+h x ψ (s) (ψ (x + h) -ψ (s)) α-1 |φ (s)| ds ≤ 1 Γ (α) x+h x |φ (s)| p ds 1 p x+h x ψ (s) (ψ (x + h) -ψ (s)) (α-1)q ds 1 q = 1 Γ (α) x+h x |φ (s)| p ds 1 p (ψ (x + h) -ψ (x)) (α-1)q+1 (α -1) q + 1 1 q ≤ C 1 (ψ (x + h) -ψ (x)) α-1 p ≤ C 1 (ψ (h)) α-1 p
with some constant C 1 . Moreover, also by Holder inequality and considering the following variable change u = ψ (x) -ψ (s), we obtain

|B 2 | ≤ 1 Γ (α) x a |φ (s)| p ds 1 p x a (ψ (s)) q (ψ (x + h) -ψ (s)) α-1 -(ψ (x) -ψ (s)) α-1 q ds 1 q = φ L p Γ (α) x a ψ (s) (ψ (x + h) -ψ (s)) α-1 -(ψ (x) -ψ (s)) α-1 q ds 1 q = φ L p Γ (α) ψ(x)-ψ(a) 0 (ψ (x + h) -ψ (x) + u) α-1 -u α-1 q du 1 q
. Now, let u = ψ (h) p, so we have

|B 2 | ≤ φ L p Γ (α) ψ(x)-ψ(a) ψ(h) 0 (ψ (x + h) -ψ (x) + ψ (h) p) α-1 -(ψ (h) p) α-1 q ψ (h) dp 1 q ≤ φ L p Γ (α) (ψ (h)) α-1 p ψ(x)-ψ(a) ψ(h) 0 (1 + p) α-1 -p α-1 q dp 1 q
.

We are going analyze the integral divided in two cases. First, for ψ (x) -ψ (a) ≤ ψ (h) the latter integral is bounded by a constant. For the complementary case ψ (x) -ψ (a) > ψ (h), we use the mean value theorem of differential calculus and find

ψ(x)-ψ(a) ψ(h) 0 (1 + p) α-1 -p α-1 q dp ≤ C + ψ(x)-ψ(a) ψ(h) 1 p α-1 -(1 + p) α-1 q dp ≤ C + |α -1| (α -2) q + 1 ψ (x) -ψ (a) ψ (h) (α-2)q+1 -1 . (3.22)
Note (α -2) q + 1 = q α -1 -1 p < 0, in view of q > 0 and our assumption that α -1 p < 1. Then from inequality (3.22), we have

ψ(x)-ψ(a) ψ(h) 0 (1 + p) α-1 -p α-1 q dp ≤ C + |α -1| (α -2) q + 1 ψ (x) -ψ (a) ψ (h) (α-2)q+1 -1 = O (1) . Hence, A 2 = O ψ (h) α-1 p
, and therefore, I α;ψ a+ φ ∈ H α-1 p in this case. Now we discuss the remaining case α -1 p > 1. Then, in particular, α > 1 and in view of the semigroup property of fractional integral with respect to another function, we get

I α;ψ a+ φ = I α-1 p ;ψ a+ I α-α-1 p ;ψ a+ φ.
Therefore, by the fundamental theorem of calculus

H D α-1 p ,β;ψ a+ I α;ψ a+ φ = I α-α-1 p ;ψ a+ φ = I α;ψ a+ φ.
Here we take α

= α -α -1 p ≥ α -α ≥ 0 and α -1 p = α -1 p -α -1 < 1, because, by assumption n -1 p / ∈ N.
The next objective of this section is to discuss the ψ-Riemann-Liouville fractional integral of a fractional polynomial with respect to another function in two versions. To conclude the section, we discuss a result of uniformity in the interval [0, 1] involving a fractional polynomial denoted by B ψ n . It is remarkable that in the particular choice of ψ(x) = x in this fractional polynomial, we recover the classical Bernstein's polynomial. We first recover the definition of the Bernstein polynomials. Definition 3.4. [START_REF] Khosravian-Arab | Uniform approximation of fractional derivatives and integrals with application to fractional differential equations[END_REF] Let f be continuous on [0, 1]. The Bernstein polynomials of degree n with respect to f is defined as

(3.23) B n (f ; x) = n i=0 n i f i n x i (1 -x) n-i .
The Bernstein polynomials Eq.(3.23), can be written in the form

(3.24) B n (f ; x) = n i=0 n-i j=0 n i n -i j (-1) j f i n x i+j .
As we will use in the application let us consider the following general form of the Bernstein polynomials of n th degree over the interval a ≤ x ≤ b, is defined by

(3.25) B i,n (x) = n i (x -a) i (b -x) n-i (b -a) n ,
where i = 0, 1, ..., n, and

n i = n! i!(n -i)! .
Some particular cases of Bernstein polynomials are:

(1) B 0,

1 (t) = (1 -t), B 1,1 (t) = t (2) B 0,2 (t) = (1 -t) 2 , B 1,2 (t) = 2t(1 -t), B 2,2 (t) = t 2 , ( 3 
) B 0,3 (t) = (1 -t) 3 , B 1,3 (t) = 3t(1 -t) 2 , B 2,3 (t) = 3t 2 (1 -t) , B 3,3 (t) = t 3 .
Now, through the Bernstein polynomials Eq.(3.24), we will introduce a function ψ, as follows [START_REF] Khosravian-Arab | Uniform approximation of fractional derivatives and integrals with application to fractional differential equations[END_REF] (3.26)

B ψ n (f ; x) = n i=0 n-i j=0 n i n -i j (-1) j f i n (ψ (x)) i+j , x ∈ [0, 1] , ψ (x) ∈ [0, 1] .
Another representation for Eq.(3.26), can be given by the binomial expansion [START_REF] Khosravian-Arab | Uniform approximation of fractional derivatives and integrals with application to fractional differential equations[END_REF] (3.27) 

B ψ n (f ; x) = n i=0 i j=0 n i i j (-1) j f i n (1 -ψ (x)) n-i+j , x ∈ [0, 1] , ψ ( 
B x ρ n (f ; x) = n i=0 n-i j=0 n i n -i j (-1) j f i n x ρ(i+j) .
(c) Taking ψ (x) = ln x (x > 0) we have the following polynomials

B ln x n (f ; x) = n i=0 n-i j=0 n i n -i j (-1) j f i n (ln x) (i+j) .
Using Lemma 2.2, we have

I α;ψ 0+ B ψ n (f ; x) = n i=0 n-i j=0 n i n -i j (-1) j f i n I α;ψ 0+ (ψ (x)) i+j = n i=0 n-i j=0 n i n -i j f i n (-1) j Γ (i + j + 1) Γ (i + j + 1 + α) (ψ (x)) i+j+α .
On the other hand, we also can write of order α is obtained as

I α;ψ 1-B ψ n (f ; x) = n i=0 i j=0 n i i j (-1) j f i n I α;ψ 1-(1 -ψ (x)) n-i+j = n i=0 i j=0 n i i j f i n (-1) j Γ (n -i + j + 1) Γ (n -i + j + 1 + α) (1 -ψ (x)) n-i+j+α .
I α;ψ a+ B ψ i,N (x) = (-1) i (ψ (b) -ψ(a)) α N i N k=i N -i k -i (-1) k k! Γ (k + α + 1) η k+α where η = ψ (x) -ψ (a) ψ (b) -ψ (a) .
Proof. Indeed, using the definition of the Riemann-Liouville integral we get 

I α;ψ a+ B ψ i,N (x) = 1 Γ (α) x a ψ (s) (ψ (x) -ψ (s)) α-1 1 (ψ (b) -ψ (a)) N × N i (ψ (s) -ψ (a)) i (ψ (b) -ψ (s)) N -i ds = 1 Γ (α) N i x a ψ (s) (ψ (x) -ψ (s)) α-1 (ψ (s) -ψ (a)) i (ψ (b) -ψ (s)) N -i (ψ (b) -ψ (a)) N ds = 1 Γ (α) (ψ (x) -ψ (a)) i+α (ψ (b) -ψ (a)) i N i x a ψ (s) 1 - ψ (s) -ψ (a) ψ (x) -ψ (a) α-1 1 ψ (x) -ψ (a) × ψ (s) -ψ (a) ψ (x) -ψ (a) i 1 - ψ (x) -ψ (a) ψ (b) -ψ (a) ψ (s) -ψ (a) ψ (x) -ψ ( 
I α;ψ a+ B ψ i,N (x) = (ψ (b) -ψ (a)) α Γ (α) η i+α n i 1 0 (1 -f ) α-1 ξ i 1 - ψ (x) ψ (a) ψ (b) -ψ (a) ξ N -i dξ = (ψ (b) -ψ (a)) α Γ (α) η i+α n i N -i k=0 N -i k (-1) k η k 1 0 (1 -ξ) α-1 ξ k+i dξ = (ψ (b) -ψ (a)) α η i+α n i N -i k=0 N -i k (-1) k η k Γ (k + i + 1) Γ (α + k + i + 1) .
Changing the index k → k -i, we finally have

I α;ψ a+ B ψ i,N (x) = (ψ (b) -ψ (a)) α η i+α n i N -i k=0 N -i k -i (-1) k-i η k-i Γ (k + 1) Γ (α + k + 1) = (-1) i (ψ (b) -ψ (a)) α n i N k=i N -i k -i (-1) k η k+α k! Γ (α + k + 1)
, which conclude the proof.

Theorem 3.6. Let ψ be an increasing and positive monotone function on (0, 1] having a continuous derivative ψ (x) on (0, 1).

If n -1 < α ≤ n, f ∈ C ([0, 1]
) and ε > 0, then

I α;ψ 0+ f -I α;ψ 0+ B ψ n f < ε is uniformly on the interval [0, 1].
Proof. Firstly by means of Theorem 3.3, we have f -B n f < ε. Therefore

I α;ψ 0+ f (x) -I α;ψ 0+ B ψ n (f, x) ≤ 1 Γ (α) x 0 ψ (s) (ψ (x) -ψ (s)) α-1 f (s) -B ψ n (f, s) ds < ε Γ (α) x 0 ψ (s) (ψ (x) -ψ (s)) α-1 ds = ε (ψ (x) -ψ (0)) α Γ (α + 1) < ε,
which is the desired result.

Properties of the ψ-Hilfer fractional derivative

The ψ-Hilfer fractional differentiation operator was introduced in 2018 by Sousa and Oliveira [START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF], which contains a wide class of particular cases of fractional derivatives. Other recent works involving the ψ-Hilfer fractional operator of variable order [START_REF] Sousa | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF] and in the sense of g-calculus [START_REF] Sousa | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF], were presented, in particular, the Leibniz rules type I and type II [START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF].

In order to provide new properties of the ψ-Hilfer fractional derivative, we will here discuss the Faa di Bruno formula and calculate the fractional derivative of fractional polynomials, in particular, we will present the version of the fractional mean value theorem with respect to another function.

Theorem 4.1. Let α ∈ R, n -1 < α ≤ n, where n ∈ N, 0 ≤ β ≤ 1,
f is an analytic function and g a differentiable sufficiently function, then the Faa di Bruno formula for the ψ-Hilfer fractional derivative is given by

H D α,β;ψ a+ f (g (x)) = (ψ (x) -ψ (a)) -α Γ (1 -α) f (g (x)) + ∞ k=1 γ k ∞ p=1 α -γ p (k + p)! b 1 !b 2 !...b k+p ! f (m) (g (x)) g (x) 1! b1 g (x) 2! b2 • • • g (k+p) (x) (k + p)! b (k+p)
where the sum covers all different combinations of nonnegative integers b

1 b 2 •••b k with m = b 1 +b 2 +•••+b k e b 1 + 2b 2 + • • • + kb k = k.

Proof. Consider the Leibniz rule for the fractional derivative [3]

RL D α;ψ a+ (f g) (x) = ∞ k=0 α k g (k) (x) RL D α-k;ψ a+ f (x) and f (x) = H ψ (x -a), follows (4.1) RL D α;ψ a+ g (x) = ∞ k=0 α k g (k) (x) RL D α-k;ψ a+ H ψ (x -a) .
Taking α = γ and applying I γ-α;ψ a+ (•) on both sides of the Eq.(4.1), we have

H D α,β;ψ a+ g (x) = I γ-α;ψ a+ RL D α;ψ a+ g (x) = ∞ k=0 γ k I γ-α;ψ a+ g (k) (x) RL D γ-k;ψ a+ H ψ (x -a) = ∞ k=0 γ k I γ-α;ψ a+ g (k) (x) (ψ (x) -ψ (a)) k-γ Γ (k -γ + 1) . (4.2)

Remember the relation [3]

I α;ψ a+ (φδ) (x) = ∞ p=0 -α p (φ) p (x) I α+p;ψ a+ δ (x) , and choosing δ (x) = (ψ (x) -ψ (a)) k-γ Γ (k -γ + 1)
and φ (x) = g (k) (x), we have from Eq.(4.2),

H D α,β;ψ a+ g (x) = ∞ k=0 γ k ∞ k=0 α -γ p g k+p (x) I γ-α;ψ a+ (ψ (x) -ψ (a)) k-γ Γ (k -γ + 1) = ∞ k=0 γ k ∞ k=0 α -γ p g k+p (x) (ψ (x) -ψ (a)) k-α+p Γ (k -γ + p + 1) . (4.3)
The Eq.( 4.3), can be written as follows (k = p = 0)

(4.4) H D α,β;ψ a+ g (x) = (ψ (x) -ψ (a)) -α Γ (-α + 1) g (x) + ∞ k=1 γ k ∞ p=1 α -γ p g k+p (x) (ψ (x) -ψ (a)) k-α+p Γ (k -γ + p + 1) .
Now, suppose that g (x) = f (g (x)). Then, the k-th derivative of g (x), k ∈ N, is given by (4.5)

D k f (g (x)) = k! b 1 !b 2 ! • • • b n ! f (m) (g (x)) g (x) 1! b1 g (x) 2! b2 • • • g k (x) k! b k
where the sum covers all different combinations of nonnegative integers b

1 b 2 •••b k with m = b 1 +b 2 +•••+b k and b 1 + 2b 2 + • • • + kb k = k. Substituting g (x)
and the Eq.(4.5) into the Eq.( 4.4), we obtain

H D α,β;ψ a+ f (g (x)) = (ψ (x) -ψ (a)) -α Γ (1 -α) f (g (x)) + ∞ k=1 γ k ∞ p=1 α -γ p (k + p)! b 1 !b 2 !...b k+p ! f (m) (g (x)) g (x) 1! b1 g (x) 2! b2 • • • g (k+p) (x) (k + p)! b (k+p)
, which conclude the proof.

Now, let us discuss some fractional polynomials, whose particular cases are related to the Beinstein and Leguerre polynomials.

By means of Lemma 2.5, we get

H D α,β;ψ 0+ B ψ n (f ; x) = n i=0 n-i j=0 n i n -i j (-1) j f i n H D α,β;ψ 0+ (ψ (x)) i+j = n i=0 n-i j=0 n i n -i j f i n (-1) j Γ (i + j + 1) Γ (i + j + 1 -α) (ψ (x)) i+j-α .
On the other hand, we also have

H D α,β;ψ 1- B ψ n (f ; x) = n i=0 i j=0 n i i j (-1) j f i n H D α,β;ψ 1- (1 -ψ (x)) n-i+j = n i=0 i j=0 n i i j f i n (-1) j Γ (n -i + j + 1) Γ (n -i + j + 1 -α) (1 -ψ (x)) n-i+j-α . Theorem 4.2. Let ψ ∈ C n ([0, 1] , R
) such that ψ is increasing and ψ (x) = 0 for all x ∈ [0, 1]. Let α be a nonnegative real number and n ∈ N such that n -

1 < α ≤ n. If f ∈ C n ([0, 1]) and ε > 0, then H D α,β;ψ 0+ f -H D α,β;ψ 0+ B ψ n f < ε.
Proof. Using the Theorem 3.6, we have

I α;ψ 0+ f -I α;ψ 0+ B ψ n f < ε. Therefore, we have H D α,β;ψ 0+ f (x) -H D α,β;ψ 0+ B ψ n (f, x) ≤ C D α;ψ 0+ I (1-β)(n-α);ψ 0+ f (x) -I (1-β)(n-α);ψ 0+ B ψ n (f, x) < ε (ψ (x) -ψ (0)) n-α Γ (1 + n -α) < ε,
which is the desired result.

The classical Laguerre polynomials are usually defined by the following Rodrigues formula

(4.6) L µ n (x) = 1 n! e x x -µ d n dx n e -x x n+µ with n ∈ N 0 , µ ∈ C, Re (µ) > -1, x ∈ R.
A priory the idea here is to introduce a function ψ into the Laguerre polynomials to obtain generalized polynomials. So, consider f α ψ (x) = ψ (x) α . Then, Eq.(4.6), is written as follows (4.7)

L µ;ψ n (x) = 1 n! e x x -µ H D α,β;ψ a+ e -x ψ (x) n+µ .
Note that for ψ (x) = x, we have

L µ;ψ?? n (x) = 1 n! e x x -µ H D α,β a+ e -x x n+µ .
On the other hand, choosing ψ (x) = x and α = 1, we have Eq.(4.6).

Theorem 4.3. Let n ∈ N, µ ∈ C, Re (µ) > 0, x, α ∈ R, n -1 < α < n.
Then the polynomials Eq.(4.7) can be represented by means of the confluent hypergeometric function as

L µ;ψ n (x) = α + µ α 1 F 1 (-α, µ + 1; ψ (x))+ Ψ α µ,ε (x, a) Γ (α + µ + 1) Γ (α + 1) Γ (β (1 -α)) Γ (ε) 1 -e x-a 1 F 1 (ε, α + µ + ε + 1; ψ (a))
where

Ψ α µ,ε (x, a) := ψ (x) -µ ψ (a) α+µ+ε (ψ (x) -ψ (a)) -ε-α .
Proof. To prove the statement, we first apply the Leibniz rule type I for ψ-Hilfer fractional derivative [START_REF] Sousa | Leibniz type rule: ψ-Hilfer fractional operator[END_REF]. Then, we have

L µ;ψ n (x) = 1 Γ (α + 1) e x ψ (x) -µ H D α,β;ψ a+ e -x ψ (x) α+µ = e x ψ (x) -µ Γ (α + 1) ∞ m=0 α m e -x m Γ (α + µ + 1) Γ (m + µ + 1) ψ (x) m+µ + e x ψ (x) -µ Γ (α + 1) ∞ k=0 -ε k I ε+k;ψ a+ ψ (a) α+µ e -x (k) -e -a (k) (ψ (x) -ψ (a)) -ε-α Γ (β (1 -α)) = 1 Γ (α + 1) ∞ m=0 -αΓ (m -α) Γ (α + µ + 1) Γ (1 -α) Γ (m + 1) Γ (m + µ + 1) ψ (x) m + e x ψ (x) -µ Γ (α + 1) ∞ k=0 -ε k I ε+k;ψ a+ ψ (a) α+µ e -x (k) -e -a (k) (ψ (x) -ψ (a)) -ε-α Γ (β (1 -α)) = α + µ α 1 F 1 (-α, µ + 1; ψ (x)) + P (4.8)
where

P = e x ψ (x) -µ Γ (α + 1) ∞ k=0 -ε k I ε+k;ψ a+ ψ (a) α+µ e -x (k) -e -a (k) (ψ (x) -ψ (a)) -ε-α Γ (β (1 -α)) .
Let's get an expression for P. Then, we have

P = e x ψ (x) -µ Γ (α + 1) ∞ k=0 ( -1) 
k-1

(-ε) Γ (k + ε) Γ (α + µ + 1) Γ (1 + ε) Γ (k + 1) Γ (α + µ + k + ε + 1) × ψ (a) α+µ+k+ε e -x -e -a (-1) k (ψ (x) -ψ (a)) -ε-α Γ (β (1 -α)) = ψ (x) -µ ψ (a) α+µ+ε (ψ (x) -ψ (a)) -ε-α Γ (α + 1) Γ (β (α + 1)) Γ (ε) Γ (α + µ + 1) ∞ k=0 Γ (k + ε) ψ (a) k Γ (α + µ + k + ε + 1) k! 1 -e x-a = ψ (x) -µ ψ (a) α+µ+ε (ψ (x) -ψ (a)) -ε-α Γ (α + 1) Γ (β (α + 1)) Γ (ε) Γ (α + µ + 1) 1 -e x-a 1 F 1 (ε, α + µ + ε + 1; ψ (a)
) . (4.9) Substituting Eq.(4.9) in Eq.(4.8), we conclued that

L µ;ψ n (x) = α + µ α 1 F 1 (-α, µ + 1; ψ (x))+ Ψ α µ,ε (x, a) Γ (α + µ + 1) Γ (α + 1) Γ (β (1 -α)) Γ (ε) 1 -e x-a 1 F 1 (ε, α + µ + ε + 1; ψ (a))
where

Ψ α µ,ε (x, a) := ψ (x) -µ ψ (a) α+µ+ε (ψ (x) -ψ (a)) -ε-α . Lemma 4.4. Let f ∈ A 1 [a, b] and 0 < α < 1, 0 ≤ β ≤ 1. Then H D α,β;ψ a+ f exists almost everywhere in [a, b]. Moreover, H D α,β;ψ a+ f ∈ L p [a, b] for 1 ≤ p < 1 p and H D α,β;ψ a+ f (x) = f (a) Γ (1 -α) (ψ (x) -ψ (a)) -α +I 2γ-α;ψ a+ f (x) with γ = α + β (1 -α).
Proof. We use the definition of the ψ-Riemann-Liouville fractional derivative and the fact that f ∈ A 1 . This yields

D α;ψ a+ f (x) = 1 Γ (1 -α) 1 ψ (x) d dx x a ψ (s) f (a) + s a f (u) du (ψ (x) -ψ (s)) -α ds = 1 Γ (1 -α) 1 ψ (x) d dx f (a) (ψ (x) -ψ (a)) 1-α (1 -α) + x a s a ψ (s) f (u) (ψ (x) -ψ (s)) -α du ds = f (a) Γ (1 -α) (ψ (x) -ψ (a)) -α + 1 ψ (x) d dx x a s a ψ (s) f (u) (ψ (x) -ψ (s))
-α du ds.

By Fubini theorem we can interchange the order of integration in the double integral. This yields

(4.10) D α;ψ a+ f (x) = 1 Γ (1 -α) f (a) (ψ (x) -ψ (a)) α + 1 ψ (x) d dx x a ψ (u) f (u) (ψ (x) -ψ (u)) 1-α (1 -α) du .
The standard rules on the differentiation of parameter integrals then give the desired representation. The integrability statement is an immediate consequence of this representation using classical results from Lebesgue integration theory.

Remember that H D α,β;ψ a+ f (x) = I γ-α;ψ a+ D γ;ψ a+ f (x) with γ = α+β (1 -α). Substituting α = γ in Eq.(4.10), we have

(4.11) D γ;ψ a+ f (x) = 1 Γ (1 -γ) f (a) (ψ (x) -ψ (a)) γ + 1 Γ (1 -γ) x a ψ (s) f (s) (ψ (x) -ψ (s))
-γ ds.

Applying I γ-α;ψ a+ (•) on both sides of the Eq.(4.11) and using the semigroup law for the ψ-Riemann-Liouville fractional integral, we get

H D α,β;ψ a+ f (x) = f (a) Γ (1 -γ) I γ-α;ψ a+ (ψ (x) -ψ (a)) -γ + I γ-α;ψ a+ I γ;ψ a+ f (x) = f (a) Γ (1 -α) (ψ (x) -ψ (a)) -α + I 2γ-α;ψ a+ f (x) .
Thus, we concluded the proof.

The next result, we will investigate a version of Taylor's formula in the context of the ψ-Hilfer fractional derivative. 

f are continuous in (a, b]. (2) H D α(m+1),β;ψ a+ f ∈I α;ψ a+ ([a, b]). (3) If α < 1 2 is γ-continuous in a, with 1 -(m + 1) α ≤ γ ≤ 1, or H D α(m+1),β;ψ a+
f is a-singular of order α. Then (4.12)

I αm;ψ a+ H D αm,β;ψ a+ f (x) -I α(m+1);ψ a+ H D α(m+1),β;ψ a+ f (x) = C m (ψ (x) -ψ (a)) (m+1)α-1+β(1-α) Γ ((m + 1) α + β (1 -α)) ∀x ∈ (a, b], where C m = Γ (γ) I 1-γ;ψ a+ H D αm,β;ψ a+ f (a+). If m = 0, and f is a continuous function such that H D α,β;ψ a+ f ∈ C ([a, b]
) and H D α,β;ψ a+ f ∈I α;ψ a+ ([a, b]), then Eq.(5.6) also holds.

Proof. For m > 0, we find Eq.(2.5) that

I αm;ψ a+ H D αm,β;ψ a+ f (x) -I α(m+1);ψ a+ H D α(m+1),β;ψ a+ f (x) = I αm;ψ a+ H D αm,β;ψ a+ f (x) -I αm;ψ a+ I α;ψ a+ H D α,β;ψ a+ H D αm,β;ψ a+ f (x) = I αm;ψ a+ H D αm,β;ψ a+ f (x) -I αm;ψ a+ H D αm,β;ψ a+ f (x) - (ψ (x) -ψ (a)) γ-1 Γ (γ) I 1-γ;ψ a+ H D αm,β;ψ a+ f (a) = I αm;ψ a+ H D αm,β;ψ a+ f (a) Γ (γ) Γ (αm + γ) (ψ (x) -ψ (a)) αm+γ-1 = C m (ψ (x) -ψ (a)) α(m+1)+β(1-α)-1 Γ (α (m + 1) + β (1 -α))
where C m = Γ (γ) I 1-γ;ψ a+ H D αm,β;ψ a+ f (a+).

Remark 4.6.

(1) Taking the limit β → 0 on both sides of the Eq.(5.6), we have (Riemann-Liouville) (3) If α < 1 2 then, for each j ∈ N, 1 ≤ j ≤ n, such that (j + 1) α < 1, H D α(j+1),β;ψ a+ f (x) is γ-continuous in x = a for some γ, 1 -(j + 1) α ≤ γ ≤ 1, or a-singular or order α. Proof. Using Eq.(5.6), for j = 0, ..., n, it follows that

I
Then, ∀x ∈ (a, b], (4.13) f (x) = n j=0 C j (ψ (x) -ψ (a)) (j+1)α-1+β(1-α) Γ ((j + 1) α + β (1 -α)) + R n,ψ (ψ (x) , ψ (a) 
(4.14) f (x) = n j=0 C j (ψ (x) -ψ (a)) (j+1)α-1+β(1-α) Γ ((j + 1) α + β (1 -α)) + I (n+1)α;ψ a+ H D α(n+1),β;ψ a+ f (x) .
Applying the integral mean value theorem, we have

I (n+1)α;ψH a+ D α(n+1),β;ψ a+ f (x) = 1 Γ ((n + 1) α) x a ψ (s) (ψ (x) -ψ (s)) (n+1)α-1 ds = H D α(n+1),β;ψ a+ f (ξ) (ψ (x) -ψ (a)) (n+1)α Γ ((n + 1) α + 1) (4.15)
with a ≤ ξ ≤ x, and so Eq.(4.13) is obtained.

To conclude the section, we will discuss an important result of mathematical analysis, that is, the mean value theorem in the fractional sense. So, we have the following result:

Theorem 4.8. Suppose that α ∈ (n -1, n], f (x) ∈ C n [a, b] and H D α,β;ψ a+ f (x) ⊂ C [a, b]. Then f (x) = n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) f [n-k] ψ I 1-γ;ψ a+ f (a) + H D α,β;ψ a+ f (x) (ξ) Γ (α + 1) (ψ (x) -ψ (a)) α with γ = α + β (n -α).
Proof. Using the definition of ψ-Riemann-Liouville fractional integral, we have

I α;ψ a+ H D α,β;ψ a+ f (x) = H D α,β;ψ a+ f (x) (ξ) Γ (α + 1) x a ψ (s) (ψ (x) -ψ (s)) α-1 ds = H D α,β;ψ a+ f (x) (ξ) Γ (α + 1) (ψ (x) -ψ (a)) α (4.16)
where a ≤ ξ ≤ x.

It follows from Eq.(2.7) (see Theorem 2.7) and from Eq.(4.16),

f (x) = n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) f [n-k] ψ I 1-γ;ψ a+ f (a) + H D α,β;ψ a+ f (x) (ξ) Γ (α + 1) (ψ (x) -ψ (a)) α with γ = α + β (n -α).
Corollary 4.9. Suppose that α ∈ (n - 

1, n], f (x) ∈ C n [a, b] and H D α,β;ψ a+ f (x) ∈ C [a, b]. If f (b) = n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) f [n-k] ψ I 1-γ;ψ a+ f ( 
f (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) f [n-k] ψ I 1-γ;ψ a+ f (a) g (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) g [n-k] ψ I 1-γ;ψ a+ g (a) = H D α,β;ψ a+ f (x) (ξ) H D α,β;ψ a+ g (x) (ξ)
.

Proof. First of all, fix x ∈ [a, b]. Denote by F and G the following two functions

F = f (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) f [n-k] ψ I 1-γ;ψ a+ f (a) 
and

G = g (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) g [n-k] ψ I 1-γ;ψ a+ g (a)
.

Then, consider the following function

Y (x) = G • f (x) + F • g (x) .
Since f and g satisfy the conditions of Theorem 4.8, one has

Y (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) f [n-k] ψ I 1-γ;ψ a+ f (a) = H D α,β;ψ a+ Y (x) (ξ) Γ (α + 1) (ψ (x) -ψ (a)) α for some ξ ∈ [a, x].
This gives

G • f (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) f [n-k] ψ I 1-γ;ψ a+ f (a) -F • g (x) - n k=1 (ψ (x) -ψ (a)) γ-k Γ (γ -k + 1) g [n-k] ψ I 1-γ;ψ a+ g (a) = (ψ (x) -ψ (a)) α Γ (α + 1) G • H D α,β;ψ a+ f (x) (ξ) -F • H D α,β;ψ a+ g (x) (ξ) .
The left-hand sided of the above equation is equal to zero, namely G H D α,β;ψ a+ f (ξ) -F H D α,β;ψ a+ g (ξ) = 0. Therefore, the result follows.

Below, we highlight two particular cases involving the Caputo and Riemann-Liouville fractional derivatives. Firstly, taking ψ(t) = t and β → 1 in Theorem 4.10, we have the result involving the Caputo fractional derivative, given by:

Theorem 4.11. Let f (x) ∈ C n [a, b] and g (x) ∈ C n [a, b] such that C D α a+ f (x) ∈ C [a, b] and C D α a+ g (x) ∈ C [a, b]. Then, for any x ∈ (a, b], there exists at least a point ξ ∈ [a, x], such that f (x) - n k=1 (x -a) 1-k Γ (2 -k) f [n-k] ψ f (a) g (x) - n k=1 (x -a) 1-k Γ (2 -k) g [n-k] ψ g (a) = C D α a+ f (x) (ξ) C D α a+ g (x) (ξ)
.

Proof. The proof follows directly from Theorem 4.10.

On the other hand, taking ψ(t) = t and β → 0 in Theorem 4.10, we have the result involving the Riemann-Liouville fractional derivative, given by:

Theorem 4.12. Let f (x) ∈ C n [a, b] and g (x) ∈ C n [a, b] such that RL D α a+ f (x) ∈ C [a, b] and RL D α a+ g (x) ∈ C [a, b]. Then, for any x ∈ (a, b], there exists at least a point ξ ∈ [a, x], such that f (x) - n k=1 (x -a) α-k Γ (α -k + 1) f [n-k] ψ I 1-α;ψ a+ f (a) g (x) - n k=1 (x -a) α-k Γ (α -k + 1) g [n-k] ψ I 1-α;ψ a+ g (a) = RL D α a+ f (x) (ξ) RL D α a+ g (x) (ξ)
.

Proof. The proof follows directly from Theorem 4.10.

Application: Bernstein polynomials and fractional integro-differential equation

In this section, we discuss Bernstein polynomials to approximate the solution of textcolorbluea fractional integro-differential equation and plot a graph of values obtained through the discussion of particular cases.

Consider the fractional integro-differential equations given by (5.1)

   H D α,β a+ w(x) I 1-γ a+ w(a) = = f (x) + b a k(x, t)w(t)dt w a
where H D α,β a+ (•) is the Hilfer fractional derivative of order 0 < α ≤ 1 and type 0 ≤ β ≤ 1, f (x), k(x, t) are given functions, x and t, are real variables in [0, 1].

Note that discussing the solution of Eq.(5.1), is equivalent to discussing the solution of the integral equation, given by (5.2)

w(x) = (x -a) γ-1 Γ (γ) w a + I α f (x) + I α b a k(x, t)w(t)dt , where γ = α + β(1 -α).
To determine an approximate solution of Eq.( 5.1) we use the Bernstein polynomials bases on [a, b] as

(5.3) w(x) = n i=0 a i B i,n (x) 
where a i , i = 0, 1, 2, ..., n are unknown constants to be determined. Substituting the Eq.( 5.3) into the Eq.(5.2), yields

n i=0 a i B i,n (x) = (x -a) γ-1 Γ (γ) I 1-γ w (0) + I α f (x) + I α b a k(x, t) n i=0 a i B i,n (t)dt ,
where B i,n (x) is the Bernstein polynomials given by Eq.(3.25). Hence

n i=0 a i B i,n (x) -I α n i=0 a i Ψ (x) dt = (x -a) γ-1 Γ (γ) I 1-γ w (0) + I α f (x) where Ψ(x) = b a k(x, t)B i,n (t)dt.
Substituting the values of B i,n (x) , B i,n (t) and simplifying the integration, (5.4)

n i=0 a i (B i,n (x) -I α Ψ (x)) = (x -a) γ-1 Γ (γ) I 1-γ w (0) + I α f (x) .
Now, we put x = x m , m = 0, 1, ..., n into Eq.(5.4) x s m are being chosen as suitable distinct points in (a, b) putting x = x m we obtain the linear system, (5.5) n i=0 a i ξ ij = δ j , j = 0, 1, ..., n where ξ ij = B i,n (x j ) -I α Ψ (x j ) and δ j = (x j -a) γ-1 Γ (γ) I 1-γ f (x j ), solve the linear system of equations by standard methods for the unknown constants a s . Substituting a i , i = 0, 1, ..., n in Eq.( 5.3) to obtain an approximate solution of u (x). We discuss a numerical example and plot a graph of the problem addressed above.

Example 5.1. Consider the fractional integro-differential equation given by

(5.6)    H D α,β + w(x) I 1-γ 0+ w(0) = = E α (x α ) + b 0 xe t w(t)dt 0, 0 < α ≤ 1 and 0 ≤ β ≤ 1
where E α (x α ) is the one-parameter Mittag-Leffler function given by

(5.7) E α (x α ) = ∞ n=0
x αn Γ (αn + 1) .

Taking the Riemann-Liouville fractional integral on both sides of Eq.(5.6), we have the following integral equation

(5.8) w(x) = x γ-1 Γ (γ) I 1-γ w (0) + I α E α (x α ) + I α 1 0 xe t w(t)dt .
To determine an approximate solution of Eq.(5.6) we set w(t) = 3 i=0 a i B i3 (x) and after substituting it into Eq.(5.8), yields

3 i=0 a i B i3 (x) = I α E α (x α ) + I α 1 0 xe t 3 i=0 a i B i3 (t)dt that is, a 0 B 0,3 (x) + a 1 B 1,3 (x) + a 2 B 2,3 (x) + a 3 B 3,3 (x) = I α E α (x α ) + I α     1 0 xe t a 0 B 0,3 (t)dt + 1 0 xe t a 1 B 1,3 (t)dt + 1 0 xe t a 2 B 2,3 (t)dt + 1 0 xe t a 3 B 3,3 (t)dt     .
(5.9) -a 3 (6 -2e) Γ (2) Γ (2 + α)

Using B 0,3 (t), B 1,3 (t), B 2,3 ( 
x 1+α -a 2 3 (3e -8) Γ (2) Γ (2 + α)

x 1+α

= I α E α (x α ) . (5.11)

For our example, we truncate the Mittag-Leffler function up to n = 5. So, we have (5.12) E α (x α ) = 1 +

x α Γ (α + 1) + x 2α Γ (2α + 1) + x 3α Γ (3α + 1) + x 4α Γ (4α + 1) + x 5α Γ (5α + 1)

.

Taking the fractional integral on both sides of Eq.(5.12), yields

I α 0+ (E α (x α )) = I α 0+ 1 +
x α Γ (α + 1) + x 2α Γ (2α + 1) + x 3α Γ (3α + 1) + x 4α Γ (4α + 1) + x 5α Γ (5α + 1)

=

x α Γ (α + 1) + x 2α Γ (2α + 1) + x 3α Γ (3α + 1) + x 4α Γ (4α + 1) + x 5α Γ (5α + 1) + x 6α Γ (6α + 1)

=

x α Γ (α + 1) + x 2α Γ (2α + 1) + x 3α Γ (3α + 1) + x 4α Γ (4α + 1) + x 5α Γ (5α + 1) + x 6α Γ (6α + 1) . (5.15) Now, we discuss some cases for the Eq.(5.15), i.e., we realize an analysis for α = 0.3, α = 0.5 and α = 1.0. For each α, be evaluated in x = 0.1, 0.2, 0.3, 0.4.

Case 1: For α = 0.3, we have a 0 (1 -x) 3 -(6e -16) 0.599x 1.3 + a 1 3x(1 -x) 2 -3 (11 -4e) 0.599x 1.3 +a 2 3x 2 (1 -x) -3 (3e -8) 0.599x 1.3 + a 3 x 3 -(6 -2e) 0.599x 1.3 = 1.114x 0.3 + 1.119x 0.6 + 1.04x 0.9 + 0.909x 1.2 + 0.752x 1.5 + 0.596x 1.8 . (5.16)

Evaluating the Eq. (5.16) for e = 2.71 and for x = 0.1, 0.2, 0.3, 0.4, we have:

• For x = 0.1, we have (5.17) 0.721a 0 + 0.228a 1 + 0.015a 2 + 0.082a 3 = 0.558.

• For x = 0.2, we have (5.18) 0.504a 0 + 0.348a 1 + 0.032a 2 + 0.067a 3 = 1.589.

• For x = 0.3, we have (5.19) 0.310a 0 + 0.380a 1 + 0.140a 2 -0.045a 3 = 2.077.

• For x = 0.4, we have

(5.20) 0.168a 0 + 0.344a 1 + 0.217a 2 -0.041a 3 = 2.555.

From Eq.(5.17)-Eq.(5.20), we have the following nonhomogeneous linear system        0.721a 0 + 0.228a 1 + 0.015a 2 + 0.082a 3 = 0.558. 0.504a 0 + 0.348a 1 + 0.032a 2 + 0.067a 3 = 1.589 0.310a 0 + 0.380a 1 + 0.140a 2 -0.045a 3 = 2.077 0.168a 0 + 0.344a 1 + 0.217a 2 -0.041a 3 = 2.555

Thus, the approximate solution of Eq.(5.6) when α = 0.9, becomes (5.32) w(x) = -1.038(1 -x) 3 + 1.847(3x)(1 -x) 2 + 0.170(3x 2 )(1 -x) + 4.555x 3 .

Case 4: For α = 1.0, we have a 0 (1 -x) 3 -(6e -16) 0.5x 2 + a 1 3x(1 -x) 2 -3 (11 -4e) 0.5x 2 +a 2 3x 2 (1 -x) -3 (3e -8) 0.5x 2 + a 3 x 3 -(6 -2e) 0.5x 2 = x + 0.5x 2 + 0.166x 3 + 0.04x 4 + 0.008x 5 + 0.002x 6 . (5.33) Evaluating Eq.(5.33) for e = 2.71 and for x = 0.1, 0.2, 0.3, 0.4, we have:

• For x = 0.1, we have (5.34) 0.7277a 0 + 0.240a 1 + 0.025a 2 -0.002a 3 = 0.105.

• For x = 0.2, we have (5.35) 0.794a 0 + 0.355a 1 + 0.088a 2 -0.004a 3 = 0.221.

• For x = 0.3, we have

(5.36) 0.331a 0 + 0.419a 1 + 0.171a 2 -0.001a 3 = 0.349.

• For x = 0.4, we have

(5.37) 0.169a 0 + 0.393a 1 + 0.256a 2 + 0.017a 3 = 0.491.

From Eq.(5.34)-Eq.(5.37), we have the following nonhomogeneous linear system        0.7277a 0 + 0.240a 1 + 0.025a 2 -0.002a 3 = 0.105 0.794a 0 + 0.355a 1 + 0.088a 2 -0.004a 3 = 0.221 0.331a 0 + 0.419a 1 + 0.171a 2 -0.001a 3 = 0.349 0.169a 0 + 0.393a 1 + 0.256a 2 + 0.017a 3 = 0.491 whose solution is given by a 0 = -0.051, a 1 = 0.465, a 2 = 1.220 and a 3 = 0.278. Thus, the approximate solution of Eq.(5.6) when α = 1.0, becomes (5.38) w(x) = -0.051(1 -x) 3 + 0.465(3x)(1 -x) 2 + 1.220(3x 2 )(1 -x) + 0.278x 3 .

Table 1. Approximate Solution (AS)

x AS α = 0.3 AS α = 0.5 AS α = 0.9 AS α = 1.0 0. Note that the approximate solution is Eq.(5.6) in the case where α = 1.0, this is closer to the x axis than when it is noted for the other values of α. However, it is possible to notice an interesting behavior for the other α. First, it is possible to observe that when α = 0.3, the behavior of the curve respects the same behavior when comparing with α = 1.0 On the other hand, the same behavior happens when we compare α = 0.5 and α = 0.9. 

[ 7 ]

 7 Let α ∈ [0, 1), m ∈ N and f a function. If one of the following conditions is satisfied: (1) f ∈ L (a, b) and (m + 1) α ≥ 1.

  f (x) = I α;ψ a+ I mα;ψ a+ f (x) = I mα;ψ a+ I α;ψ a+ f (x) , ∀x ∈ [a, b] holds true.

Theorem 3 . 3 .

 33 [START_REF] Davis | Interpolation and approximation[END_REF] (Bernstein theorem) Let f be bounded on [0, 1]. Then, lim n→∞ B n (f ; x) = f (x) at any point x ∈ [0, 1] at which f is continuous. Moreover, if f ∈ C [0,1], then the limit holds uniformly in [0, 1].

  x) ∈ [0, 1] . Now some particular cases of the polynomials Eq.(3.26) are: (a) Choosing ψ (x) = x in Eq.(3.26), we have Eq.(3.24). (b) For ψ (x) = x ρ (ρ > 0), we have the following polynomials (3.28)

Proposition 3 . 5 .

 35 Let 0 < α ≤ 1 and ψ (x) be an increasing and positive monotone function on (a, b]. Then, the ψ-Riemann-Liouville fractional integral of B ψ i,N

  variable change ξ = ψ (s) -ψ (a) ψ (x) -ψ (a)in Eq.(3.29), and remember the binomial expansion (a + b) k b k , we have

Proposition 4 . 5 .

 45 Set α, β ∈ [0, 1] and m ∈ N -{0} . Let f be a function such that (1) H D α,β;ψ a+ f and H D α(m+1),β;ψ a+

  f (x) = C m (ψ (x) -ψ (a)) (m+1)α-1 Γ ((m + 1) α) ∀x ∈ (a, b],where C m = Γ (α) I 1-α;ψ a+ RL D αm;ψ a+ f (a+). (2) Taking the limit β → 1 on both sides of the Eq.(5.6), we have (Caputo)f (x) = C m (ψ (x) -ψ (a))mα Γ (mα -1) ∀x ∈ (a, b], where C m = Γ (α) C D αm;ψ a+ f (a+).

Theorem 4 . 7 .

 47 Set α, β ∈ [0, 1], n ∈ N. Let f be a continuous function in (a, b] satisfying the following conditions: (1) ∀j = 1, ..., n, H D αj ,β;ψ a+ f ∈C(a, b]) and H D αj ,β;ψ a+ f ∈I α;ψ a+ ([a, b]). (2) H D α(n+1),β;ψ a+ f is continuous on [a, b].

  ) with R n,ψ (ψ (x) , ψ (a)) H D α(n+1),β;ψ a+ f (ξ) (ψ (x) -ψ (a)) (n+1)α Γ ((n + 1) α + 1)and for each j ∈ N, 0 ≤ j ≤ n, C j = Γ (γ) I 1-γ;ψ a+ H D αj,β;ψ a+ f (a+).

  a) x=b there exists at least a point ξ ∈ [a, b] such that H D α,β;ψ a+ f (x) (ξ) = 0. Theorem 4.10. Let f (x) ∈ C n [a, b] and g (x) ∈ C n [a, b] such that H D α,β;ψ a+ f (x) ∈ C [a, b] and H D α,β;ψ a+ g (x) ∈ C [a, b]. Then, for any x ∈ (a, b], there exists at least a point ξ ∈ [a, x], such that

3 =xe t a 0 ( 1 -t) 3 dt + 1 0 1 0 1 0xe t a 3 t 3

 311113 t) and B 3,3 (t) (see (Eq.3)) in Eq.(5.9), we geta 0 (1 -x) 3 + a 1 3x(1 -x) 2 + a 2 3x 2 (1 -x) + a 3 x I α E α (x α ) + I α xe t a 1 3t(1 -t 2 )dt + xe t a 2 3t 2 (1 -t)dt +

(5.10) Rearranging Eq.(5.10), we havea 0 (1 -x) 3 + a 1 3x(1 -x) 2 + a 2 3x 2 (1 -x) + a 3 x 3 -a 0 (6e -16) Γ (2) Γ (2 + α) x 1+α -3a 1 (11 -4e) Γ (2) Γ (2 + α)x 1+α

.(5.13) Replacing Eq.(5.13) in Eq.(5.11), we havea 0 (1 -x) 3 + a 1 3x(1 -x) 2 + a 2 3x 2 (1 -x) + a 3 x 3 -a 0 (6e -16) Γ (2) Γ (2 + α) x 1+α -3a 1 (11 -4e) Γ (2) Γ (2 + α) x 1+α -a 3 (6 -2e) Γ (2) Γ (2 + α) x 1+α -a 2 3 (3e -8) Γ (2) Γ (2 + α) x 1+α = x α Γ (α + 1) + x 2α Γ (2α + 1) + x 3α Γ (3α + 1) + x 4α Γ (4α + 1) + x 5α Γ (5α + 1) + x 6α Γ (6α + 1) . (5.14)Thus, from Eq.(5.14), we conclude thata 0 (1 -x) 3 -(6e -16) 1 Γ (2 + α) x 1+α + a 1 3x(1 -x) 2 -3 (11 -4e) 1 Γ (2 + α) x 1+α +a 2 3x 2 (1 -x) -3 (3e -8) 1 Γ (2 + α)x 1+α + a 3 x 3 -(6 -2e) 1 Γ (2 + α)x 1+α

whose solution is given by a 0 = -1.671, a 1 = 5.467, a 2 = 5.405 and a 3 = 5.312.

Thus, the approximate solution of Eq.(5.6) when α = 0.3, becomes w(x) = -1.671(1 -x) 3 + 5.467(3x)(1 -x) 2 + 5.405(3x 2 )(1 -x) + 5.312x 3 .

Case 2: For α = 0.5, we obtain

= 1.128x 0.5 + x + 0.752x 1.5 + 0.5x 2 + 0.301x 2.5 + 0.166x 3 . (5.21)

Evaluating the Eq.(5.21) for e = 2.71 and for x = 0.1, 0.2, 0.3, 0.4, we have:

• For x = 0.1, we have

(5.22) 0.722a 0 + 0.231a 1 + 0.018a 2 -0.018a 3 = 0.487.

• For x = 0.2, we have

(5.23) 0.494a 0 + 0.351a 1 + 0.070a 2 -0.031a 3 = 0.800.

• For x = 0.3, we have (5.24) 0.310a 0 + 0.381a 1 + 0.140a 2 -0.045a 3 = 1.105.

• For x = 0.4, we have

From Eq.(5.22)-Eq.(5.25), we have the following nonhomogeneous linear system

whose solution is given by a 0 = 0.057, a 1 = 2.406, a 2 = 7.097 and a 3 = 18.28. Thus, the approximate solution of Eq.(5.6) when α = 0.3, becomes

(5.26) w(x) = 0.057(1 -x) 3 + 2.406(3x)(1 -x) 2 + 7.097(3x 2 )(1 -x) + 18.28x 3 .

Case 3: For α = 0.9, we have a 0 (1 -x) 3 -(6e -16) 0.547x 1.9 + a 1 3x(1 -x) 2 -3 (11 -4e) 0.547x 1.9 +a 2 3x 2 (1 -x) -3 (3e -8) 0.547x 1.9 + a 3 x 3 -(6 -2e) 0.547x 1.9 = 1.039x 0.9 + 0.596x 1.8 + 0.2397x 2.7 + 0.0747x 3.6 + 0.0191x 4.5 + 0.004x 5.4 . (5.27) Evaluating Eq.(5.27) for e = 2.71 and for x = 0.1, 0.2, 0.3, 0.4, we have:

• For x = 0.1, we have

(5.28) 0.115a 0 -0.187a 1 + 0.068a 2 + 0.469a 3 = 1.683.

• For x = 0.2, we have (5.29) 0.505a 0 + 0.371a 1 + 0.859a 2 -0.006a 3 = 0.280.

• For x = 0.3, we have (5.30) 0.328a 0 + 0.414a 1 + 0.167a 2 -0.005a 3 = 0.430.

• For x = 0.4, we have

(5.31) 0.191a 0 + 0.385a 1 + 0.250a 2 + 0.008a 3 = 0.592.

From Eq.(5.28)-Eq.(5.31), we have the following nonhomogeneous linear system        0.115a 0 -0.187a 1 + 0.068a 2 + 0.469a 3 = 1.683 0.505a 0 + 0.371a 1 + 0.859a 2 -0.006a 3 = 0.280 0.328a 0 + 0.414a 1 + 0.167a 2 -0.005a 3 = 0.430 0.191a 0 + 0.385a 1 + 0.250a 2 + 0.008a 3 = 0.592 whose solution is given by a 0 = -1.038, a 1 = 1.847, a 2 = 0.170 and a 3 = 4.555.
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