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Abstract

In this article a new family of preconditioners is introduced for symmetric positive definite
linear systems. The new preconditioners, called the AWG preconditioners (for Algebraic-
Woodbury-GenEO) are constructed algebraically. By this, we mean that only the knowledge
of the matrix A for which the linear system is being solved is required. Thanks to the
GenEO spectral coarse space technique, the condition number of the preconditioned operator
is bounded theoretically from above. This upper bound can be made smaller by enriching the
coarse space with more spectral modes.

The novelty is that, unlike in previous work on the GenEO coarse spaces, no knowledge of
a partially non-assembled form of A is required. Indeed, the spectral coarse space technique
is not applied directly to A but to a low-rank modification of A of which a suitable non-
assembled form is known by construction. The extra cost is a second (and to this day rather
expensive) coarse solve in the preconditioner. One of the AWG preconditioners has already
been presented in the short preprint [38]. This article is the first full presentation of the larger
family of AWG preconditioners. It includes proofs of the spectral bounds as well as numerical
illustrations.

Keywords: preconditioner, domain decomposition, coarse space, algebraic, linear system, Wood-
bury matrix identity
AMS classification: 65F10, 65N30, 65N55
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1 Introduction

Throughout this article we consider the problem of finding x∗ ∈ Rn that is the solution of the
following linear system

Ax∗ = b, where A ∈ Rn×n is symmetric positive and definite (spd), (1)

for a given right hand side b ∈ Rn.
The applications we have in mind are ones for which A is sparse and the number n of un-

knowns is very large. Hence, we study parallel solvers and more specifically preconditioners for the
preconditioned conjugate gradient (PCG) method [35][Section 9.2]. Our objective is to propose a
new preconditioner H for solving (1) in such a way that the condition number of HA is bounded
from above by a small enough constant chosen by the user. This guarantees that the PCG method
will converge in sufficiently few iterations [42][Lemma C.10]. Two-level domain decomposition pre-
conditioners already exist that satisfy such a nice property (specifically the spectral coarse space
methods described below). These methods, however, rely on the knowledge of some partially
unassembled form of matrix A. The additional challenge that we tackle in this work is that the
new preconditioner must rely only on the knowledge of the matrix A, and this is the meaning of
the word algebraic as it is in Algebraic Multigrid (AMG) [8, 34, 45].

Very generally speaking, domain decomposition methods partition the domain Ω in which the
solution is sought into smaller spaces Ωs, indexed by s ∈ J1, NK, and characterized by prolongation

matrices Rs> that satisfy
∑N
s=1 range(Rs>) = Ω. One-level domain decomposition preconditioners

then approximate A−1 by a sum (interpolated by the Rs>) of inverses of well-chosen problems
Ãs. Two-level domain decomposition methods have an additional space called the coarse space

(generated by the columns of a matrix R0>). A coarse problem Ã0 is solved in the coarse space.
As an example, an application of the two-level additive preconditioner to a vector x ∈ Rn takes
the form:

∑N
s=1 ys where

ys = Rs>(Ãs)−1Rsx and y0 = R0>(Ã0)−1R0x.

prolongation (by 0) to Ω
local solve

restriction to Ωs interpolation back into Ω
coarse solve

coarse interpolation

The notation in the previous line should seem completely natural to readers who have already
studied domain decomposition. The coarse contribution y0 is written separately to insist on the
fact that it plays a different role to the other ys. Usually, the coarse space is computed for a given
choice or the Rs and Ãs.

The choice of the coarse space is a very crucial topic in domain decomposition. Over the last
decade, the range of symmetric positive definite problems for which two-level domain decomposition
preconditioners can be made scalable and robust by a good choice of the coarse space has become
very large by the development of so-called spectral coarse spaces. The following list gives an
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overview of some of these contributions: [29, 30, 13, 15, 16, 14, 39, 40, 17, 1, 21] for Additive
Schwarz, [46] for Additive Average Schwarz, [41, 1] for BDD and FETI, [26, 24, 10, 23, 11, 32, 25, 47]
for BDDC and/or FETI-DP, [20] for Optimized Schwarz and [28] in the context of boundary
element methods.

In this article it is particularly referred to the GenEO coarse spaces [39, 40, 41] to which one of
the authors contributed. The abstract theory of coarse spaces of the GenEO family in [37] is applied
within the definition and analysis of the new Algebraic-Woodbury-GenEO (AWG) preconditioners.

The spectral coarse spaces mentioned above, and in particular the GenEO coarse spaces, are
computed by partially solving one or two generalized eigenvalue problems in each subdomain, then
selecting either the lowest or highest-frequency eigenvectors and prolongating them to the global
domain. To the best of the authors’ knowledge, all of the spectral coarse spaces for which there are
no assumptions on the shapes of subdomains and the distribution of material parameters require
the knowledge of a set of symmetric positive semi-definite (spsd) matrices Ns that satisfy

∃C > 0 such that

N∑
s=1

〈x,Rs>NsRsx〉 ≤ C〈x,Ax〉 ∀x ∈ Rn. (2)

The matrices Ns enter directly into the coarse space construction via the choice of matrix pencil
for the generalized eigenvalue problems. In other words they play an essential role.

For matrices arising from discretized PDEs the above assumption is far from unnatural and
the matrices Ns are not expensive to compute as long as it is known at assembly that they are
required. Indeed, as an example, if A arises from the finite element discretization (with basis
functions {φk}k=1,...,n) of the Laplace equation over some domain ω ⊂ R2 or 3, then the coefficients
in A are

∫
Ω
∇φi ·∇φj . Assuming that the degrees of freedom selected by the restriction matrix Rs

are those in some ωs ⊂ ω, Ns can be taken to be the matrix whose coefficients are
∫
ωs ∇φi · ∇φj

(for the basis functions φi and φj whose support intersects ωs). This is how condition (2) is
usually satisfied. These Ns are sometimes called the local Neumann matrices. Partial assembly
over subdomains is neither hard conceptually nor expensive computationally and the purpose of
this article is not to rule it out when it is possible. There are however many cases where only A is
known or available without writing many more lines of code. Then, the unassembled information
is simply lost and the GenEO coarse spaces can’t be computed. This is quite a common scenario:
the problem may have been assembled by another user or with another piece of software. In this
case only black box algorithms can be used.

Direct solvers, like MUMPS [3, 2], belong to the category of black box solvers and they are
the most efficient up to a certain problem size. In the field of domain decomposition, the authors
of [27] propose an algebraic preconditioner under the name DD-LR (for Domain Decomposition
based Low-Rank). The original matrix is rewritten in a particular form inspired by domain decom-
position. The inverse of A can then be expressed in terms of the components in that formulation
thanks to the Woodbury matrix identity. Finally a low rank approximation of one of the terms
is performed in order to get an approximation of A−1 that can serve as a preconditioner. Our
AWG preconditioners also exploit the Woodbury matrix identity but the modification of A that it
is applied to is entirely different. Also closely related to domain decomposition are the multigrid
algorithms, a very well-established set of solvers that solves the problem by iterating over the
original (fine) problem as well as coarser and coarser approximations of it. The original multigrid
algorithm [7, 9] is often referred to as geometric multigrid as it requires more information about
the problem than just the matrix A. Our objective with this algorithm is not unlike the objective
of Algebraic Multigrid (AMG) which is to make multigrid applicable in cases where less infor-
mation about the problem is accessible or some assumptions are not satisfied (see [8, 34] for the
original contributions or [45] for a unified presentation and theory of many multigrid algorithms).
Our ambition here is to propose an algorithm as easy to apply as are the Algebraic Multigrid
algorithms.
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In this article, a new preconditioner (with several variants) is proposed for the cases where A
is already assembled. It is a domain decomposition preconditioner with two coarse space. The
methodology is the following:

• The problem matrix A is split into symmetric, but possibly indefinite, matrices Bs as A =∑N
s=1 Rs>BsRs.

• The positive parts As
+ of the matrices Bs are computed and assembled to form a global

matrix A+ =
∑N
s=1 Rs>As

+Rs. By construction, a splitting of A+ into spsd matrices (i.e.,
a suitable partially unassembled form) of A+ is known. In other words, with Ns = As

+ and
C = 1, (2) is satisfied. Consequently, two-level preconditioners with GenEO coarse spaces
can be computed for A+ by applying the abstract theory in [37].

• Finally, the Woodbury matrix identity relates the inverses of A and of A+ and makes ap-
parent that a good preconditioner for A can be obtained by adding a second coarse space to
a GenEO preconditioner for A+.

Full theory for the condition number of the new preconditioned operators is given as well as
numerical illustrations. The outline of the remainder of this article is as follows. In Section 2,
some elements of the Abstract Schwarz theory [42] are recalled in their fully algebraic form. For
readers less familiar with domain decomposition, the general form of a one-level and a two-level
domain decomposition preconditioner is given. In Section 3, the new operator A+ is introduced
and four preconditioners with their GenEO coarse spaces are considered for A+. For each one,
the spectral bounds are given by applying a result from [37]. Then, in Section 4, A is viewed
as a modification of A+ and the Woodbury matrix identity is applied. This makes apparent
how to add a second coarse space to the preconditioners for A+ in order to get a preconditioner
for A that satisfies nice convergence bounds. Each of these new preconditioners is indexed by
one or two parameters (or thresholds) that can be adjusted to decrease the condition number
of the preconditioned operator by enriching the GenEO coarse space with more spectral modes.
Some comments are also made about the implementation of the new preconditioners. Finally,
Section 5 presents some numerical results with the objective of confirming the theoretical results
and illustrating the practical behaviour of the new AWG preconditioners.

2 Abstract Schwarz Framework in the Algebraic Setting

An algebraic version of the abstract Schwarz framework is introduced in this section. This means
that all the domain decomposition-type operators are written only in terms of vectors in Rn.

2.1 Subdomains

Let Ω = J1, nK be the set of all indices in Rn.

Definition 1 (Partition of Ω). A set (Ωs)s=1,...,N of N ∈ N subsets of Ω = J1, nK is called a
partition of Ω if

Ω =

N⋃
s=1

Ωs.

The partition is said to have at least minimal overlap if Assumption 1 is satisfied.

Assumption 1 (Minimal overlap). For any pair of indices (i, j) ∈ J1, nK2, denoting by Aij the
coefficient of A at the i-th line and j-th column,

Aij 6= 0⇒ (∃ s ∈ J1, NK such that {i, j} ⊂ Ωs) .
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The usual global-to-local restriction matrices are defined next.

Definition 2. For each s = 1, . . . , N , let ns be the cardinality of Ωs. Then, let Rs ∈ Rns×n be the
restriction matrix defined by: Rs is zero everywhere except for the block formed by the columns in
Ωs which is the ns × ns identity matrix.

By simply performing the multiplications it can be proved that

Rs>Rs is diagonal and that RsRs> = I (the identity matrix in Rn
s

).

2.2 Partition of unity, coloring constant

In the construction and analysis of the preconditioners, two more elements from the abstract
Schwarz theory are needed: the partition of unity matrices and the coloring constants.

Assumption 2 (Partition of unity matrices). Let {Ds ∈ Rns×ns

; s = 1, . . . , N} be a family of
matrices that satisfies

I =

N∑
s=1

Rs >DsRs, with I the n× n identity matrix. (3)

One way of fulfilling Assumption 2 is to choose the following partition of unity matrices.

Definition 3 (Possible choice of partition of unity Ds). First, let D ∈ Rn×n be the non-singular
diagonal matrix defined by

D :=

(
N∑
t=1

Rt>Rt

)−1

.

Then, for each s ∈ J1, NK, let Ds ∈ Rns×ns

be defined by

Ds := RsDRs>.

The matrices in the above definition satisfy Assumption 2 (see [37][Lemma 4]). Their coefficients
are the inverses of the multiplicity of each degree of freedom. Next, the coloring constant is defined
in agreement with [42][Section 2.5.1]. The dependency of the coloring constant on the matrix with
respect to which orthogonality is taken is written explicitly.

Definition 4 (Coloring constant). Let M ∈ Rn×n be a symmetric matrix. Let N (M) ∈ N be such
that there exists a set {Cj ; 1 ≤ j ≤ N (M)} of pairwise disjoint subsets of J1, NK satisfying

J1, NK =
⋃

1≤j≤N (M)

Cj and ∀j ∈ J1,N (M)K : {s, t} ⊂ Cj ⇒ (RsMRt> = 0 or s = t).

2.3 Abstract Schwarz preconditioners

One-level abstract Schwarz preconditioners are of the form:

H :=

N∑
s=1

Rs>Ãs †Rs. (4)

where for each s = 1, . . . , N , it is assumed that

Ãs ∈ Rn
s×ns

is an spsd matrix, and that Ãs † is the pseudo-inverse of Ãs.

Two-level domain decomposition preconditioners have two extra ingredients compared to the
one-level method that they are based on: a coarse space and a coarse solver. Let’s assume that
the coarse space is denoted by V 0 and that the interpolation operator R0 satisfies Assumption 3.
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Assumption 3. A basis for the coarse space V 0 is stored in the lines of a matrix denoted R0:

V 0 = range(R0>); R0 ∈ Rn
0×n; n0 = dim(V 0); n0 < n.

The most common choice for the coarse solver, and the one that we wish to introduce, is the
so called exact solver, where the word exact is with respect to the problem being solved. If the
matrix in the linear system is an spd matrix Ã then the matrix that is inverted during the coarse

solve is R0ÃR0>.
Even with the same Ãs and R0, there are still at least two two-level preconditioners with

exact coarse spaces: the two-level additive preconditioner (denoted by Had), and the hybrid pre-
conditioner (denoted by Hhyb and also called the deflated preconditioner). They are defined as
follows:

Had := H + R0>(R0ÃR0>)−1R0, (5)

and
Hhyb := ΠHΠ> + R0>(R0ÃR0>)−1R0;

where
Π := I−R0>(R0ÃR0>)−1R0Ã; I is the n× n identity matrix. (6)

The generic notation Ã has very deliberately been used in the previous equations instead of A.
Indeed, the two-level preconditioner in this article is a preconditioner for a new matrix that will
be denoted A+. The next section gives the definition of A+ and the choices of Ãsand V 0 that
make the characterization of an abstract two-level preconditioner for A+ complete.

3 A new matrix A+ and its two-level GenEO precondition-
ers

This section introduces a lot of the new operators and notation. Since it is not known how to
algebraically find local spsd matrices that satisfy (2), it is chosen to relax the assumption by
allowing the matrices to be indefinite. Precisely, in subsection 3.1 it is assumed that symmetric
matrices Bs are known such that A =

∑N
s=1 Rs>BsRs and one possible (algebraic) choice of

Bs is given. In Section 3.2, each Bs is in turn split into an spsd part and a symmetric negative
semi-definite part as Bs = As

+ − As
−. Finally, the spsd parts are assembled to form A+ =∑N

s=1 Rs>As
+Rs. The resulting matrix A+ is shown to be symmetric positive definite and, by

construction, it satisfies (2) with Ns = As
+ and C = 1. In other words, a very nice characteristic of

A+ is that the abstract GenEO theory applies to defining and analyzing two-level preconditioners
for A+. Four of these are considered in Section 3.4.

3.1 A splitting of A into symmetric matrices

The matrices Bs in the assumption below are the starting point for the new preconditioners.
To make the construction complete, an example of such matrices, is given below. It is (of course)
constructed algebraically and is the one used in our numerical computations. This choice is however
far from unique.

Assumption 4. Let’s assume that there exists a family of symmetric matrices Bs ∈ Rns×ns

for
s = 1, . . . , N such that

A =

N∑
s=1

Rs>BsRs.
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Such a family of matrices can always be chosen under Assumption 1 (minimal overlap). Indeed,
one possible choice is given in the next definition.

Definition 5 (Possible choice of matrice Bs). Let S(A) be the n × n boolean matrix that shares
the same sparsity pattern as A:

(S(A))ij :=

{
1 if Aij 6= 0
0 otherwise

for any i, j ∈ J1, nK.

Then let Mµ be the matrix that counts the number of subdomains that each pair of indices in
{{i, j}; Aij 6= 0} belongs to∗:

Mµ :=

N∑
s=1

Rs>RsS(A)Rs>Rs,

and let B be the Hadamard division of A by Mµ

Bij :=

{
Aij/Mµij if Aij 6= 0

0 otherwise
for any i, j ∈ J1, nK.

Finally, set Bs to be the block of B corresponding to degrees of freedom in Ωs:

Bs := RsBRs>.

Note that from the previous definition only the notation Bs will be reused further on in the
article. We next check that these matrices Bs are indeed suitable.

Theorem 1. Let A be an order n spd matrix, let (Ωs)s=1,...,N represent the partition into subdo-
mains and let (Rs)s=1,...,N be the set of restriction matrices from Definition 2. Under Assump-
tion 1, the matrices Bs from Definition 5 satisfy Assumption 4.

Proof. First, we justify the fact that Mµ counts the multiplicity of the pairs of degrees of freedom
{i, j} for which Aij 6= 0:

(Mµ)ij =

(
N∑
s=1

Rs>RsS(A)Rs>Rs

)
ij

=
∑

{s;{i,j}⊂Ωs}

(
Rs>RsS(A)Rs>Rs

)
ij

=
∑

{s;{i,j}⊂Ωs}

(S(A))ij

so, for any i, j ∈ J1, nK,

(Mµ)ij =

{
#{s; {i, j} ⊂ Ωs} if Aij 6= 0,
0 otherwise.

With a similar calculation, it can then be checked that the Bs form a splitting of A:(
N∑
s=1

Rs>BsRs

)
ij

=

(
N∑
s=1

Rs>RsBRs>Rs

)
ij

=
∑

{s;{i,j}⊂Ωs}

Bij

so, for any i, j ∈ J1, nK,(
N∑
s=1

Rs>BsRs

)
ij

=

{ ∑
{s;{i,j}⊂Ωs}

Aij/Mµij = Aij if Aij 6= 0,

0 = Aij otherwise.

It can be concluded that A =
∑N
s=1 Rs>BsRs.

∗This interpretation of Mµ is justified in the proof of Theorem 1
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Remark 1. Notice that, if the minimal overlap condition is not satisfied, then there exists a pair

of indices {i, j} for which Aij 6= 0 but {s; {i, j} ⊂ Ωs} = ∅. This leads to
(∑N

s=1 Rs>BsRs
)
ij

= 0

and shows that it is impossible that Assumption 4 be satisfied without the minimal overlap condition
(no matter how the matrices Bs are chosen).

3.2 Definition of A+

The first step in defining the very important matrix A+ is to split Bs into a positive part and a
negative semi-definite part.

Definition 6 (Splitting of Bs). Let Bs, for s ∈ J1, NK, be a family of matrices that satisfy
Assumption 4. For each s, let a diagonalization of Bs be written as

Bs = VsΛsVs>; with Vs orthogonal and Λsdiagonal.

Assume, without loss of generality, that the diagonal values of Λs (which are the eigenvalues of Bs)
are sorted in non-decreasing order. Let ns+ be the number of positive eigenvalues and ns− = ns−ns+
be the number of non-positive eigenvalues. Let Vs

− ∈ Rn
s×ns

− , Vs
+ ∈ Rn

s×ns
+ , Λs

− ∈ Rn
s
−×n

s
− ,

Λs
+ ∈ Rn

s
+×n

s
+ be the blocks of Vs and Λs that satisfy

Λs =

(
Λs
− 0

0 Λs
+

)
, Vs =

[
Vs
−|Vs

+

]
, Λs

+ is spd, −Λs
− is spsd.

Finally, define the two following matrices in Rns×ns

:

As
+ := Vs

+Λs
+Vs

+
> and As

− := −Vs
−Λs
−Vs
−
>.

It is clear that, for each s ∈ J1, NK, both matrices As
+ and As

− are spsd matrices and that
Bs = As

+−As
−. Next, global matrices are computed by assembling the local components with the

usual restriction and prolongation operators Rs and Rs>.

Definition 7 (New matrices A+ and A−). Let the global matrices A+ ∈ Rn×n and A− ∈ Rn×n
be defined by

A+ :=

N∑
s=1

Rs>As
+Rs, and A− :=

N∑
s=1

Rs>As
−Rs.

Theorem 2. The matrices A+ and A− from Definition 7 satisfy the following three properties

(i) A = A+ −A− ,

(ii) the matrix A− is symmetric positive semi-definite,

(iii) the matrix A+ is symmetric positive definite.

Proof. By definition, A+ =
∑N
s=1 Rs>Vs

+Λs
+Vs

+
>Rs and A− = −

∑N
s=1 Rs>Vs

−Λs
−Vs
−
>Rs

where the matrices Λs
+ (s ∈ J1, NK) are diagonal matrices with positive entries and the matri-

ces Λs
− (s ∈ J1, NK) are diagonal matrices with non-positive entries. Consequently, A+ and A−

are both spsd and item (ii) is proved. Moreover, by Definition 6 and Assumption 4, item (i) holds:

A+ −A− =

N∑
s=1

Rs>Vs
+Λs

+Vs
+
>Rs +

N∑
s=1

Rs>Vs
−Λs
−Vs
−
>Rs

=

N∑
s=1

Rs>BsRs

= A.
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Finally, it has already been argued that A+ is spsd so, to prove item (iii), it remains only to
confirm that the kernel of A+ is restricted to the zero vector. Let x ∈ Rn such that A+x = 0,

0 = 〈x,A+x〉 = 〈x,Ax〉+ 〈x,A−x〉 ≥ 〈x,Ax〉,

and this last term equals 0 only if x = 0 which ends the proof.

Remark 2. The zero eigenvalues of Bs are in Λs
−. Another possibility would be to put them into

Λs
+.

The previously defined matrix A+ is an spd matrix for which we have knowledge of spsd local
matrices Ns = As

+ that satisfy (2) with C = 1. This means that it fits right into the abstract
GenEO theory [37] and, hence, a variety of two-level preconditioners with guaranteed convergence
rates can be defined. First, the one-level preconditioners to which to apply GenEO are chosen
and then the GenEO coarse spaces are given. In terms of the two ingredients still missing in the
abstract two-level preconditioners from Section 2.3: the local solvers Ãs are defined in Section 3.3
and the coarse interpolation operators R0 are defined in Section 3.4.

3.3 One-level preconditioners for A+

In order to define a one-level preconditioner in our framework it remains only to choose the matrices
Ãs (i.e., the local solvers) in the abstract form (4). Three types of local solvers are introduced as
all three are natural choices for A+: the exact local solver (Ãs = RsA+Rs>), the matrix in the
spsd splitting with adequate weights (Ãs = Ds−1As

+Ds−1), and what would be the exact solver

if we were solving a problem with A since this is, after all, our endgame (Ãs = RsARs>).

Definition 8. Let three one-level preconditioners be defined by:

HAS
+ :=

N∑
s=1

Rs>(RsA+Rs>)−1Rs,

HAS :=

N∑
s=1

Rs>(RsARs>)−1Rs,

and

HNN :=

N∑
s=1

Rs>Ds(As
+)†DsRs =

N∑
s=1

Rs>DsVs
+(Λs

+)−1Vs
+
>DsRs,

where Ds are the partition of unity matrices from Definition 3.

It is recalled that, for s ∈ J1, NK, As
+, Vs

+, and Λs
+ were introduced in Definition 6, Ds in

Definition 3, and A+ in Definition 7.

Lemma 1. The one-level preconditioners HAS
+ , HAS and HNN from Definition 8 are spd.

Proof. The preconditioners HAS
+ and HAS are usual Additive Schwarz preconditioners for spd

matrices so they are spd. For the third preconditioner, it is obvious that HNN is spsd. Moreover,
let x ∈ Ker(HNN) then

0 = 〈x,HNNx〉 =

N∑
s=1

〈DsRsx,As
+
†DsRsx〉.

For this to hold, each term in the sum of non-negative terms must also be zero so:

for any s ∈ J1, NK : DsRsx ∈ Ker(As
+
†) = Ker(As

+).
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Let’s prolongate (As
+)DsRsx = 0 to the global domain with Rs>, sum over s and inject the

definition of Ds (Definition 3 in which D is diagonal) to obtain

0 =

N∑
s=1

Rs>As
+DsRsx =

N∑
s=1

Rs>As
+RsDRs>Rsx =

N∑
s=1

Rs>As
+RsDx = A+Dx.

Finally, the non singularity of A+ and of D allow to conclude that x = 0 which ends the proof.

Remark 3. For the proof of the non-singularity of HNN, the definition of the partition of unity
matrices Ds was used (Definition 3). A general proof does not go through for all partitions of unity
(i.e., if the Ds in Definition 8 are replaced by another family of matrices that satisfy Assumption 2).
However, it is not likely that the Ds could and would be chosen in a way that makes HNN singular.
In other words, this is a technical restriction and other choices of partition of unity matrices should
definitely be explored. All parts of the article that are not related to HNN are not concerned by this
technical restriction.

3.4 Two-level preconditioners for A+ with GenEO

Next, the GenEO coarse spaces that correspond to solving a linear system for A+ with each of the
one-level preconditioners are introduced. The corresponding spectral bounds for the preconditioned
operators are given. The proofs consist in giving the adequate references to [37]. The information is
organized with one theorem per choice of one-level preconditioner. First, some very useful notation
is chosen to designate a normalized basis of the high (or low) frequency eigenvectors with respect
to a certain matrix pencil and a certain threshold.

Definition 9. Let m ∈ N∗, let MA ∈ Rm×m be an spsd matrix, let MB ∈ Rm×m be an spd matrix.
Let (λk,yk)k=1,...,m be the (ordered and MB-normalized) eigenpairs of the generalized eigenproblem
associated with matrix pencil (MA,MB), i.e.,

λk ∈ R, yk ∈ Rm, 〈yk,MByk〉 = 1, λ1 ≤ λ2 ≤ · · · ≤ λm, and MAyk = λMByk.

For any scalar τ > 0, set mL := min {k ∈ J0,m− 1K;λk+1 ≥ τ} if λm ≥ τ , and mL := m
otherwise. Then define the two following matrices by concatenating eigenvectors

YL(τ,MA,MB) := [y1| . . . |ymL
], and YH(τ,MA,MB) := [ymL+1| . . . |ym].

The subscripts ∗L and ∗H refer to the words low and high depending on which end of the
spectrum is selected. The definition is in agreement with the definition in [37].

Remark 4. It is never necessary to fully solve the generalized eigenvalue problem MAyk =
λMByk. Instead, only the smallest, or the largest eigenvalues are required as well as the cor-
responding eigenvectors. This can be performed by an iterative method, many of which are imple-
mented in SLEPc [22]. A spectral transformation is performed within these iterative eigensolvers
to rewrite the generalized eigenvalue problem in a form that can be solved by a power iteration
method [18][Section 7.3]. To this end,

• the computation of YL(τ,MA,MB) requires to be able to solve linear systems with MA and
to multiply vectors by MB,

• the computation of YH(τ,MA,MB) requires to be able to solve linear systems with MB and
to multiply vectors by MA.
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Theorem 3 (Two-level preconditioners with GenEO for HAS
+ ). For any τ[ > 1, let V 0

AS,+(τ[) be
defined by

V 0
AS,+(τ[) :=

N∑
s=1

range(Rs>YL(τ−1
[ ,Ds−1As

+Ds−1,RsA+Rs>)),

and assume that a corresponding interpolation matrix R0
AS,+(τ[) is defined to satisfy Assumption 3.

Then, the coarse projector as well as the hybrid and additive preconditioners are defined naturally
as

ΠAS
+ (τ[) := I−R0

AS,+(τ[)
>(R0

AS,+(τ[)A+R0
AS,+(τ[)

>)−1R0
AS,+(τ[)A+,

HAS
+,hyb(τ[) := ΠAS

+ (τ[)H
AS
+ ΠAS

+ (τ[)
>

+ R0
AS,+(τ[)

>
(R0

AS,+(τ[)A+R0
AS,+(τ[)

>
)−1R0

AS,+(τ[),

HAS
+,ad(τ[) := HAS

+ + R0
AS,+(τ[)

>
(R0

AS,+(τ[)A+R0
AS,+(τ[)

>
)−1R0

AS,+(τ[).

The eigenvalues of the preconditioned operators are bounded as follows

1/τ[ ≤ λ(HAS
+,hyb(τ[)A+) ≤ N (A+)

1/((1 + 2N (A+))τ[) ≤ λ(HAS
+,ad(τ[)A+) ≤ N (A+) + 1,

where N (A+) is the coloring constant with respect to matrix A+ (see Definition 4).

Proof. This results from an application of [37][Corollary 3] (for the hybrid preconditioner) and
[37][Corollary 4] (for the additive preconditioner) under [37][Assumption 7]. The parameters are
N ′ = 1, Ms = Ds−1As

+Ds−1, Ãs = RsA+Rs> and the alternate formulation for the coarse space
given in [37][Definition 5].

Note that, if 0 < τ[ ≤ 1, there is also a spectral result which is slightly longer to state (it
involves min and max).

Theorem 4 (Two-level preconditioner with GenEO for HNN). For any 0 < τ] < 1, let V 0
NN(τ]) be

defined by

V 0
NN(τ]) :=

N∑
s=1

range(Rs>YL(τ],D
s−1As

+Ds−1,RsA+Rs>)),

and assume that a corresponding interpolation matrix R0
NN(τ]) is defined to satisfy Assumption 3.

Then, the coarse projector as well as the hybrid preconditioner are defined naturally as

ΠNN(τ]) := I−R0
NN(τ])

>(R0
NN(τ])A+R0

NN(τ])
>)−1R0

NN(τ])A+,

HNN
hyb(τ]) := ΠNN(τ])H

NNΠNN(τ])
>

+ R0
NN(τ])

>
(R0

NN(τ])A+R0
NN(τ])

>
)−1R0

NN(τ]).

The eigenvalues of the preconditioned operator are bounded as follows

1 ≤ λ(HNN
hyb(τ])A+) ≤ N (A+)/τ],

where N (A+) is the coloring constant with respect to matrix A+ (see Definition 4).

Proof. This results from an application of [37][Corollary 2] with N ′ = 1, τ[ → 1 (as in [37][Section
5.2.3]), Ãs = Ds−1As

+Ds−1 and RsA+Rs> as the exact local solver (because we are solving for
A+).

Note that, if τ] ≥ 1, there is also a spectral result which is slightly longer to state (it involves
min and max). There is no spectral result for the two-level additive preconditioner so it is not
considered in the theorem.
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Theorem 5 (Two-level preconditioner with GenEO for HAS). For any τ[ > 1 and 0 < τ] < 1, let
V 0

AS(τ], τ[) be defined by

V 0
AS(τ], τ[) :=

N∑
s=1

range(Rs>YL(τ−1
[ ,Ds−1As

+Ds−1,RsARs>))

+

N∑
s=1

range(Rs>YL(τ],R
sARs>,RsA+Rs>)),

and assume that a corresponding interpolation matrix R0
AS(τ], τ[) is defined to satisfy Assump-

tion 3. Then, the coarse projector as well as the hybrid preconditioner are defined naturally as

ΠAS(τ], τ[) := I−R0
AS(τ], τ[)

>(R0
AS(τ], τ[)A+R0

AS(τ], τ[)
>)−1R0

AS(τ], τ[)A+,

HAS
hyb(τ], τ[) := ΠAS(τ], τ[)H

ASΠAS(τ], τ[)
>

+ R0
AS(τ], τ[)

>
(R0

AS(τ], τ[)A+R0
AS(τ], τ[)

>
)−1R0

AS(τ], τ[).

The eigenvalues of the preconditioned operator are bounded as follows

1/τ[ ≤ λ(HAS
hyb(τ], τ[)A+) ≤ N (A+)/τ],

where N (A+) is the coloring constant with respect to matrix A+ (see Definition 4).

Proof. This results from [37][Corollary 2] with N ′ = 1, Ms = Ds−1As
+Ds−1, Ãs = RsARs>,

RsA+Rs> as the exact local solver (because we are solving for A+), and the alternate formulation
for the coarse space given in [37][Definition 5].

Note that, if 0 < τ[ ≤ 1, there is also a spectral result which is slightly longer to state (it
involves min and max). The choice τ] ≥ 1 would lead to having all the vectors in the coarse space
so this is excluded. There is no spectral result for the two-level additive preconditioner so it is not
considered in the theorem.

Remark 5. For all four considered choices of two-level preconditioner, it is easy to see that∑N
s=1 Rs>DsVs

− is included in the coarse space because Ker(Ds−1As
+Ds−1) = DsVs

−.

4 Algebraic Woodbury-GenEO (AWG) preconditioners for
A

In the previous section, four two-level preconditioners for A+ (indexed by the choice of one or two
thresholds) have been introduced with their spectral bounds: HAS

+,hyb(τ[), HAS
+,ad(τ[), HNN

hyb(τ]), and

HAS
hyb(τ], τ[). In this section, let H2 denote any one of them and let [λmin(H2A+), λmax(H2A+)]

be an interval that contains all eigenvalues of the preconditioned operator H2A+. The subscript
∗2 was chosen to refer to two-level preconditioners. We may now set aside the choice of a precon-
ditioner for A+ and come back to our original problem of finding a preconditioner for A.

4.1 Woodbury matrix identity for A = A+ −A−

The new preconditioner for A arises from the realization that A can be viewed as a low rank
modification of A+ and adding a term to H2 accordingly.

Theorem 6. The rank of A−, which we denote by n−, satisfies n− ≤
∑N
s=1 n

s − n.
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Proof. By definition of A+ and A−, it holds that

rank(A+) + rank(A−) ≤
N∑
s=1

ns,

and rank(A+) = n as A+ is non-singular.

With words, the rank of A− is at most the difference between the number of degrees of freedom
and the number of degrees of freedom multiplied by their multiplicity. If there is little overlap (while
still satisfying the minimal overlap condition) then the rank of A− is small compared to the rank
n of A (n− � n). In practice it is possible, and desirable that n− be much smaller even than∑N
s=1 n

s − n. Following this observation it is natural to write A as a modification of A+.
To this end, let’s introduce the factors in the diagonalization of A−.

Definition 10. Let Λ− ∈ Rn−×n− and V− ∈ Rn×n− be the diagonal matrix and the orthogonal
matrix that are obtained by removing the null part of A− from its diagonalization in such a way
that

A− = V−Λ−V>−.

Remark 6. The diagonalization of A− is not actually required in the numerical implementation
(see Section 4.4).

It now holds that A = A+ − V−Λ−V>− with A, A+, Λ− spd matrices and V− a full rank
matrix. The Woodbury matrix identity [44] applied to computing the inverse of A gives

A−1 = A−1
+ + A−1

+ V−
(
Λ−1
− −V>−A−1

+ V−
)−1

V>−A−1
+ . (7)

Remark 7. The Woodbury matrix identity is also called the Sherman-Morrison-Woodbury for-
mula (e.g., in [18][Section 2.1.4]). The formula is correct since A+ is non-singular and Λ−1

− −
V>−A−1

+ V− is also non-singular. Indeed, let y ∈ Rn− , and assume that (Λ−1
− −V>−A−1

+ V−)y = 0,
then

V−y = V−Λ−V>−A−1
+ V−y ⇔ V−y = A−A−1

+ V−y.

With z = A−1
+ V−y, it then holds that A+z = A−z which is equivalent to Az = 0 and in turn to

z = 0 and y = 0.

4.2 AWG preconditioner for A with inexact coarse space

The Woodbury matrix identity leads, rather straightforwardly, to a new preconditioner for the
original matrix A that is defined in the following theorem.

Theorem 7 (AWG preconditioner for A with inexact coarse space). Given a preconditioner H2

for A+ such that the eigenvalues of H2A+ are in the interval [λmin(H2A+), λmax(H2A+)]. Let
the inexact AWG preconditioner for A be defined as

H3,inex := H2 + A−1
+ V−

(
Λ−1
− −V>−A−1

+ V−
)−1

V>−A−1
+ .

The eigenvalues of the new preconditioned operator satisfy

min(1, λmin(H2A+)) ≤ λ(H3,inexA) ≤ max(1, λmax(H2A+)). (8)
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Proof. The estimate for the eigenvalues of H2A+ is equivalent to

λmin(H2A+)〈x,A−1
+ x〉 ≤ 〈x,H2x〉 ≤ λmax(H2A+)〈x,A−1

+ x〉, ∀x ∈ Rn.

Adding, 〈x,A−1
+ V−

(
D−1
− −V>−A−1

+ V−
)−1

V>−A−1
+ x〉 to each term, it holds that

min(1, λmin(H2A+))〈x,A−1x〉 ≤ 〈x,H3,inexx〉 ≤ max(1, λmax(H2A+))〈x,A−1x〉, ∀x ∈ Rn,

where the Woodbury matrix identity (7) was applied. This is equivalent to (8).

We have just introduced new preconditioners called the AWG preconditioners with an inexact
coarse space. The plural in the previous sentence comes from the fact that there are many possible
choices for H2 (including the four from Section 3) and that for each one there are parameters
that can be adjusted. These new preconditioners are purely algebraic and they have guaranteed
spectral bounds when applied to solving linear system Ax = b. The condition number of H3,inexA
can be made smaller by enriching the coarse space in H2. The name inexact comes from the fact
that H3,inexA has the form of a domain decomposition preconditioner with two coarse spaces, one

is in H2 and the other is in the term A−1
+ V−

(
Λ−1
− −V>−A−1

+ V−
)−1

V>−A−1
+ where the coarse

solve
(
Λ−1
− −V>−A−1

+ V−
)−1

is inexact. Next, two other AWG preconditioners are defined which
have an exact coarse spaces in the sense of the Abstract Schwarz theory: their coarse operator is

of the form R0AR0>.

4.3 Additive and hybrid AWG preconditioners for A

Solving a problem with the preconditioner introduced in the previous section requires it to be
computationally feasible to multiply by (A−1

+ V−) and its transpose. Looking at the Woodbury

identity, we realize (and prove it in the lemma below) that range
(
A−1

+ V−
)

= range
(
A−1V−

)
.

This opens up new possibilities: if it is possible to compute range
(
A−1V−

)
, it is also possible

to project A-orthogonally onto the space that is `2-orthogonal to range (V−) which is exactly
Ker(A−) (see Π3 in Definition 11 below). On that space, A|Ker(A−) = (A+)|Ker(A−) and we can
fall back onto a known and efficient preconditioner H2 for A+.

Lemma 2. With A+ from Definition 7 and V− from Definition 10, the following property holds

range
(
A−1

+ V−
)

= range
(
A−1V−

)
.

Proof. It follows from the Woodbury identity that

range(A−1V−) = range
(
A−1

+ V−(I +
(
Λ−1
− −V>−A−1

+ V−
)−1

V>−A−1
+ V−)

)
,

where I is the n− × n− identity matrix. Proving the result in the lemma comes down to proving

that the range of (I +
(
Λ−1
− −V>−A−1

+ V−
)−1

V>−A−1
+ V−) is the whole of Rn− or, equivalently,

that it’s kernel is restricted to 0 (the zero vector in Rn−). This last step is achieved as follows.
Let y ∈ Rn− , (

I +
(
Λ−1
− −V>−A−1

+ V−
)−1

V>−A−1
+ V−

)
y = 0

⇔
(
Λ−1
− −V>−A−1

+ V−
)
y = −V>−A−1

+ V−y

⇔Λ−1
− y = 0

⇔y = 0.
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Definition 11. Let W ∈ Rn×n− be such that range(W) = range(A−1
+ V−) and let

Π3 := I−W(W>AW)−1W>A.

Assume that H2 is a given preconditioner for A+ such that the eigenvalues of H2A+ are in the
interval [λmin(H2A+), λmax(H2A+)]. Let two new preconditioner for A be defined as

H3,ad := H2 + W(W>AW)−1W> (Additive AWG preconditioner),

and
H3,hyb := Π3H2Π

>
3 + W(W>AW)−1W> (Hybrid AWG preconditioner).

Theorem 8. Let Π3, H3,ad and H3,hyb be as in Definition 11. The operator Π3 is an A-orthogonal
projection operator that satisfies

Ker(Π3) = range
(
A−1V−

)
and range(Π3) = Ker (A−) . (9)

Moreover, the new preconditioned operators satisfy the spectral bounds :

λmin(H2A+) ≤ λ(H2AΠ3) ≤ λmax(H2A+) if λ(H2AΠ3) 6= 0, (10)

min(1, λmin(H2A+)) ≤ λ(H3,hybA) ≤ max(1, λmax(H2A+)), (11)

min(1, λmin(H2A+)) ≤ λ(H3,adA) ≤ (λmax(H2A+) + 1). (12)

where we recall that H2 can be chosen as one of the two-level preconditioners from Section 3.4
in such a way that λmin(H2A+) and λmax(H2A+) are known and controlled by the choice of the
coarse space.

Note that a bound for the projected and preconditioned operator (H2AΠ3) has also been
included in the theorem (equation (10)).

Proof. We begin by proving (9). Let x ∈ Rn, x is in the kernel of Π3 if:

Π3x = 0⇔ x = W(W>AW)−1W>Ax⇔ x ∈ range(W) = range(A−1
+ V−) = range(A−1V−).

The last equality comes from Lemma 2. Moreover, Π3 is an A-orthogonal projection so

range(Π3) = (Ker(Π3))
⊥A

=
(
range(A−1V−)

)⊥A

= (range(V−))
⊥`2

= Ker
(
V>−
)

= Ker (A−) ,

by definition of V− in Definition 10. A direct consequence of this result, that is frequently used
in the remainder of the proof, is the identity A+Π3 = AΠ3.

We now move onto proving the spectral bounds starting with (10) for the projected and precon-
ditioned operator H2AΠ3. Let (λ,y) ∈ R×Rn be an eigenpair of the matrix H2AΠ3(= H2A+Π3)
meaning that:

y 6= 0 and H2A+Π3y = λy.

Taking the inner product by A+Π3y gives

〈A+Π3y,H2A+Π3y〉 = λ〈A+Π3y,y〉 = λ〈AΠ3y,y〉 = λ〈AΠ3y,Π3y〉 = λ〈A+Π3y,Π3y〉.

Moreover, since A+ and H2 are spd, the spectral bound for H2A+ is equivalent to

λmin(H2A+)〈x,A+x〉 ≤ 〈x,A+H2A+x〉 ≤ λmax(H2A+)〈x,A+x〉, ∀x ∈ Rn. (13)

In particular, for x = Π3y we get

λmin(H2A+)〈Π3y,A+Π3y〉 ≤ 〈Π3y,A+H2A+Π3y〉︸ ︷︷ ︸
=λ〈A+Π3y,Π3y〉

≤ λmax(H2A+)〈Π3y,A+Π3y〉.
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Finally, there are two possibilities, either 〈A+Π3y,Π3y〉 = 0, so y ∈ Ker(Π3) and λ = 0, or
〈A+Π3y,Π3y〉 6= 0 and λ ∈ [λmin(H2A+), λmax(H2A+)]. In other words (10) holds.

Next, we prove the spectral bound with the hybrid preconditioner H3,hyb from (11). Let x ∈ Rn,
we add the term

〈x,AW(W>AW)−1W>Ax〉 = 〈x,A(I−Π3)x〉 = 〈(I−Π3)x,A(I−Π3)x〉

to estimate (13) evaluated at Π3x and obtain

λmin(H2A+)〈Π3x,AΠ3x〉+〈(I−Π3)x,A(I−Π3)x〉 ≤
〈Π3x,AH2AΠ3x〉+ 〈x,AW(W>AW)−1W>Ax〉 ≤

λmax(H2A+)〈Π3x,AΠ3x〉+ 〈(I−Π3)x,A(I−Π3)x〉

where A+Π3 = AΠ3 as also been applied. This then implies that

min(1, λmin(H2A+))〈x,Ax〉 ≤ 〈x,AH3,hybAx〉 ≤ max(1, λmax(H2A+))〈x,Ax〉.

and the eigenvalue estimate in the theorem holds because A and H3,hyb are spd.
Finally, we prove the spectral bound with the additive preconditioner H3,ad from (11). Matrices

A+ and H2 are both spd so the fact that all eigenvalues are not greater than λmax(H2A+) is
equivalent to

〈x,H2x〉 ≤ λmax(H2A+)〈x,A+
−1x〉, for any x ∈ Rn.

Moreover, 〈x,A+
−1x〉 ≤ 〈x,A−1x〉 for any x ∈ Rn so

〈x,H2x〉 ≤ λmax(H2A+)〈x,A−1x〉, for any x ∈ Rn.

It also holds that

〈x,AW(W>AW)−1W>Ax〉 = 〈(I−Π3)x,A(I−Π3)x〉 ≤ 〈x,Ax〉, for any x ∈ Rn,

or equivalently,
〈x,W(W>AW)−1W>x〉 ≤ 〈x,A−1x〉, for any x ∈ Rn.

Adding the last two results together gives us

〈x,H3,adx〉 ≤ (λmax(H2A+) + 1)〈x,A−1x〉, for any x ∈ Rn,

or in other words, all eigenvalues of H3,adA are not greater than (λmax(H2A+) + 1). For the
smallest eigenvalue of H3,adA, we can look at H3,ad in the abstract Schwarz framework. Indeed,

H3,ad = IH2I + W(W>AW)−1W>,

is an abstract Schwarz solver for 2 subspaces Rn and Rn− with prolongation operators I (identity
matrix in Rn) and W, and with local solvers H2 and (W>AW)−1. We know that H2 is spd so
the classical stable splitting result from Toselli Widlund [42] applies (or from [37]): all eigenvalues
of H3,adA are larger than C−2

0 if, for any x ∈ Rn, there exist z+ ∈ Rn and z− ∈ Rn− that satisfy

z+ + Wz− = x and 〈z+,H
−1
2 z+〉+ 〈z−,W>AWz−〉 ≤ C2

0 〈x,Ax〉.

The following splitting is proposed: z+ = Π3x and z− = (W>AW)−1W>Ax. We first check
that they do split x :

z+ + Wz− = (I−Π3)x + W(W>AW)−1W>Ax = x.
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We then check the stability of the splitting:

〈z+,H
−1
2 z+〉+ 〈z−,W>AWz−〉 = 〈Π3x,H

−1
2 Π3x〉+ 〈(W>AW)−1W>Ax,W>AW(W>AW)−1W>Ax〉

≤ (λmin(H2A+))−1〈Π3x,A+Π3x〉+ 〈(I−Π3)x,A(I−Π3)x〉
≤ (λmin(H2A+))−1〈Π3x,AΠ3x〉+ 〈(I−Π3)x,A(I−Π3)x〉
≤ max(1, λmin(H2A+)−1)〈x,Ax〉.

Finally, we have proved that all eigenvalues of H3,ad are greater than or equal to min(1, λmin(H2A+)).

Again, the AWG preconditioners H3,ad and H3,hyb are families of preconditioners that are
computed algebraically and lead to guaranteed spectral bounds when applied to solving Ax = b.
The condition numbers can be made smaller by enriching the coarse space in H2.

4.4 Remarks on the implementation of the AWG preconditioners

Below, some important remarks are made about the implementation of H3,ad and H3,hyb.

1. It is not necessary to diagonalize A− as suggested by the definition of V− in Definition 10.
Indeed, Definition 11 requires only a basis W of range(A−1

+ V−) to generate the second
coarse space. A natural choice is to recall that V− is generated by the eigenvectors of Bs

that correspond to negative eigenvalues (once prolongated to Ω by Rs>). If the matrices Bs

are non-singular then the range of (A−1
+ V−) is also generated by

W = A−1
+ [R1>V1

− | . . . |RN>VN
− ],

with the Vs
− from Definition 6. If the Bs are singular, it is necessary to first remove the

columns in Vs
− that correspond to zero eigenvalues. It may also be necessary (although we

haven’t observed it in practice) to remove some linear dependencies between the columns.
This is rather standard and can be done either when computing W or when factorizing the
coarse problem W>AW.

2. The computation of W is one of the bottlenecks of the algorithm: many systems must
be solved for the global matrix A+. In our current implementation these linear systems are
solved one after the other with PCG preconditioned by H2. Since H2 is a good preconditioner
for A+ this takes few iterations. It must be explored whether computational efficiency could
be improved with block CG methods [31] or adaptive multipreconditioning [36].

3. Following Remark 4, all four choices of preconditioners H2 for A+ that are considered in the
article require that the action of (As

+)† be implemented in order to compute the corresponding
GenEO coarse space. Instead of computing the full diagonalization of Bs, it is sufficient to
compute its negative eigenvalues and corresponding orthonormalized set of eigenvectors (i.e.,
Λs
− and Vs

− from Definition 6) and to recall that

As
+ = (I−Vs

−Vs
−
>)Bs(I−Vs

−Vs
−
>)

which also implies that

As
+
† = (I−Vs

−Vs
−
>)Bs†(I−Vs

−Vs
−
>).

Since Bs is symmetric, it can be factorized using MUMPS [3, 2].
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4. Following Remark 4, all four choices of preconditioners H2 for A+ that are considered in
the article require that the action of RsA+Rs> be implemented in order to compute the
corresponding GenEO coarse space. As RsA+Rs> is a dense matrix, it is never assembled.
Instead, the action of RsA+Rs> is computed as

RsA+Rs> = RsARs> + RsA−Rs> = RsARs> −
N∑
t=1

RsRt>Vt
−Λt
−Vt
−
>

RtRs>,

where again Λt
− and Vt

− are the ones from Definition 6. In the sum, all terms for which

RtRs> is zero are zero.

5. If HAS
+ :=

∑N
s=1 Rs>(RsA+Rs>)−1Rs is chosen as a one-level preconditioner for A+ then it

is necessary to compute the action of (RsA+Rs>)−1. This is done by applying the Woodbury
matrix identity to the formula just above.

5 Numerical Results

In this section, numerical results are presented for the new AWG preconditioners with exact coarse
spaces: H3,ad and H3,hyb. The theoretical convergence bounds are checked, and the behaviour
of the new preconditioners is illustrated for the first time. Some comparisons to non-algebraic
domain decomposition preconditioners with more standard GenEO coarse spaces are performed.
The linear systems that are considered result from discretizing a two-dimensional linear elasticity
problem with Q1 finite elements. All details are given below.

Remark 8. The AWG preconditioner with inexact coarse space has not been included into the
numerical study but some numerical results can be found in [38]. The behaviour of H3,inex is not
expected to differ much from the behaviour of H3,ad and H3,hyb. In particular they all share the
same coarse spaces and have very similar convergence bounds (or exactly the same in the case of
H3,hyb). In the future, when CPU time is considered, H3,inex should be included in the comparison.

All the results presented were obtained with petsc4py [12], a Python port to the PETSc libraries
[5, 4, 6]. The eigensolves are performed by SLEPc [22] and the matrix factorizations (for the local
and coarse problems) are performed by MUMPS [3, 2]. Our code is available on Github [19].

Let ω = [0, 3] × [0, 3] ⊂ R2 be the computational domain. Let ∂ωD be the left hand side
boundary of ω and let V = {v ∈ H1(ω)2; v = 0 on ∂ωD}. A solution u ∈ V is sought such that∫

ω

2µε(u) : ε(v) dx+

∫
ω

Ldiv(u) div(v) dx =

∫
ω

g · v dx, for all v ∈ V, (14)

where, for i, j = 1, 2, εij(u) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, δij is the Kronecker symbol, g = (0,−9.81)> and

the Lamé coefficients are functions of Young’s modulus E and Poisson’s ratio ν : µ = E
2(1+ν) , L =

Eν
(1+ν)(1−2ν) . It is well known (see, e.g., [33]) that the solution of (14) in a heterogeneous medium

is challenging due to ill-conditioning. Unless otherwise specified, the coefficient distribution that
is considered is the following: for any (x, y) ∈ ω,

ν(x, y) = 0.3 and E(x, y) =

{
1011 if (floor(y)− y) ∈ [1/7, 2/7] ∪ [3/7, 4/7],
107 otherwise.

(15)

The computational domain is discretized by a uniform mesh with element size h = 1/21 so
there are

n = 8064 degrees of freedom (once removed the ones on ∂ωD).
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Figure 1: The computational domain ω has been displaced by 105 multiplied by the solution x∗.
The colors show the distribution of coefficients as defined in (15). Dark: E = E1 = 1011 - Light :
E = E2 = 107.

The boundary value problem is solved numerically with Q1 finite elements. Let Vh be the space
of Q1 finite elements that satisfy the Dirichlet boundary condition. Let {φk}nk=1 be a basis of Vh.
The linear system that is to be solved is

Find x∗ ∈ Rn such that Ax∗ = b,

with Aij =
∫
ω

[
2µε(φi) : ε(φj) + Ldiv(φi) div(φj)

]
dx and bi =

∫
ω

g · φi dx. The mesh, the
solution and the distribution of E are represented in Figure 1.

Unless otherwise specified, for each computation, the domain ω is split into

N = 9

unit square subdomains that overlap only at the interface and this in turn gives the partition of
the degrees of freedom into Ω1, . . . , Ω9. With Q1 finite elements, for the overlap to be restricted
to the shared subdomain boundaries is enough to ensure the minimal overlap condition. There
are 504 degrees of freedom that are shared by more than one subdomain. All linear systems, are
solved with PCG up to a relative residual tolerance of 10−10. The preconditioner is specified for
each test case.

The matrix A−1
+ V− is computed by solving n− linear systems for A−1

+ . This is also done with
PCG preconditioned by H2 up to a relative residual tolerance of 10−10 (unless specified otherwise).

Except in the next paragraph, the AWG preconditioner under study is

H3,ad with H2 = HNN
hyb(τ]) (from Definition 11 and Theorem 4).

Comparison of H3,ad and H3,hyb for all variants of H2 The test case is solved with the
eight AWG preconditioners (for fixed values of threshold). Specifically, there are two ways of
incorporating the second coarse space leading to H3,ad (additive) and H3,hyb (hybrid) as well as,
for each one, four choices for H2: HNN

hyb(τ]), HAS
hyb(τ], τ[), HAS

+,ad(τ[) and HAS
+,hyb(τ[). The thresholds
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κ It λmin λmax #V0 n−
New AWG preconditioners:
H3,ad with H2 = HNN

hyb(0.1) 9.09 26 1.0 9.1 57 48

H3,ad with H2 = HAS
hyb(0.1, 10) 12.2 26 0.33 4.0 57 48

H3,ad with H2 = HAS
+,hyb(10) 12.3 25 0.33 4.0 57 48

H3,ad with H2 = HAS
+,ad(10) 16.8 31 0.24 4.0 57 48

H3,hyb with H2 = HNN
hyb(0.1) 9.09 27 1.0 9.1 57 48

H3,hyb with H2 = HAS
hyb(0.1, 10) 12.1 25 0.33 4.0 57 48

H3,hyb with H2 = HAS
+,hyb(10) 12.2 25 0.33 4.0 57 48

H3,hyb with H2 = HAS
+,ad(10) 16.7 29 0.24 4.0 57 48

Non-algebraic methods:
Hybrid AS + GenEO (τ = 10) 26.5 43 0.15 4.0 55 0
Additive AS + GenEO (τ = 10) 50.0 58 0.080 4.0 55 0
BNN with GenEO (τ = 0.1) 11.1 29 1.0 11.1 55 0
One-level AS 34772 > 150 0.000115 4.0 0 0

Table 1: Comparison between all AWG preconditioners for fixed τ] and τ[. Data is also included
for classical GenEO and the one-level method. κ: condition number of preconditioned operator, It:
number of iterations, λmin: smallest eigenvalue of preconditioned operator, λmax: largest eigenvalue
of preconditioned operator, #V0: dimension of GenEO coarse space, n− = rank(A−): dimension
of second coarse space.

for selecting eigenvalues in the GenEO coarse spaces are set to τ[ = 10 and τ] = 0.1. The results
are shown in Table 1. As a matter of comparison, results with more classical (non-algebraic)
domain decomposition preconditioners with GenEO coarse spaces presented in [37][Section 5] are
also reported.

In all lines of the table that correspond to AWG, the quantity n− (size of the second coarse
space) is the same which is normal because the second coarse space depends only on A. The size
#V0 of the GenEO coarse space also appears to be the same for all choices of H2. For HNN

hyb(τ]),

HAS
hyb(τ], τ[), HAS

+,ad(τ[), the same eigenvalue problem is being solved so as long as τ] = τ−1
[ this

was expected. For the last choice H2 = HAS
hyb(τ], τ[), it is not entirely surprising that the size of

the coarse space is not too different as there are connections between the GenEO eigenproblems
but a small difference in size would not have surprised us either.

For all AWG preconditioners, the extreme eigenvalues of the preconditioned operators behave as
predicted. All AWG preconditioners reduce the condition number of the preconditioned operator
to a very small value below 20 with the result that convergence to 10−10 occurs in at most 31
iterations. The GenEO coarse spaces constructed by AWG are of almost the same size as the
classical (non algebraic) coarse spaces which is very satisfying. Of course the AWG preconditioners
bear the cost of the extra coarse space.

For H2 = HNN
hyb(τ]) the first 20 non-zero eigenvalues computed for the GenEO eigenproblem in

each subdomain are plotted in Figure 2. It appears that choosing larger values of τ] than 10−1 could
increase significantly the size of the coarse space without much improving the condition number
much as the eigenvalues are quite clustered. The eigenvectors that are selected for the coarse space
are plotted in Figure 3. Since the unknowns are displacements, they have been represented by
applying the deformation to the subdomain. The colors show the values of E. The influence of
the hard (darker colored) layers can be seen but it is not easy to make any conclusions about the
eigenvectors.
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Figure 2: For H2 = HNN
hyb(τ]): 20 smallest non-zero eigenvalues of the GenEO eigenproblem in

each subdomain

In all that follows we focus on the choice of preconditioner:

H3,ad with H2 = HNN
hyb(τ]).

With this choice of H2, the theory predicts that the smallest eigenvalue of the preconditioned
operator is larger than 1 and this bound is observed to be sharp in Table 1 (and more generally
throughout our numerical experiments). For this reason, we no longer report on the extreme
eigenvalues. Instead we only give values of the condition number κ.

Influence of the threshold τ] For this test we study the influence of τ]. When τ] increases,
more vectors are selected for the coarse space and the condition number bound decreases. AWG
is compared to classical Neumann Neumann GenEO (which is not algebraic). Figure 4 is a plot of
the condition number of the preconditioned operator versus the size of the GenEO coarse space.
Recall that GenEO has the disadvantage of not being algebraic but the AWG method has the
disadvantage of having a second coarse space (of size 48). For AWG, the size of the coarse space
cannot go below n− because the kernels of As

− are always selected. The study was performed by
running the simulations for τ] ∈ [0, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5]. Two values of Poisson’s ratio ν
are considered ν = 0.3 and ν = 0.4. For ν = 0.3 the AWG coarse space to achieve a condition
number of 10 is almost the same as with classical GenEO. When ν = 0.4 more vectors are required
for AWG.

Influence of Poisson’s ratio ν For this study, the value of ν varies between 0.2 and 0.49.
Young’s modulus is kept constant in the domain and equal to E = 1011. The threshold is τ] = 0.05
(so slightly smaller than previously). As shown in Table 2, increasing ν has quite a dramatic
effect on n− (even without going near the incompressible limit). This is rather disappointing. The
classical (non algebraic) GenEO does not suffer from this problem (away from the incompressible
limit ν → 0.5).
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Figure 3: For H2 = HNN
hyb(τ]): plot of the 9 vectors that are selected for the coarse space in the

central subdomain (s = 4) represented as deformations. The colors correspond to the two values
of E (darker color is harder material). The first eight vectors correspond to a zero eigenvalue in
the GenEO eigenproblem, i.e., to a negative eigenvalue λs− of Bs. The last vector corresponds to
the first non-zero eigenvalue (λs])8 in the GenEO eigenproblem.
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ν = 0.3 ν = 0.4

Figure 4: Condition number with respect to coarse space size for H3,ad with H2 = HNN
hyb(τ]) and

the comparable classical GenEO coarse space. τ] ∈ [0, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5]. Left: ν = 0.3.
Right: ν = 0.4.

AWG
ν κ It #V0 n−
0.20 19.7 33 21 12
0.30 20.3 32 29 19
0.35 18.6 32 47 25
0.40 25.8 39 98 70
0.45 27.1 29 115 110
0.49 16.8 25 362 357

Classical GenEO
ν κ It #V0 n−
0.20 17.2 33 21 0
0.30 17.6 36 21 0
0.35 19.1 37 21 0
0.40 20.1 39 24 0
0.45 33.7 46 28 0
0.49 34.9 51 94 0

Table 2: The influence of Poisson’s ratio ν is studied when E is constant and equal to 1011. The
threshold is τ] = 0.05. ν: Poisson’s ratio, κ: condition number of preconditioned operator, It:
number of iterations, #V0: dimension of GenEO coarse space, n− = rank(A−): dimension of
second coarse space. Recall that classical GenEO is not algebraic.



L. Gouarin and N. Spillane. Fully algebraic DD with adaptive spectral bounds 24

AWG
(E1, E2) κ It #V0 n−
(105, 1011) 10.8 22 95 75
(107, 1011) 10.8 23 95 75
(109, 1011) 10.4 24 94 73
(1011, 1011) 12.2 29 35 19
(1011, 109) 8.0 26 59 48
(1011, 107) 9.0 26 57 48
(1011, 105) 8.4 29 57 48

Classical GenEO
(E1, E2) κ It #V0 n−
(105, 1011) 8.6 23 90 0
(107, 1011) 8.6 26 87 0
(109, 1011) 8.5 25 85 0
(1011, 1011) 13.7 32 28 0
(1011, 109) 11.2 30 52 0
(1011, 107) 11.1 29 55 0
(1011, 105) 12.7 30 55 0

Table 3: The influence of E and of the jump between E1 and E2 is studied. (E1, E2): values
of Young’s modulus in the layers of coefficients, κ: condition number of preconditioned operator,
It: number of iterations, #V0: dimension of GenEO coarse space, n− = rank(A−): dimension of
second coarse space. Recall that classical GenEO is not algebraic.

Influence of E The threshold is set back to τ] = 0.1 and Poisson’s ratio to ν = 0.3 in all that
follows. This time, the values E1 and E2 of Young’s modulus in, respectively, the dark and light
parts of ω in Figure 1 are varied. The results are in Table 3. We observe that all AWG condition
numbers are between 8 and 12.2 so they are all very small and fast convergence is guaranteed. The
smallest coarse space size (both for the GenEO coarse space and the second coarse space) is for the
case where E is constant throughout ω. The cases where E1 > E2 (hard layers in softer material)
require smaller coarse spaces than the cases where E2 > E1 (soft layers in harder material). Finally,
the AWG coarse spaces are always larger than the (non algebraic) GenEO coarse spaces but not
significantly in five cases out of seven.

Influence of the accuracy of W The second coarse space for the AWG preconditioners is
computed by solving n− linear systems: A+\(Rs>vs−) for the vectors vs− that correspond to a
negative eigenvalue of Bs (s ∈ J1, NK). Until now, we have solved these with very high accuracy:
the relative residual tolerance rtol was set to 10−10. In this experiment we vary rtol. Table 4
shows how increasing rtol affects the condition number of A preconditioned by AWG. Two cases
have been studied with different Poisson’s ratios: ν = 0.3 and ν = 0.4. Up to rtol = 10−2 there
is no change compared to rtol = 10−10 and these intermediary results have not been reported in
the table. In fact, up to rtol = 0.5, the condition number is hardly degraded. It must be kept
in mind that this is a case with few subdomains and what we observe to be a small change in κ
could become more significant with more subdomains. Still, the conclusion is optimistic: the linear
solves with A+ do not need to be overly precise.

Varying number of harder layers This time it is the number of layers of the harder coefficient
that varies. The case with six layers is the usual one from (15) represented in Figure 1. The case
with nine layers is obtained by also setting E = 1011 if (floor(y) − y) ∈ [5/7, 6/7]. The case with
three layers is obtained by setting E = 1011 only if (floor(y)−y) ∈ [1/7, 2/7]. Two additional cases
with homogeneous hard and soft material are also considered. The results are shown in table 5.

We first observe that distributions of E with more discontinuities require more coarse vectors.
The AWG coarse space is always larger than the (non algebraic) classical GenEO coarse space but
not significantly. We also check that homogeneous distributions of E have the same behaviour for
different values of E and this is expected because A and b are linear in E.

Long domain with layers of coefficients This test case (represented in Figure 5) is often
studied in domain decomposition articles and presentations. Its drawback is that it doesn’t have
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ν = 0.3
rtol κ It #V0 n−
10−10 9.0 26 57 48
10−2 9.0 27 57 48
0.05 11.1 31 57 48
0.1 12.2 32 57 48
0.5 400.8 40 57 48
0.9 706.8 64 57 48

ν = 0.4
rtol κ It #V0 n−
10−10 9.4 29 100 74
10−2 9.4 30 100 74
0.05 12.0 33 100 74
0.1 17.4 36 100 74
0.5 1563.3 88 100 74
0.9 2142.1 100 100 74

Table 4: Influence of the accuracy of rtol up to which the linear systems with A+ preconditioned
by H2 are solved during the setup of the second coarse basis W. rtol: tolerance, κ: condition
number of preconditioned operator, It: number of iterations, #V0: dimension of GenEO coarse
space, n− = rank(A−): dimension of second coarse space. Recall that classical GenEO is not
algebraic.

AWG
E κ It #V0 n−
E = 1011 12.2 29 35 19
9 layers 4.9 17 72 72
6 layers 9.0 26 57 48
3 layers 9.8 29 43 25
E = 107 12.2 29 35 19

Classical GenEO
E κ It #V0 n−
E = 1011 13.7 32 28 0
9 layers 4.8 20 69 0
6 layers 11.1 29 55 0
3 layer 9.9 31 35 0
E = 107 13.7 32 28 0

Table 5: The number of layers of the harder coefficient varies. Two cases with homogeneous E are
also considered. κ: condition number of preconditioned operator, It: number of iterations, #V0:
dimension of GenEO coarse space, n− = rank(A−): dimension of second coarse space. Recall that
classical GenEO is not algebraic.

Figure 5: The computational domain ω has been displaced by 105 multiplied by the solution x∗.
The colors show the distribution of coefficients. Dark: E = E1 = 1011 - Light : E = E2 = 107.
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AWG
N κ It #V0 n−
2 12.6 15 8 8
4 9.8 16 26 20
8 9.0 15 62 44
15 8.8 15 125 86
29 8.7 17 251 170

Classical GenEO
N κ It #V0 n−
2 9.5 15 7 0
4 11.9 19 19 0
8 12.6 23 43 0
15 12.8 27 85 0
29 12.8 28 169 0

Table 6: The number N of subdomains increases, the problem size is proportional to the number
of subdomains. Weak scalable behaviour would be for the number of iterations to remain constant
and this is what is observed. N : number of subdomains, κ: condition number of preconditioned
operator, It: number of iterations, #V0: dimension of GenEO coarse space, n− = rank(A−):
dimension of second coarse space. Recall that classical GenEO is not algebraic.

any crosspoints (degrees of freedom that belong to more than two subdomains) but all simulations
up until now had crosspoints and they don’t appear to be an issue for AWG preconditioners. In
this paragraph, weak scalability is studied. The parameters in the test case are:

• N ∈ {2; 4; 8; 15; 29} (number of unit-square subdomains),

• ω = [N, 1] (computational domain parametrized by number of subdomains),

• h = 1/14 (mesh size),

• ν = 0.3 (Poisson’s ratio),

• E =

{
E1 = 1011 if y ∈ [1/7; 2/7] ∪ [3/7; 4/7],
E2 = 107 otherwise,

(Young’s modulus),

• H3,ad with H2 = HNN
hyb(0.1) (preconditioner),

• rtol = 10−10 (relative residual tolerance for the linear solves with A+ and the linear solve
with A).

The results are shown in Table 6. As predicted theoretically, with the AWG preconditioner the
condition number hardly increases with the number of subdomains and this points towards weak
scalability. For all values of N , the subdomains are identical (with a difference between ones that
are at the edge of ω and others) so the coarse space grows almost linearly with the number of
subdomains. This can be viewed as a first weak scalability result.

6 Conclusion

In this article new preconditioners called AWG for Algebraic Woodbury-GenEO have been intro-
duced. Combined with PCG, they are algebraic domain decomposition methods with two coarse
spaces. Convergence in a small number of iterations can be guaranteed by adjusting some user
chosen thresholds and enriching one of the coarse spaces accordingly. Numerical results have been
presented as a proof of concept and to illustrate the behaviour of the AWG preconditioners on some
simple test cases. Further numerical simulations must be performed to assess the overall efficiency
of the AWG preconditioners. Some possible improvements of the AWG preconditioners are still
under investigation. This includes decreasing the size n− of the second coarse space by proposing
other choices of Bs, finding sparser approximations for the second coarse space and coarse solve,
and perhaps, injecting some information into the preconditioner like the near kernel of A in a way
inspired by smoothed aggregation multigrid [43].
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