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Asymptotic behavior of a class of multiple time scales stochastic kinetic equations

We consider a class of stochastic kinetic equations, depending on two time scale separation parameters ε and δ: the evolution equation contains singular terms with respect to ε, and is driven by a fast ergodic process which evolves at the time scale t{δ 2 . We prove that when pε, δq Ñ p0, 0q the density converges to the solution of a linear diffusion PDE. This is a mixture of diffusion approximation in the PDE sense (with respect to the parameter ε) and of averaging in the probabilistic sense (with respect to the parameter δ). The proof employs stopping times arguments and a suitable perturbed test functions approach which is adapted to consider the general regime ε ‰ δ.

Introduction

Multiscale and/or stochastic models are popular in all fields of science and engineering. In this paper, we consider a stochastic kinetic partial differential equation of the type

B t f ε,δ `1 ε apvq ¨∇x f ε,δ `bpvq ¨∇x f ε,δ `σpm δ pt, xqqf ε,δ " 1 ε 2 Lf ε,δ , (1) 
with initial condition f ε,δ p0q " f ε,δ 0 . The unknow f ε,δ is a function of time t ě 0, position x P T d (the flat d-dimensional torus) and velocity v P V . Assumptions on the velocity fields a and b and on the mapping σ are given below (see Section 2). Note that f ε,δ pt, x, vq may be interpreted as a density of particles with position x and velocity v at time t; the system is not conservative (the integral of f ε,δ is not constant) due to the source term σpm δ qf ε,δ . In addition, the linear operator L describes interactions between the particles: in this paper, we assume that L is the Bhatnagar-Gross-Krook operator, given by Lf " ρM ´f, where µ is a σ-finite measure on V , the spatial density is defined by ρ . " f . " ş V f dµ, and where M P L 1 pV, dµq is a density function, often called the Maxwellian (see Assumption 1).

The evolution equation (1) depends on the so-called driving process m δ , defined as follows: one has m δ pt, xq " mpt{δ 2 , xq.
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The stochastic evolution equation (1) depends on two parameters ε and δ. In this paper, we are interested in the asymptotic behavior when pε, δq Ñ p0, 0q. We prove the following result: ρ ε,δ " f ε,δ converges to the solution ρ of the following partial differential equation:

B t ρ `J ¨∇ρ `σ ρ " divpK∇ρq, (2) 
where J, σ and K are defined below, with initial condition ρp0q " ρ 0 " lim ρ ε,δ p0q. We refer to the main results of this paper, Theorems 3.2 and 3.3 for rigorous statements, in particular concerning the mode of convergence. Let us describe how the form of the limit equation (2) arises in the asymptotic regime.

On the one hand, the parameter ε drives the behavior of the deterministic part of the evolution. Under appropriate assumptions (including a centering condition for the velocity field a), the spatial density ρ ε,δ " f ε,δ converges when ε Ñ 0 to the solution of a diffusion partial differential equation, where the velocity variable v has been eliminated. In the literature, such convergence results are referred to as diffusion approximation results, see for instance [START_REF] Degond | Diffusion limit for nonhomogeneous and non-micro-reversible processes[END_REF]. The result is also partly an averaging result, since the term bpvq ¨∇x is replaced in the limit equation by J ¨∇x , where J is the average of b (with respect to an appropriate measure).

On the other hand, the parameter δ is a time-scale separation parameter which determines the random part of the evolution. When the process m such that m δ pt, xq " mpt{δ 2 , xq is assumed to be ergodic (see Section 2, for instance one may consider an Ornstein-Uhlenbeck process), the randomness may be eliminated when δ Ñ 0: only the average σ of σpmq with respect to the invariant distribution remains in the limit evolution equation (it is a law of large numbers effect). In the literature, such convergence results are referred to as averaging principle results.

In this paper, we thus prove the mixture of an diffusion approximation result in the PDE sense, and of an averaging principle result in the probability sense, when simultaneously ε Ñ 0 and δ Ñ 0. To the best of our knowledge, this regime has not been considered in the literature so far. Note that one of the major tasks in the analysis is to consider the general case when ε and δ go to 0 independently. Indeed, the analysis would be simpler if ε " δ. Note also that it would be simpler if ε " 0 and δ Ñ 0, or if ε Ñ 0 and δ " 0, i.e. if the limits are taken successively. The latter case is not included in the analysis but may be handled with similar techniques. The limit equation (2) is the same in all regimes.

For deterministic problems (σ " 0), diffusion approximation results have been extensively studied. We refer for instance to [START_REF] Larsen | Asymptotic solution of neutron transport problems for small mean free paths[END_REF][START_REF] Bensoussan | Boundary layers and homogenization of transport processes[END_REF]. Kinetic models with small parameters appear in various situations, for example when studying semi-conductors [START_REF] Golse | Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac[END_REF] and discrete velocity models [START_REF] Lions | Diffusive limit for finite velocity Boltzmann kinetic models[END_REF], or as limits for description of systems of particles, either with a single particle [START_REF] Goudon | Stochastic acceleration in an inhomogeneous time random force field[END_REF] or multiple particles [START_REF] Poupaud | Classical and quantum transport in random media[END_REF]. The asymptotic behavior of stochastic kinetic multiscale problems have also been recently studied: we refer to the seminal article [START_REF] Debussche | Diffusion limit for a stochastic kinetic problem[END_REF], and the more recent contributions [DV20, DRV20, RR20]. In those works, the authors have obtained diffusion approximation results both in the PDE and the probabilistic senses: the limit equation is a stochastic linear diffusion PDE driven by a Wiener process (with Stratonovich interpretation). Indeed, in those works σpm δ q (with δ " ε) is replaced by m δ {δ in (1), and the authors assume that the driving process m δ satisfies an appropriate centering condition. In the present article, we consider a law of large numbers regime (hence the averaging principle result), instead of a central limit theorem regime. In spite of this fundamental difference, the setting is very close to [START_REF] Rakotonirina-Ricquebourg | Diffusion limit for a stochastic kinetic problem with unbounded driving process[END_REF]: in particular a major technical difficulty which is solved in this paper is to avoid boundedness assumptions on the driving process m, using only moment conditions, which allow us to encompass for instance Ornstein-Uhlenbeck processes.

The literature concerning the averaging principle for stochastic differential equations and stochastic partial differential equations is huge. The averaging principle in the SDE case has been introduced in the seminal reference [START_REF] Rafail | On the principle of averaging the Itô's stochastic differential equations[END_REF], see also the monograph [START_REF] Pavliotis | Multiscale methods[END_REF] and references therein. In the SPDE case, authors have mainly studied the averaging principle for parabolic semilinear SPDE systems, see for instance [Cer09, CF09, Bré12, Bré20, RXY20] and references therein. Let us also mention the recent preprints [START_REF] Cerrai | A smoluchowski-kramers approximation for an infinite dimensional system with state-dependent damping[END_REF][START_REF] Xie | Diffusion approximation for multi-scale stochastic reaction-diffusion equations[END_REF] where diffusion approximation results are proved for such systems. The list of references above is not exhaustive.

The first main result of this manuscript is Theorem 3.2: the convergence of ρ ε,δ " f ε,δ to ρ is understood as convergence in distribution (in the probabilistic sense), in the space C 0 pr0, T s, H ´ς pT d qq, for all arbitrarily small positive ς. Under an additional assumption (which allows us to employ an averaging lemma), the convergence holds in the space L 2 pr0, T s, L 2 pT d qq, see the second main result of this manuscript, Theorem 3.3. The functional spaces above are the standard spaces where convergence holds in the deterministic case. The convergence in distribution is the natural mode of the convergence for the probabilistic variable. However, since the limit equation ( 2) is deterministic, if the limit initial condition ρ 0 is also deterministic, then the convergence holds in probability.

Let us now describe the main tools for the proof of the main results of this manuscript. We follow a martingale problem approach combined with the perturbed test functions method, as in the classical article [START_REF] Papanicolaou | Martingale approach to some limit theorems[END_REF] (see also [START_REF] Harold | Approximation and weak convergence methods for random processes, with applications to stochastic systems theory[END_REF][START_REF] Stewart | Markov processes[END_REF][START_REF] Fouque | Wave propagation and time reversal in randomly layered media[END_REF][START_REF] Pavliotis | Multiscale methods[END_REF][START_REF] De | A diffusion approximation theorem for a nonlinear PDE with application to random birefringent optical fibers[END_REF]). Perturbed test functions in the context of PDEs with diffusive limits applies in various situations, for instance in the context of viscosity solutions [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF], nonlinear Schrödinger equations [START_REF] De | A diffusion approximation theorem for a nonlinear PDE with application to random birefringent optical fibers[END_REF], a parabolic PDE [START_REF] Pardoux | Homogenization of a nonlinear random parabolic partial differential equation[END_REF] or, as in this article, kinetic SPDEs [DV12, DV20, DRV20, RR20].

The idea of the perturbed test function is to identify the limit generator L of the limit equation (2) as

Lϕ " lim pε,δqÑp0,0q

L ε,δ ϕ ε,δ ,
where ϕ " ϕpρq is an arbitrary test function (depending only on the spatial density variable ρ " f appearing in the limit equation), and ϕ ε,δ " ϕ ε,δ pf, mq is the perturbed test function given by

ϕ ε,δ " ϕ `εϕ 1,0 `ε2 ϕ 2,0 `δ2 ϕ 0,2 `εδ 2 ϕ 1,2 .
We refer to Proposition 4.3 for a rigorous statement. Note that due to the assumption that in general ε ‰ δ, the construction of the perturbed test function requires to define the corrector ϕ 1,2 (corresponding to the term of the order εδ 2 ). This corrector does not appear in the analysis if ε " δ. The construction of ϕ 1,2 is one of the novelties of this manuscript.

In addition, like in the preprint [START_REF] Rakotonirina-Ricquebourg | Diffusion limit for a stochastic kinetic problem with unbounded driving process[END_REF], the driving process is not assumed to be bounded (like in [START_REF] Debussche | Diffusion limit for a stochastic kinetic problem[END_REF] for instance), and only moment conditions are satisfied. This generalization allows us for instance to consider Ornstein-Uhlenbeck processes. The introduction of stopping times arguments is required, hence the need to control the asymptotic behavior of the stopping times τ δ when δ Ñ 0. Note that we prove below that τ δ Ñ 8 in probability: the arguments to prove convergence are thus simpler than in [START_REF] Rakotonirina-Ricquebourg | Diffusion limit for a stochastic kinetic problem with unbounded driving process[END_REF].

The main result of this manuscript is the convergence of ρ ε,δ to ρ. In future works, it may be interesting to study the fluctuations, i.e. to prove that ρ ε,δ ´ρ, properly rescaled, converges in distribution to a Gaussian process, solution of a linear stochastic evolution equation. Again the use of the perturbed test functions approach may be a suitable approach. It would also be interesting to investigate rates of convergence, both in the strong and weak senses, in the spirit of [START_REF] Bréhier | Strong and weak orders in averaging for SPDEs[END_REF][START_REF] Bréhier | Orders of convergence in the averaging principle for SPDEs: The case of a stochastically forced slow component[END_REF] concerning parabolic systems, using Kolmogorov equations techniques. Finally, the validity of diffusion approximation and averaging principle results is fundamental for the efficient numerical simulation of the systems. In the deterministic setting, there has been a lot of activity to develop asymptotic preserving and uniformly accurate numerical methods, see for instance [START_REF] Shi | Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[END_REF][START_REF] Shi | Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review[END_REF]. An asymptotic preserving scheme has been proposed in [START_REF] Ayi | Analysis of an asymptotic preserving scheme for stochastic linear kinetic equations in the diffusion limit[END_REF] for a class of kinetic stochastic equations in the diffusion approximation regime. In a future work [START_REF] Bréhier | Asymptotic preserving schemes for stochastic kinetic equations in the diffusion approximation regime[END_REF],

we plan to investigate the generalization of the asymptotic preserving schemes introduced and analyzed in the recent preprint [START_REF] Bréhier | On asymptotic preserving schemes for a class of stochastic differential equations in averaging and diffusion approximation regimes[END_REF] for stochastic differential equations.

The manuscript is organized as follows. The setting is described in Section 2 (in particular precise assumptions concerning the driving process m are provided). The main results, Theorems 3.2 and 3.3, are stated and discussed in Section 3. Section 4 is devoted to the proofs of the main results, using martingale problem formulations, tightness arguments and identification of the limit. Auxiliary fundamental results are stated there: first, Proposition 4.1 concerning the asymptotic behavior of the stopping time; second, Proposition 4.2 providing an a priori estimate in an appropriate weighted L 2 norm, uniformly with respect to ε, δ; third, Proposition 4.3 giving the details on the perturbed test functions. The proofs of those three auxiliary results are given in Section 5. Note that these three results are essential, and their proofs are given in a separate section since they are the most original technical contributions of this manuscript (compared with the more standard strategy described in Section 4).

Setting

Notation

The solution f ε,δ of the stochastic kinetic problem considered in this article is a process f ε,δ : pt, x, vq P r0, 8q ˆTd ˆV Ñ R, where V is a measurable space, equipped with a σ-finite measure µ, and T d denotes the flat d-dimensional torus.

Let us introduce the standard Hilbert spaces L 2

x " L 2 pT d , Rq and L 2 " L 2 pT d ˆV, Rq of real-valued functions, with inner products defined as follows:

ph, kq L 2 x " ż T d hpxqkpxqdx, ph, kq L 2 " ż T d ˆV hpx, vqkpx, vqdxdµpvq.
The associated norms are denoted by }¨} L 2

x and }¨} L 2 respectively. The following notation is used in the sequel: for all f P L 1 pT d ˆV q, let ρ P L 1 pT d q be defined by

ρ . " f . " ż V f dµ.
In addition, for all T P p0, 8q, ς P p0, 1s, i P N 0 and p P r1, 8s, introduce the Banach spaces

C i x . " C i pT d , Rq, C 0 T H ´ς x . " C 0 pr0, T s, H ´ς pT d , Rqq and L p T L 2 x . " L p pr0, T s, L 2 pT d , Rqq.
Finally, the state space E of the driving stochastic process is assumed to be a Banach space, with norm denoted by }¨} E .

Assumptions on the coefficients

Let us now state the assumptions concerning the linear operator L and the mappings a, b and σ. Assumption 1.

1. Let the mapping M P L 1 pV, µq, be such that Mpvq ą 0 for all v P V , and normalized such that ş V Mpvqdµpvq " 1. 2. The linear operator L is defined as follows: for all f P L 1 pV, µq Lf " ρM ´f " f M ´f.

(3) The associated norm is denoted by }¨} L 2 pM ´1q . Observe that applying the Cauchy-Schwarz inequality yields the following results: for all f P L 2 pM ´1q, one has f P L 1 pT d ˆV q, ρ P L 2 x , and Lf P L 2 pM ´1q, with ij

T d ˆV |f px, vq|dµpvqdx ď }f } L 2 pM ´1 q }ρM} L 2 pM ´1q " }ρ} L 2 x ď }f } L 2 pM ´1 q . In addition, if f 1 P L 2 pM ´1q X L 2 and f 2 P L 2 pMq X L 2 , then |pf 1 , f 2 q L 2 | ď }f 1 } L 2 pM ´1q }f 2 } L 2 pMq
as a consequence of the Cauchy-Schwarz inequality.

Example 2.1. The conditions in Assumption 1 above are satisfied in the following two examples:

Continuous velocities

• The space V " R d is equipped with the Lebesgue measure dµpvq " dv.

• The function Mpvq " p2πq ´d{2 expp´}v} 2 {2q for all v P R d is the standard Maxwellian.

• The velocity a is a bounded odd function. For instance, relativistic particles satisfy apvq " v ? 1`}v} 2 in convenient units.

Discrete velocities

• The space V " t˘1u d is equipped with the counting measure.

• The function M is constant: Mpvq " 1 2d for all v P t˘1u d

• The velocity a is an odd function. For instance, the isotropic discrete velocity is given by apvq " v for all v P t˘1u d .

In both examples, the function σ is defined either as

• σp qpxq " σ 1 p pxqq for all P E " C td{2u`2 x
and x P T d , with a mapping σ 1 : R Ñ R,

• or as σp qpxq " σ 2 px, q for P E " R and x P T d , with a mapping σ 2 :

T d ˆR Ñ R,
where σ 1 , σ 2 are of class C td{2u`3 with bounded derivatives of all orders.

Assumptions on the driving process

The driving process is a Markov process, which satisfies the conditions below.

Assumption 2. The family pm ptqq PE defines a E-valued Markov process, where one has the initial condition m p0q " . Let L m denote its infinitesimal generator, with domain denoted by DpL m q.

We assume that this Markov process is ergodic, and that its unique invariant distribution, denoted by ν, is integrable: ş E } } dνp q ă 8. The following notation is used throughout the article: for all Lipschitz continuous mappings θ :

E Ñ R, set θ " ż E θp qdνp q.
Let 0 P E be a given initial condition, in the sequel the value of 0 is omitted to simplify notation: for all t ě 0, let mptq " m 0 ptq.

Assumption 2 is sufficient to state the main convergence results below. However, the analysis of the asymptotic behavior of f ε,δ when δ Ñ 0 requires additional technical assumptions. Since they are not needed to state the convergence results below, they may be skipped by the reader, until they are used to prove auxiliary results.

Assumption 3. The Markov process introduced in Assumption 2 satisfies the appropriate moment bounds: there exists γ P p2, 8q such that

sup iPN0 E « sup tPri,i`1s }mptq} γ E ff ă 8. (4) 
The assumption that γ ą 2 is crucial in the analysis. Observe that Assumption 3 implies the following results:

ż } } γ dνp q ă 8 sup tě0 E r}mptq} γ E s ă 8.
A mixing assumption is employed below to have quantitative information on the large time behavior of the driving process.

Assumption 4. The Markov process introduced in Assumption 2 satisfies a mixing property: there exists a nonnegative function γ mix P L 1 pR `q such that, for all initial conditions 1 , 2 P E, there exists a coupling pm ˚ 1 , m ˚ 2 q of pm 1 , m 2 q, satisfying the inequality

E "› › m ˚ 1 ptq ´m˚ 2 ptq › › E ‰ ď γ mix ptq } 1 ´ 2 } E for all t ě 0. Let us recall that a E ˆE-valued random process pm ˚ 1 , m ˚ 2 q is a coupling of pm 1 , m 2 q if the marginals safisty m ˚ 1 d " m 1 and m ˚ 2 d
" m 2 (where equality is understood in distribution). As a consequence of Assumption 4, it is straightforward to obtain the following result: if θ : E Ñ R is Lipschitz continuous, then for all P E and all t ě 0, one has ˇˇErθpm ptqqs ´θˇˇď maxp1,

ż E › › 1 › › E dνp 1 qqLippθqγ mix ptqp1 `} } E q,
where Lippθq denotes the Lipschitz constant of θ. Due to this consequence of the mixing property (Assumption 4), the resolvent operator R 0 introduced below is well-defined. 

´Lm ψ θ " θ ´θ, (5) 
satisfying the condition ψ θ " 0.

Note that the functions ψ θ satisfy the following bound: there exists C P p0, 8q, such that for all θ P E ˚pσq and for all P E, one has

|ψ θ p q| ď CLippθqp1 `} } E q, (6) 
The remaining assumption deals with the infinitesimal generator L m of the driving process.

Assumption 5. For all θ 1 , θ 2 P E ˚pσq, assume that ψ θ1 ψ θ2 is in the domain DpL m q of the generator L m of the driving process, and that L m pψ θ1 ψ θ2 q has at most polynomial growth:

sup PE |L m pψ θ1 ψ θ2 q p q| 1 `} } 2 E ă 8.
The assumptions above are satisfied if the driving process is a E-valued Ornstein-Uhlenbeck process, as explained below.

Example 2.2. Let pm ptqq PE be defined by

dm ,t " ´pm ,t ´mqdt `dW t , m ,0 " , ( 7 
)
where W is an E-valued Wiener process. It satisfies Assumption 2 since it is ergodic and its unique invariant distribution is a normal distribution, hence integrable. Moreover, we have

m ptq " e ´t `m `1 ´e´t ˘`ż t 0 e s´t dW s . ( 8 
)
Assumption 3 is satisfied for any γ P p2, 8q. The coupling pm ˚ 1 , m ˚ 2 q of Assumption 4 is obtained by driving both processes by the same Wiener process W . Indeed, (8) becomes m ˚ 1 ptq ´m˚ 2 ptq " p 1 ´ 2 qe ´t, and Assumption 4 is satisfied with γ mix ptq " e ´t. Finally, with the notation of Assumption 5, we have ψ θ p q " ż 8 0 pθp q ´θpmqq e ´tdt " θpmq ´θp q.

Since the infinitesimal generator is given by L m ϕp q " Dϕp q¨pm´ q`1 2 Tr `D2 ϕp q ˘, Assumption 5 is also satisfied.

Main result

Description of the model and of the limit problem

The multiscale stochastic problem considered in this article depends on two parameters ε and δ. Since the objective of this work is to prove a convergence result when pε, δq Ñ p0, 0q, without loss of generality it is assumed that ε P p0, ε 0 s and δ P p0, δ 0 s, where ε 0 , δ 0 are fixed -a precise condition is stated below. To simplify notation, we use the following convention: `Xε,δ ˘ε,δ stands for the family of random variables `Xε,δ ˘εPp0,ε0s,δPp0,δ0s .

First, for all δ P p0, δ 0 s, the fast driving process m δ is defined as follows: for all t ě 0, set

m δ ptq " mpt{δ 2 q, ( 9 
)
where m is the driving process given by Assumption 2, with the initial condition m δ p0q " mp0q " 0 , which is assumed to be independent of δ.

We study the asymptotic behavior when pε, δq Ñ p0, 0q of the solution f ε,δ of the following stochastic kinetic problem

B t f ε,δ `´1 ε apvq `bpvq ¯¨∇ x f ε,δ `σpm δ qf ε,δ " 1 ε 2 Lf ε,δ . ( 10 
)
with initial condition f ε,δ p0q " f ε,δ 0 . For any fixed ε P p0, ε 0 s, δ P p0, δ 0 s, the problem (10) is globally well-posed in the following sense.

Proposition 3.1. Introduce the linear operator

A ε " ε ´1A `B, with domain DpA ε q . " f P L 2 pM ´1q | px, vq Þ Ñ `ε´1 apvq `bpvq ˘¨∇ x f px, vq P L 2 pM ´1q
( , for all ε P p0, ε 0 s. Let T P p0, 8q, ε P p0, ε 0 s and δ P p0, δ 0 s. For any f ε,δ 0 P L 2 pM ´1q, there exists, almost surely, a unique mild solution f ε,δ of (10) in C 0 pr0, T s; L 2 pM ´1qq, in the sense that, almost surely, for all t P r0, T s, one has

f ε,δ ptq " e ´tA ε f ε,δ 0 `ż t 0 e ´pt´sqA ε ˆ1 ε 2 Lf ε,δ psq ´σpm δ psqqf ε,δ psq ˙ds.
The proof of Proposition 3.1 is based on a standard fixed point argument, combined with the following observation:

sup tPr0,T s › › m δ ptq › › E ď sup iďT δ ´2`1 sup tPri,i`1s }mptq} E ă 8
owing to Assumption 3 on the moments of the driving process m. The proof of Proposition 3.1 is thus omitted.

Note that the statement of Proposition 3.1 is given for fixed ε ą 0 and δ ą 0, and does not provide uniform estimates of the solution f ε,δ with respect to these parameters. Proving such estimates needs extra arguments, which are not needed to state the main results of the article. We refer to Proposition... below for the statement of an appropriate a priori estimate in the L 2 pM ´1q norm, which requires the introduction of a stopping time τ δ defined below.

Let us now introduce the so-called averaged equation. First, set

K " ż V apvq b apvqMpvqdµpvq P Sym `pdq J " ż V bpvqMpvqdµpvq P R d σ " ż E σp qdνp q P C td{2u`2 x . ( 11 
)
Note that K and J are well-defined since a and b are assumed to be bounded (see Assumption 1).

In addition, σ is well-defined since σ is globally Lipschitz continuous from E to C td{2u`2 x (see Assumption 1) and since the probability distribution ν is integrable (see Assumption 2).

The unknown ρ of the averaged equation is a mapping defined on r0, 8q ˆTd . We are finally in position to write the averaged equation:

B t ρ `J ¨∇ρ `σ ρ " divpK∇ρq, (12) 
with initial condition ρp0q " ρ 0 . In (12) above, ∇ and div are the gradient and divergence operators with respect to the variable x respectively. We consider solutions of (12) in the weak sense, see Definition 3.1 below. Note that the solution may be a random process, even if the evolution is deterministic: it may happen that the initial condition ρ 0 is random.

Definition 3.1. Let T P p0, 8q and ρ 0 be a L 2 x -valued random variable. A stochastic process ρ is a weak solution of (12) in L 2

x if ρ P L 8 T L 2

x almost surely and if, for all ξ P H 2 x and t P r0, T s, almost surely,

pρptq, ξq L 2 x " pρ 0 , ξq L 2 x `ż t 0 pρpsq, divpK∇ξq `J ¨∇ξ ´σξq L 2 x ds. ( 13 
)
For any L 2 x -valued random variable, the averaged equation ( 12) admits a unique weak solution in the sense of Definition 3.1.

Convergence results

Let us now state the main results of this article, concerning the asymptotic behavior of ρ ε,δ and f ε,δ when pε, δq Ñ p0, 0q. In the sequel, it is convenient to impose the following non restrictive conditions on the parameters ε 0 and δ 0 (such that ε P p0, ε 0 s and δ P p0, δ 0 s):

ε 0 ă min ˆ1, ´4p}a} L 8 `}b} L 8 qp1 `T }σ} C 1 x q ¯´1 ˙, δ 0 ă min ´1, } 0 } ´1 E ¯. ( 14 
)
Note that the condition for δ 0 depends on the initial condition 0 of the driving process. This is one of the reasons why it is convenient to assume that it is deterministic and that it does not depend on δ. Extensions to more general initial conditions for the driving process would require extra technical assumptions and computations, which are omitted to simplify the setting and focus on the main aspects of the analysis of the asymptotic behavior of the stochastic multiscale problem (10) when pε, δq Ñ p0, 0q. The initial condition f ε,δ 0 of (10) is assumed to satisfy the following conditions.

Assumption 6. The family of initial conditions ´f ε,δ 0 ¯ε,δ satisfies the following moment bound:

sup εPp0,ε0s,δPp0,δ0s E " › › ›f ε,δ 0 › › › 12 L 2 pM ´1 q  ă 8.
In addition, the initial density ρ ε,δ 0 P L 2 x converges in distribution when pε, δq Ñ p0, 0q in L 2 x to ρ 0 P L 2

x : recall that this means that for any bounded continuous mapping Φ :

L 2 x Ñ R, one has E " Φpρ ε,δ 0 q ı Ý ÝÝÝ Ñ ε,δÑ0 E rΦpρ 0 qs .
Observe that in general ρ 0 is a L 2 x -valued random variable. We are now in position to state the two main convergence results of this article. First, see Theorem 3.2, ρ ε,δ " f ε,δ converges in distribution to the unique solution ρ of the averaged equation ( 12), in the space C 0 T H ´ς x for all ς ą 0. Second, under an additional technical assumption which allows to apply an averaging lemma, one obtains a stronger result, see Theorem 3.3: ρ ε,δ converges in distribution to ρ in the space L 2 T L 2 x , and f ε,δ converges in distribution to ρM in the space L 2 T L 2 pM ´1q. Moreover, the convergence results hold in probability if the initial condition ρ 0 (given by Assumption 6) of the averaged equation ( 12) is deterministic.

Let us state the first main result of this article.

Theorem 3.2. Let Assumptions 1 to 6 be satisfied. Let f ε,δ be the solution of (10). Then, when pε, δq Ñ p0, 0q, the random variable ρ ε,δ " f ε,δ converges in distribution to the unique weak solution ρ of (12), in C 0 T H ´ς x . In addition, if the initial condition ρ 0 " lim pε,δqÑp0,0q

ρ ε,δ 0 P L 2
x is deterministic, then the convergence of ρ ε,δ to ρ holds in probability.

An additional assumption is required to state Theorem 3.3, as in [RR20] (Assumption 7 below). It allows us to apply a so-called averaging lemma (see [BD99, Theorem 2.3]), developed for the study of kinetic PDEs, and to obtain convergence in the space L 2

x (in Theorem 3.3) instead of H ´ς (in Theorem 3.2).

Assumption 7.

• The space for the velocity variable is given by pV, dµq " pR n , dµ dv pvqdvq, with a Radon-Nikodym derivative (with respect to Lebesgue measure) satisfying dµ dv P H 1 pR n q.

• The mapping a is locally Lipschitz continuous • There exist C a,µ P p0, 8q and ς a,µ P p0, 1s such that, for all u P S d´1 , all λ P R and all η P p0, 8q, one has

ż λăapvq¨uăλ`η ˜ˇˇˇd µ dv pvq ˇˇˇ2 `ˇˇˇ∇ dµ dv pvq ˇˇˇ2 ¸dv ď C a,µ η ςa,µ .
We are now in position to state the second main result of this article.

Theorem 3.3. Let Assumptions 1 to 6 and Assumption 7 be satisfied. Then, when pε, δq Ñ p0, 0q, the random variable ρ ε,δ " f ε,δ converges in distribution to the unique weak solution ρ of (12), in the space L 2 T L 2 x . Moreover, when pε, δq Ñ p0, 0q, the random variable f ε,δ converges in distribution to ρM, in the space L 2 T L 2 pM ´1q. In addition, if the initial condition ρ 0 " lim pε,δqÑp0,0q

ρ ε,δ 0 P L 2
x is deterministic, then the convergence of ρ ε,δ to ρ and of f ε,δ to ρM hold in probability.

Discussion

The main results, Theorems 3.2 and 3.3, state that diffusion approximation (in the PDE sense) and averaging (in the probabilistic sense) results hold, when pε, δq Ñ p0, 0q. These results are natural generalizations of previously obtained results, either in the deterministic case (ε Ñ 0, σ " 0), or in the probabilistic case (δ Ñ 0, ε ą 0 fixed). In fact, using the same arguments as in Section 4 below, one may obtain the following results, where the limits ε Ñ 0 and δ Ñ 0 are taken successively.

On the one hand, if δ ą 0 is fixed, then ρ ε,δ " f ε,δ converges when ε Ñ 0, to the solution ρ 0,δ of the evolution equation B t ρ 0,δ `σpm δ qρ 0,δ " divpK∇ρ 0,δ q ´J ¨∇ρ 0,δ .

That result is a standard diffusion approximation result in the PDE sense. Then, when δ Ñ 0, ρ 0,δ converges to the solution ρ of the limit equation ( 12), owing to the standard averaging principle for stochastic problems.

On the other hand, if ε ą 0 is fixed, then owing to the standard averaging principle, f ε,δ converges when δ Ñ 0, to the solution f ε,0 of the evolution equation

B t f ε,0 `1 ε apvq ¨∇x f ε,0 `bpvq ¨∇x f ε,0 `σf ε,0 " 1 ε 2 Lf ε,0 .
Then, when ε Ñ 0, ρ ε,0 " f ε,0 converges to the solution ρ of the limit equation ( 12), owing to the standard diffusion approximation result in the PDE sense.

To the best of our knowledge, the results above have not been rigorously proved in the literature, however they are variants of well-studied results. The proofs of Theorems 3.2 and 3.3 do not encompass those regimes when either ε " 0 or δ " 0: essentially this would require to adapt the construction of the perturbed test function. Indeed, below we directly focus on the behavior of ρ ε,δ , thus the convergence f ε,δ Ñ f ε,0 when δ Ñ 0 cannot be covered directly, for instance. In addition, one of the arguments of the proofs is the convergence τ δ Ñ 8 when δ Ñ 0 (where τ δ are stopping times defined below), thus the convergence ρ ε,δ Ñ ρ 0,δ when ε Ñ 0 cannot be covered without substantial modifications.

Still, one obtains the following result:

lim δÑ0 lim εÑ0 ρ ε,δ " lim εÑ0 lim δÑ0 ρ ε,δ " lim pε,δqÑp0,0q ρ ε,δ " ρ,
where the convergence is understood in the appropriate sense. The analysis presented in this article thus departs from the setting of [DV12, DV20, DRV20, RR20]. where in all cases there is only one small parameter ε " δ. Our result is expected but important: it shows that the diffusion approximation and the averaging principle can be decoupled. As already mentioned in the introduction, considering the general case ε ‰ δ requires new arguments, in particular the construction of the perturbed test functions needs an additional corrector.

In the setting, it is assumed that the initial condition m δ p0q of the fast driving process is deterministic and independent of δ: m δ p0q " m 0 . It would be possible to extend the results to more general initial conditions, under appropriate modified moment conditions. This would for instance allow us to include the case where m δ p0q is random and distributed following the ergodic invariant distribution ν. Note also that if either the mapping σ or the process m would have a bounded support, the analysis would be simplified.

As explained in the introduction, we have left open several questions for future works: first, the analysis of fluctuations, second, the identification of (strong and weak) rates of convergence.

Description of the proof

In the sequel, the following convention is employed: given variables u and parameters λ, the notation X 1 puq À X 2 puq means that for all parameters λ, there exists Cpλq P p0, 8q such that one has X 1 puq ď CpλqX 2 puq for all u. From the context the identification of variables (typically ε, δ, f, ) and parameters (typically T, ϕ) will be clear.

First, we introduce two of the most important tools of the proofs of the main results: the stopping time τ δ (see Section 4.1), and the perturbed test function ϕ ε,δ " ϕ `εϕ 1,0 `ε2 ϕ 2,0 δ2 ϕ 0,2 `εδ 2 ϕ 1,2 (see Section 4.2), constructed for a class of admissible functions ϕ such that ϕpf, q " ϕp f q " ϕpρq. Sections 4.1 and 4.2 contain important auxiliary results, which require technical arguments in their proofs: the proofs are therefore postponed to Section 5.

The use of the stopping time τ δ is instrumental to obtain appropriate moment bounds of the solutions, uniformly with respect to ε, δ. We prove that τ δ Ñ 8 in probability when δ Ñ 0. In the arguments, as a consequence of Slutsky's lemma (see more details below), it is then sufficient to consider the stopped processes defined by f ε,δ,τ δ " f ε,δ p¨^τ δ q, ρ ε,δ,τ δ " ρ ε,δ p¨^τ δ q and m δ,τ δ " m δ p¨^τ δ q. The use of the perturbed test function method is standard in the analysis of multiscale stochastic problems, see for instance [DV12, DV20, DRV20, RR20] in a similar context of stochastic kinetic equations. Compared to those references, note that it is necessary to consider two parameters ε, δ which may be independent. When δ " ε, the construction of the corrector ϕ 1,2 is not needed.

We then proceed to the proof of the main results of this article. The arguments are standard. We first check a tightness property for `ρε,δ ˘ε,δ,τ δ in the appropriate function space. We then check that the Markov process pf ε,δ,τ δ , m δ,τ δ q is the solution of a martingale problem for all ε ą 0, δ ą 0, and letting pε, δq Ñ p0, 0q, using the perturbed test function, we prove that any limit point of the family ´ρε,δ,τ δ ¯ε,δ is a weak solution of the averaged equation, in the sense of (13).

Since τ δ Ñ 8 in probability when δ Ñ 0, a uniqueness argument for the averaged equation then concludes the proof of Theorem 3.2. Theorem 3.3 is then obtained by the application of the averaging lemma. The fact that convergence holds in probability when ρ 0 is deterministic is a straightforward well-known consequence of Portmanteau Theorem (and is not specific to the PDE framework of this paper): in that case the solution ρ of the averaged equation is also deterministic.

Stopping times and a priori estimates

In this section, first we give the definition of the stopping time τ δ , second we state that τ δ Ñ 8 in probability when δ Ñ 0. Finally, we state an a priori estimate for f ε,δ,τ δ in L 2 pM ´1q, which is uniform with respect to ε, δ. The proofs are postponed to Section 5. For all δ P p0, δ 0 s and all t ě 0, set

ζ δ ptq " 1 δ ż t 0 `σpm δ psqq ´σ˘d s P C td{2u`2 x . ( 15 
)
Definition 4.1. Let α P p 2 γ , 1q, then for all δ P p0, δ 0 s, define

τ δ " τ δ m ^τ δ ζ , where τ δ m " inf t P r0, T s | › › m δ ptq › › E ě δ ´α( , τ δ ζ " inf ! t P r0, T s | › › ζ δ ptq › › C 1 x ě δ ´1)
.

Note that τ δ is a stopping time for the filtration `Fδ t ˘tPR `generated by the driving process m δ , with F δ t " σ `mδ psq ˘0ďsďt . In the definition above, γ is the parameter introduced in Assumption 3.

The initial conditions of the stopped processes m δ,τ δ and ζ δ,τ δ satisfy

› › ›m δ,τ δ p0q › › › E " } 0 } E ď δ ´1 0
ď δ ´α (since δ ď δ 0 ď 1 and α ă 1), and ζ δ,τ δ p0q " 0. As a consequence, almost surely τ δ ą 0, and the following estimates for m δ and ζ δ hold: for all t ě 0 and all δ P p0, δ 0 s, one has

› › ›m δ,τ δ ptq › › › E " › › m δ pt ^τ δ q › › E ď δ ´α, (16) 
and

› › ›ζ δ,τ δ ptq › › › C 1 x " › › ζ δ pt ^τ δ q › › C 1 x ď δ ´1. ( 17 
)
Let us now study the behavior of the stopping time τ δ when δ Ñ 0.

Proposition 4.1. When δ Ñ 0, τ δ Ñ 8 in probability: for all T ą 0, one has

P `τ δ ă T ˘Ý ÝÝÝÝ Ñ pε,δqÑ0
0.

The proof of Proposition 4.1 is postponed to Section 5. Finally, let us state the following a priori estimate in the L 2 pM ´1q norm for f ε,δ,τ δ ptq, in an almost sure sense. Proposition 4.2. For T P p0, 8q, there exists CpT q P p0, 8q, such that for all t P r0, T s, ε P p0, ε 0 s and δ P p0, δ 0 s, almost surely one has

› › ›f ε,δ,τ δ ptq › › › 2 L 2 pM ´1q `1 2ε 2 ż t^τ δ 0 › › ›Lf ε,δ,τ δ psq › › › 2 L 2 pM ´1 q ds ď CpT q › › ›f ε,δ 0 › › › 2 L 2 pM ´1q . ( 18 
)
Let us emphasize that the constant CpT q appearing on the right-hand side of ( 18) is deterministic and does not depend on ε and δ.

The proof of Proposition 4.2 is posponed to Section 5. Note that the a priori estimate

› › ›f ε,δ,τ δ ptq › › › L 2 pM ´1q À › › ›f ε,δ 0 › › › L 2 pM ´1 q
is instrumental in all the arguments of the proof of Theorem 3.2, whereas the upper bound for the integral term on the left-hand side of (18) is used only in the proof of Theorem 3.3.

Perturbed test functions

In this section, we describe the construction of a perturbed test function ϕ ε,δ , such that the following properties are satisfied:

ϕ ε,δ Ý ÝÝÝ Ñ ε,δÑ0 ϕ L ε,δ ϕ ε,δ Ý ÝÝÝ Ñ ε,δÑ0
Lϕ,

where ϕ is any sufficiently smooth function such that ϕpf, q " ϕp f q, and L ε,δ and L are the infinitesimal generators associated with the Markov processes pf ε,δ , m δ q and ρ, solving (10) and ( 12) respectively.

To state more rigorously and more precisely the properties mentioned above, we first introduce two appropriate classes of test functions, such that ϕ P Θ lim and ϕ ε,δ P Θ for all ε, δ, and such that the errors |ϕ ε,δ ´ϕ| and |L ε,δ ϕ ε,δ ´Lϕ| are quantified in terms of ε, δ.

Let us first describe the class of functions Θ lim .

Definition 4.2. Let Θ lim be the class of real-valued test functions ϕ such that for all f P L 2 pM ´1q and P E, one has ϕpf, q " ϕpρq " χppρ, ξq

L 2 x q, (19) 
where we recall that ρ " f " ş V f dµ, with arbitrary χ P C 3 b pR, Rq and ξ P C 3 x . Recall that K, J and σ are defined by (11). The infinitesimal generator L associated with the limit problem (12) is defined by

Lϕpρq " Dϕpρq ¨pdiv x pK∇ x ρq ´J ¨∇x ρ ´σρq , ( 20 
)
for all ρ P L 2 x and all ϕ P DpLq, with the domain DpLq given by

DpLq " ϕ P C 0 pL 2 x q | Lϕ P C 0 pL 2 x q ( .
Note that Θ lim Ă DpLq. In addition, for all ϕ P Θ lim , of the form (19), one has for all ρ P L 2

x

Lϕpρq " χ 1 ppρ, ξq L 2 x q pρ, div x pK∇ x ξq `J ¨∇x ξ ´σξq L 2 x . ( 21 
)
Let us now describe the class of functions Θ.

Definition 4.3. Let Θ be the class of test functions ϕ : L 2 pM ´1q ˆE Ñ R satisfying the following conditions.

• For all P E, ϕp¨, q P C 1 pL 2 pM ´1qq.

• For all f P L 2 pM ´1q, ϕpf, ¨q P C 0 pEq.

• For all i P t1, 2u and all f P L 2 pM ´1q, ϕpf, ¨qi P DpL m q and L m pϕ i q P C 0 pL 2 pM ´1q ˆEq.

• For all f P L 2 pM ´1q and P E, denote by ∇ f ϕpf, q P L 2 pM ´1q the gradient of ϕ at pf, q, which is defined defined such that @h P L 2 pM ´1q, p∇ f ϕpf, q, hq L 2 pM ´1 q " D f ϕpf, q ¨h.

Then, for all f P L 2 pM ´1q and P E, one has

ż ż }∇ x ∇ f ϕpf, qpx, vq} 2 dx dµpvq Mpvq ă 8.
• There exists C ϕ p0, 8q such that, for all f, h P L 2 pM ´1q and 1 , 2 P E,

|ϕpf, 1 q| `|D f ϕpf, 1 qpAhq| `|D f ϕpf, 1 qpBhq| `|D f ϕpf, 1 qp 2 hq| `|D f ϕpf, 1 qpLhq| ď C ϕ ´1 `}f } 3 L 2 pM ´1 q `}h} 3 L 2 pM ´1q ¯´1 `} 1 } 2 E `} 2 } 2 E ¯.
The infinitesimal generator L ε,δ associated with the stochastic problem (10) with driving process m δ , satisfies the following multiscale expansion in terms of ε, δ:

L ε,δ " L 0 `ε´1 L 1 `ε´2 L 2 `δ´2 L m (22)
where the infinitesimal generator of the driving process L m is introduced in Assumption 2 above, and L 0 , L 1 and L 2 are defined as follows: for all f P L 2 pM ´1q and all P E, set L 0 ϕpf, q " ´Df ϕpf, q ¨pσp qf `Bf q, L 1 ϕpf, q " ´Df ϕpf, q ¨pAf q, L 2 ϕpf, q " D f ϕpf, q ¨Lf, for real-valued functions ϕ P DpL ε,δ q where DpL ε,δ q " ϕ P C 0 pL 2 pM ´1q ˆEq | L ε,δ ϕ P C 0 pL 2 pM ´1q ˆEq ( is the domain of the unbounded linear operator L ε,δ . Recall that A " apvq ¨∇x and B " bpvq ¨∇x (see Assumption 1). Note that the following property is satisfied: for all ϕ P Θ, one has ϕ P DpL ε,δ q and ϕ 2 P DpL ε,δ q. In addition, observe that Θ lim Ă Θ.

We are now in position to state the main result of this section.

Proposition 4.3. For all ϕ P Θ lim , there exists functions ϕ 1,0 , ϕ 2,0 , ϕ 0,2 and ϕ 1,2 such that the following properties hold.

• Set ϕ ε,δ " ϕ `εϕ 1,0 `ε2 ϕ 2,0 `δ2 ϕ 0,2 `εδ 2 ϕ 1,2 . ( 23 
)
Then ϕ ε,δ P Θ.

• There exists Cpϕq P p0, 8q, such that for all ε P p0, ε 0 s, δ P p0, δ 0 s and all pf, q P L 2 pM ´1qÊ , one has

ˇˇL ε,δ ϕ ε,δ ´Lϕ ˇˇpf, q ď Cpϕqp1 `}f } 3 L 2 pM ´1q q ´εp1 `} } E q `δ2 p1 `} } 2 E q ¯. ( 24 
)
• One has the following upper bounds: there exists Cpϕq P p0, 8q, such that for all pf, q P L 2 pM ´1q ˆE,

|ϕ 1,0 pf q| ď Cpϕq }f } L 2 pM ´1q , ( 25 
)
|ϕ 2,0 pf q| ď Cpϕqp1 `}f } 2 L 2 pM ´1q q, ( 26 
)
|ϕ 0,2 pf, q| ď Cpϕq }f } L 2 pM ´1 q p1 `} } E q, ( 27 
)
|ϕ 1,2 pf, q| ď Cpϕqp1 `}f } 2 L 2 pM ´1 q qp1 `} } E q. ( 28 
)
Note that the following error estimates holds: for all pf, q P L 2 pM ´1q ˆE, one has

ˇˇϕ ε,δ pf, q ´ϕp f q ˇˇÀ ϕ p1 `}f } 2 L 2 pM ´1q qpε `δ2 p1 `} } E qq. (29) 
The proof of Proposition 4.3 is postponed to Section 5. Using the standard terminology, the functions ϕ 1,0 , ϕ 2,0 , ϕ 0,2 and ϕ 1,2 are referred to as the correctors in the sequel.

Note that one of the novelties of the result above is the construction of the corrector ϕ 1,2 , which is not required in the case ε " δ which is treated in other contributions, see [DV12, DV20, DRV20, RR20]. More precisely, if ε, δ, it suffices to construct a perturbed test function of the type ϕ ε " ϕ `εϕ 1 `ε2 ϕ 2 . In fact, ϕ 1 " ϕ 1,0 and ϕ 2 " ϕ 2,0 `ϕ0,2 .

Martingale property

The proofs of Theorems 3.2 and 3.3 is based on an interpretation in terms of solutions of martingale problems. Indeed, combined with the perturbed test function approach described above, this formulation is convenient to identify limit points when pε, δq Ñ p0, 0q.

Several arguments in the proofs of the auxiliary results below employ the following auxiliary result.

Proposition 4.4. Let ϕ P Θ. For all t P R `, set

M ε,δ ϕ ptq . " ϕpf ε,δ ptq, m δ ptqq ´ϕpf ε,δ p0q, m δ p0qq ´ż t 0 L ε,δ ϕpf ε,δ psq, m δ psqqds. ( 30 
)
Then, M ε,δ,τ δ ϕ is a càdlàg `Fδ t ˘tPR `-martingale. In addition, for all t P R `, one has

E " ˇˇM ε,δ,τ δ ϕ ptq ˇˇ2  " E « ż t^τ δ 0 `Lε,δ pϕ 2 q ´2ϕL ε,δ ϕ ˘pf ε,δ psq, m δ psqqds ff " 1 δ 2 E « ż t^τ δ 0 `Lm pϕ 2 q ´2ϕL m ϕ ˘pf ε,δ psq, m δ psqqds ff .
In the statement of Proposition 4.4 above, note that the process M ε,δ ϕ is stopped, where the stopping time τ δ is given by Definition 4.1. Considering the stopped process allows us to use the estimate (18) of Proposition 4.2 in the sequel. Moreover, note that ϕ is assumed to belong to the class of functions Θ introduced in Definition 4.3: in fact Proposition 4.4 is the justification of the requirements on ϕ in Definition 4.3.

The proof of Proposition 4.4 is standard and is omitted.

Proofs of Theorems 3.2 and 3.3

In order to prove the convergence in distribution results of ρ ε,δ to ρ when pε, δq Ñ p0, 0q, it suffices to prove that for any arbitrary sequence pε i , δ i q iě1 such that pε i , δ i q Ñ p0, 0q when i Ñ 8, ρ εi,δi converges in distribution to ρ. To simplify the notation, we fix such a sequence and in the sequel one should interpret ε " ε i and δ " δ i . Moreover, in Proposition 4.6 and in the proofs, pε i , δ i q iě1 may also denote a subsequence of the original sequence.

Two technical results

Two additional technical results are required for the proof of the main results of this article. First, let us state a tightness result.

Proposition 4.5. Let Assumptions 1 to 6 be satisfied. The family of processes `ρε,δ ˘ε,δ is tight in the space C 0 T H ´ς x , for all arbitrarily small ς P p0, 1s. Moreover, if Assumption 7 is also satisfied, then the family of processes `ρε,δ ˘ε,δ is tight in the space L 2 T L 2 x .

Second, let us state a result which allows us to identify limit points of the family `ρε,δ ˘ε,δ .

Proposition 4.6. Assume that ρ 8 is a

C 0 T H ´ς x -valued random variable, such that ρ εi,δi d Ý ÝÝ Ñ iÑ8 ρ 8 , in distribution in C 0 T H ´ς x , for some sequence pε i , δ i q Ý ÝÝ Ñ iÑ8 0, ε i P p0, ε 0 s, δ i P p0, δ 0 s.
Then, for all ϕ P Θ lim , almost surely, for all t P r0, T s, one has ϕpρ 8 ptqq ´ϕpρ 8 p0qq ´ż t 0 Lϕpρ 8 psqqds " 0.

The proofs of Propositions 4.5 and 4.6 are technical and are given below.

Proofs of the main results

We are now in position to prove the main results of this article.

Proof of Theorem 3.2. Let ς P p0, 1q be fixed. Owing to Proposition 4.5, the family of processes `ρε,δ ˘ε,δ is tight in the space C 0 T H ´ς x . Due to Prohorov Theorem, there exist a C 0 t T H ´ς x -valued random variable ρ 8 and sequences pε i q iPN and pδ i q iPN , such that ε i Ñ 0 and δ i Ñ 0, and

ρ εi,δi d Ý ÝÝ Ñ iÑ8 ρ 8 .
Let us prove that ρ 8 is a weak solution of (12): this requires to prove that (13) holds and that ρ 8 P L 8 T L 2

x almost surely. To obtain (13), it suffices to use Proposition 4.6 and a localization argument. Introduce the auxiliary functions χ r , for all r ě 0, such that χ r P C 3 b pRq, χ r is odd and @u P r0, rs, χ r puq " u, @u P rr `1, 8q, χ r puq " r `1. Lϕ S pρ 8 psqqds.

Let
Combining the arguments proves that (13) holds, for all ξ P H 2 x . Let us now prove that ρ 8 P L 8 T L 2

x . Consider the self-adjoint operator S on L 2 x defined by

DpSq " H 2 x , Sρ " divpK∇ρq ´σρ.

Since K is a positive symmetric matrix, the operator S ´Λ id is invertible when Λ ą }σ} C 0 x . Its inverse is a compact operator, owing to the compact embedding H 2 x Ă L 2 x . Therefore, there exists a complete orthonormal system pe i q iPN0 of L 2

x composed of eigenvectors for pS ´Λ idq ´1. For i P N 0 , let λ i P R be the eigenvalue of S associated to the eigenvector e i : Se i " λ i . Note that λ i ď Λ for all i P N 0 .

Fix i P N 0 . Since e i P H 2 x , (13) reads for t P r0, T s pρ 8 ptq, e i q L 2 x " pρ 0 , e i q L 2 x `λi

ż t 0 pρ 8 psq, e i q L 2 x ds `ż t 0 pρ 8 psq, J ¨∇x e i q L 2 x ds.
Therefore, one has, for all t P r0, T s pρ 8 pt, ¨`tJq, e i q L 2 x " e λit pρ 0 , e i q L 2 x .

Since λ i t ď ΛT and ρ 0 P L 2 x , ˇˇpρ8pt, ¨`tJq, e i q L 2 x ˇˇ2 is summable. We thus have ρ 8 ptq P L 2 x and }ρ 8 ptq} 2 L 2

x " }ρ 8 pt, ¨`tJq}

2 L 2 x ď e 2ΛT }ρ 0 } 2 L 2 x . ( 31 
)
This proves that ρ 8 P L 8 T L 2 x , and that ρ 8 is a weak solution of (12) in the sense of Definition 3.1. To prove the convergence in distribution stated in Theorem 3.2, it only remains to prove that the weak solution of (12) is unique. Since the evolution equation is linear, it is sufficient to prove that, if ρ 0 " 0, then any weak solution ρ of (12) satisfies ρptq " 0 for all t P r0, T s. This claim is a straightforward consequence of (31) (satisfied by any function ρ satisfying (13)).

As a consequence, any limit point ρ 8 of the tight family `ρε,δ ˘ε,δ in the space C 0 T H ´ς x is the unique solution ρ of (12). Therefore ρ ε,δ converges in distribution to the unique weak solution ρ of (12).

When the initial condition ρ 0 is deterministic, the solution ρ of ( 12) is also deterministic. Then, using Portmanteau Theorem, in that case `ρε,δ ˘ε,δ converges to ρ in probability.

This concludes the proof of Theorem 3.2.

Proof of Theorem 3.3. Let Assumption 7 be satisfied. Owing to Proposition 4.5, the family of processes `ρε,δ ˘ε,δ is tight in L 2 T L 2 x . Therefore, there exist a L 2 T L 2 x -valued random variable ρ 8 and sequences pε i q iPN and pδ i q iPN , such that ε i Ñ 0 and δ i Ñ 0, and

ρ εi,δi d Ý ÝÝ Ñ iÑ8 ρ 8 . On the one hand, convergence in L 2 T L 2 x implies convergence in L 2 T H ´ς x .
On the other hand, owing to Theorem 3.2, ρ εi,δi converges to ρ in C 0 T H ´ς x , thus in L 2 T H ´σ x . Therefore ρ 8 is equal to ρ in distribution. By uniqueness of the limit points, one thus obtains the convergence of `ρε,δ ˘ε,δ to ρ in L 2 T L 2 x . It remains to establish the convergence of f ε,δ to ρM.

Note first that the mapping

h P L 2 T L 2 x Þ Ñ hM P L 2 T L 2 pM ´1q is continuous (it is a bounded linear operator). Thus, ρ ε,δ M Ý ÝÝÝ Ñ ε,δÑ0 ρM in distribution in L 2
T L 2 pM ´1q. Owing to Slutsky's Lemma (since [Bil99, Theorem 4.1]) and to the identity f ε,δ " ´Lf ε,δ `ρε,δ M, it only remains to prove that Lf ε,δ Ý ÝÝÝ Ñ ε,δÑ0 0 in probability in L 2 T L 2 pM ´1q. Owing to Proposition 4.2, almost surely one has

ż T ^τ δ 0 › › Lf ε,δ psq › › 2 L 2 pM ´1q ds ď ε 2 CpT q › › ›f ε,δ 0 › › › 2 L 2 pM ´1 q .
Therefore, on the event τ δ ě T , one has

› › Lf ε,δ › › L 2 T L 2 pM ´1q ď ε a CpT q › › ›f ε,δ 0 › › › L 2 pM ´1q
. As a consequence, we have for η P p0, 1q

P ´› › Lf ε,δ › › L 2 T L 2 pM ´1q ą η ¯" P ´τ δ ă T, › › Lf ε,δ › › L 2 T L 2 pM ´1 q ą η P ´τ δ ě T, › › Lf ε,δ › › L 2 T L 2 pM ´1 q ą η ď P `τ δ ă T ˘`P ˆεa CpT q › › ›f ε,δ 0 › › › L 2 pM ´1q ą η ď P `τ δ ă T ˘`η ´1ε a CpT qE " › › ›f ε,δ 0 › › › L 2 pM ´1q  ,
owing to the Markov inequality. Using Proposition 4.1 and Assumption 6, one obtains the convergence of Lf ε,δ to 0 in probability in L 2 T L 2 pM ´1q when pε, δq Ñ p0, 0q. This concludes the proof of the convergence in distribution of f ε,δ to ρM.

When ρ 0 is deterministic, ρ is deterministic, and the convergence results hold in probability, using Portmanteau Theorem.

This concludes the proof of Theorem 3.3.

Proofs of the two technical results

The following lemma is used in the proofs of Propositions 4.5 and 4.6.

Lemma 4.7. Let ϕ : L 2 pM ´1q ˆE Ñ R be a function such that

sup f PL 2 pM ´1 q, PE |ϕpf, q| p1 `}f } 6 L 2 pM ´1 q qp1 `} } E q ă 8.
Then, for all T P p0, 8q, ε P p0, ε 0 s and δ P p0, δ 0 s and for all random times τ 1 and τ 2 satisfying almost surely 0 ď τ 1 ď τ 2 ď T , one has

sup ε,δ E « ż τ2^τ δ τ1^τ δ ˇˇϕpf ε,δ,τ δ ptq, m δ,τ δ ptqq ˇˇdt ff À E rτ 2 ´τ1 s 1 2 ´1 γ . ( 32 
)
Recall that γ ą 2 is given by Assumption 3.

Proof of Lemma 4.7. Since m δ,τ δ ptq " m δ ptq for all t P rτ 1 ^τ δ , τ 2 ^τ δ s, the estimate (18) from Proposition 4.2 yields

E « ż τ2^τ δ τ1^τ δ ˇˇϕpf ε,δ,τ δ ptq, m δ,τ δ ptqq ˇˇdt ff À T,ϕ E « ż τ2^τ δ τ1^τ δ ˆ1 `› › ›f ε,δ 0 › › › 6 L 2 pM ´1 q ˙`1 `› › m δ ptq › › ˘dt ff .
Let p ˚P r1, 8q defined by 1 γ `1 2 `1 p ˚" 1. Using the moment estimates for m δ (see Assumption 3) and for f ε,δ (see Assumption 6), and applying Hölder inequality, one obtains

E « ż τ2^τ δ τ1^τ δ ˇˇϕpf ε,δ,τ δ ptq, m δ,τ δ ptqq ˇˇdt ff À ż T 0 E " 1 trτ1,τ2su ptq ˆ1 `› › ›f ε,δ 0 › › › 6 L 2 pM ´1q ˙`1 `› › m δ ptq › › ˘ dt À ż T 0 E " 1 trτ1,τ2su ptq p ˚ı1{p ˚E « ˆ1 `› › ›f ε,δ 0 › › › 6 L 2 pM ´1 q ˙2ff 1{2 E " `1 `› › m δ ptq › › ˘γı 1{γ dt À ż T 0 E " 1 trτ1,τ2su ptq ‰ 1{p ˚dt À ˜ż T 0 E " 1 trτ1,τ2su ptq ‰ dt ¸1{p À E "ż τ2 τ1 dt  1{p À E rτ 2 ´τ1 s 1{p ˚.
All the estimates above are uniform with respect to ε P p0, ε 0 s and δ P p0, δ 0 s. This concludes the proof of Lemma 4.7.

Before proceeding, let us recall some useful results concerning tightness. Introduce the Skorokhod space D T H ´ς x , which is the space of H ´ς x -valued càdlàg functions on r0, T s. For all X P C 0 T H ´ς x and all ∆ P r0, T s, set

w X p∆q . " sup 0ďtďsďt`∆ďT }Xpsq ´Xptq} w 1 X p∆q . " sup ptiq i max i sup tiďtďsăti`1 }Xpsq ´Xptq} ,
where pt i q i denotes any finite subdivision of r0, T s. The moduli of continuity ω X and ω 1 X satisfy the following inequality (see [START_REF] Billingsley | Convergence of probability measures[END_REF] (i) For all η P p0, 1s, there exists a compact set K η Ă H ´ς x such that, for all ε P p0, ε 0 s and δ P p0, δ 0 s, P `@t P r0, T s, X ε,δ ptq P K η ˘ą 1 ´η.

(ii) For all ϕ P Θ lim , `ϕpX ε,δ q ˘ε,δ is tight in the Skorohod space Dpr0, T s, Rq of càdlàg real-valued functions defined on the interval r0, T s.

To check that piiq is satisfied, we employ Aldous's criterion, see [JS03, Theorem 4.5 p356] (note that the criterion is simplified since here ϕ is bounded): it suffices to prove that for all η P p0, 8q, one has lim ∆Ñ0 lim sup pε,δqÑp0,0q sup τ1ďτ2ďτ1`∆ P `ˇϕ pX ε,δ pτ 2 qq ´ϕpX ε,δ pτ 1 qq ˇˇą η ˘" 0,

where sup τ1ďτ2ďτ1`∆ denotes the supremum with respect to all `Fδ t ˘tPR `-stopping times τ 1 and τ 2 satisfying a.s. τ 1 , τ 2 P r0, T s and τ 1 ď τ 2 ď τ 1 `∆.

Proof of Proposition 4.5. First, recall that τ δ Ñ 8 in probability, when δ Ñ 0 (see Proposition 4.1. Owing to Slutsky's Lemma [Bil99, Theorem 4.1], it thus suffices to prove the tightness of the family ´ρε,δ,τ δ ¯ε,δ .

Let us first establish the tightness in the space C 0 T H ´ς x , with an arbitrarily small parameter ς ą 0. As explained above, in fact we establish the tightness in D T H ´ς , using the criteria stated above. First, (i) is satisfied: indeed the embedding L 2

x Ă H ´ς x is compact, and the a priori estimate (18) (see Proposition 4.2) yields the uniform moment bound sup

ε,δ Er sup 0ďtďT › › ›ρ ε,δ,τ δ ptq › › › 2 L 2 x s ď sup ε,δ Er sup 0ďtďT › › ›f ε,δ,τ δ ptq › › › 2 L 2 pM ´1 q s ď sup ε,δ Er › › f ε,δ p0q › › 2 L 2 x s ă 8
owing to Assumption 6. Then (i) is a straightforward consequence of Markov inequality. It remains to establish (ii), using Aldous criterion 33. Let ϕ ε,δ be the perturbed test function given by (23), see Proposition 4.3, and let M ε,δ ϕ ε,δ be defined as by (30) (in Proposition 4.4). For all t ě 0, set θ ε,δ ptq " ϕpρ ε,δ p0qq `ϕε,δ pf ε,δ ptq, m δ ptqq ´ϕε,δ pf ε,δ p0q, m δ p0qq

" ϕpρ ε,δ p0qq `ż t 0 L ε,δ ϕ ε,δ pf ε,δ psq, m δ psqqds `M ε,δ ϕ ε,δ ptq, (34) 
For all stopping times τ 1 , τ 2 , one has the equality

ϕpρ ε,δ,τ δ pτ 2 qq ´ϕpρ ε,δ,τ δ pτ 1 qq " ´θε,δ,τ δ pτ 2 q ´θε,δ,τ δ pτ 1 q φε,δ pf ε,δ,τ δ pτ 2 q, m δ,τ δ pτ 2 qq ´ϕpρ ε,δ,τ δ pτ 2 qq φε,δ pf ε,δ,τ δ pτ 1 q, m δ,τ δ pτ 1 qq ´ϕpρ ε,δ,τ δ pτ 1 qq ¯.
On the one hand, owing to the error estimate (29), the estimates ( 16) and ( 18) for

› › ›m δ,τ δ ptq › › › E and › › ›f ε,δ,τ δ ptq › › › L 2 pM ´1 q yield ˇˇϕ ε,δ pf ε,δ,τ δ ptq, m δ,τ δ ptqq ´ϕpρ ε,δ,τ δ ptqq ˇˇÀϕ p1 `› › ›f ε,δ 0 › › › 2 L 2 pM ´1q
qpε `δ2 p1 `δ´α qq.

Since α ă 1 in Definition 4.1, we get

E "ˇˇˇϕ ε,δ pf ε,δ,τ δ pτ i q, m δ,τ δ pτ i qq ´ϕpρ ε,δ,τ δ pτ i qq ˇˇı Ý ÝÝÝ Ñ ε,δÑ0 0, for i " 1, 2.
On the other hand, we claim that sup

ε,δ sup τ1ďτ2ďτ1`∆ E "ˇˇˇθ ε,δ,τ δ pτ 2 q ´θε,δ,τ δ pτ 1 q ˇˇı Ý ÝÝ Ñ ∆Ñ0 0. ( 35 
)
To prove that this claim holds, note that

ˇˇθ ε,δ,τ δ pτ 2 q ´θε,δ,τ δ pτ 1 q ˇˇď ż τ2^τ δ τ1^τ δ ˇˇL ε,δ ϕ ε,δ pf ε,δ psq, m δ psqq ˇˇds `ˇˇM ε,δ,τ δ ϕ ε,δ pτ 2 q ´M ε,δ,τ δ ϕ ε,δ pτ 1 q ˇˇ.
(36) To treat the first term on the right-hand side of (36), observe that for pf, q P L 2 pM ´1q ˆE, one has

ˇˇL ε,δ ϕ ε,δ pf, q ˇˇÀ ε ´1 `}f } 3 L 2 pM ´1q ¯p1 `} }q `δ2 ´1 `}f } 3 L 2 pM ´1 q ¯´1 `} } 2 |Lϕpρq| À ´1 `}f } 3 L 2 pM ´1q ¯p1 `} }q `δ2 ´1 `}f } 3 L 2 pM ´1q ¯´1 `} } 2 ¯,
owing to the error estimate (24) for L ε,δ ϕ ε,δ ´Lϕ (see Proposition 4.3) and to the expression (20) of Lϕ. Using Lemma 4.7, one obtains sup

ε,δ sup τ1ďτ2ďτ1`∆ E « ż τ2^τ δ τ1^τ δ ˇˇ´1 `› › f ε,δ psq › › 3 L 2 pM ´1q ¯`1 `› › m δ psq › › ˘ˇˇd s ff À ∆ 1{2´1{γ Ý ÝÝ Ñ ∆Ñ0 0,
since γ ą 2 (see Assumption 3. In addition, recall that α ă 1: using the estimate (16), one obtains

sup ε,δ sup τ1ďτ2ďτ1`∆ E « ż τ2^τ δ τ1^τ δ ˇˇδ 2 ´1 `› › f ε,δ psq › › 3 L 2 pM ´1q ¯´1 `› › m δ psq › › 2 ¯ˇˇd s ff À ∆ Ý ÝÝ Ñ ∆Ñ0 0.
To treat the second term on the right-hand side of (36), note that M ε,δ,τ δ ϕ ε,δ is a square-integrable martingale, owing to Proposition 4.4. In addition, since τ 1 ď τ 2 are stopping times, one has

E " ˇˇM ε,δ,τ δ ϕ ε,δ pτ 2 q ´M ε,δ,τ δ ϕ ε,δ pτ 1 q ˇˇ2  " E " ˇˇM ε,δ,τ δ ϕ ε,δ pτ 2 q ˇˇ2 ´ˇˇM ε,δ,τ δ ϕ ε,δ pτ 1 q ˇˇ2  " 1 δ 2 E « ż τ2^τ δ τ1^τ δ `Lm ppϕ ε,δ q 2 q ´2ϕ ε,δ L m ϕ ε,δ ˘pf ε,δ psq, m δ psqqds ff .
Recall the expression (23) of the perturbed test function ϕ ε,δ . Since ϕ, ϕ 1,0 and ϕ 2,0 do not depend on P E, one has

E " ˇˇM ε,δ,τ δ ϕ ε,δ pτ 2 q ´M ε,δ,τ δ ϕ ε,δ pτ 1 q ˇˇ2  " δ 2 E « ż τ2^τ δ τ1^τ δ
`Lm ppϕ 0,2 `εϕ 1,2 q 2 q ´2pϕ 0,2 `εϕ 1,2 qL m pϕ 0,2 `εϕ 1,2 q ˘pf ε,δ psq, m δ psqqds ff .

The correctors ϕ 0,2 and ϕ 1,2 satisfy the properties ( 27) and ( 28) respectively. In addition, f ε,δ and m δ satisfy the estimates ( 18) and ( 16) respectively. Using Assumption 5 and the condition 0 ď τ 2 ´τ1 ď ∆, one finally obtains

E " ˇˇM ε,δ,τ δ ϕ ε,δ pτ 2 q ´M ε,δ,τ δ ϕ ε,δ pτ 1 q ˇˇ2  À ∆δ 2 E " p1 `› › ›f ε,δ 0 › › › 2 L 2 pM ´1q qp1 `δ´2α q  À ∆ Ý ÝÝ Ñ ∆Ñ0 0,
since α ă 1 and using Assumption 6.

Gathering the estimates for the two terms on the right-hand side of (36), the claim (35) is proved. One finally obtains sup

ε,δ sup τ1ďτ2ďτ1`∆ E "ˇˇˇϕ pρ ε,δ,τ δ pτ 2 qq ´ϕpρ ε,δ,τ δ pτ 1 qq ˇˇı Ý ÝÝ Ñ ∆Ñ0 0,
hence (33) holds. This concludes the proof of the tightness of the family ´ρε,δ,τ δ ¯ε,δ is tight in the space C 0 T H ´ς x . It remains to prove the tightness of ´ρε,δ,τ δ ¯ε,δ is tight in the space L 2 T L 2 x , if Assumption 7 is satisfied. It suffices to establish the following claims: for all η P p0, 1q, there exists R P p0, 8q and ς 2 P p0, 1q, such that lim ∆Ñ0 lim sup pε,δqÑp0,0q

P ´wρ ε,δ,τ δ p∆q ą η ¯" 0, (37) and sup ε,δ

P ˆ› › ›ρ ε,δ,τ δ › › › L 2 T H ς 2 x ą R ˙ă η. ( 38 
)
Indeed, for all R ą 0, ς 2 ą 0 and η : p0, 8q Ñ r0, 8q such that ηp∆q Ý ÝÝ Ñ ∆Ñ0 0, the set K R,η . " 

! ρ P L 2 T L 2 x | }ρ} L 2 T H ς 2 x ď R and @∆ P p0, 1q, w ρ p∆q ă ηp∆q ) is compact in L 2 T L 2 x ,
E " › › ›ρ ε,δ,τ δ › › › L 2 T H ς 2 x  À 1, ( 39 
)
Let g ε,δ " εB t f ε,δ `apvq ¨∇x f ε,δ `εbpvq ¨∇x f ε,δ . By Assumption 7, we are in position to apply an averaging lemma , precisely [BD99, Theorem 2.3] (with f ptq " f ε,δ pεtq, gptq " g ε,δ pεtq and h " 0 until time T ^τ δ ). After rescaling the time t Þ Ñ t{ε, one obtains the inequality

› › ›ρ ε,δ,τ δ › › › 2 L 2 T H ς 1 {4 x " ż T ^τ δ 0 › › ›ρ ε,δ,τ δ ptq › › › 2 H ς 1 {4 x dt À ε › › ›f ε,δ 0 › › › 2 L 2 x `ż T ^τ δ 0 › › ›f ε,δ,τ δ ptq › › › 2 L 2 pM ´1q dt `ż T ^τ δ 0 › › ›g ε,δ,τ δ ptq › › › 2 L 2 pM ´1q dt.
Applying the Cauchy-Schwarz inequality gives

› › ›g ε,δ,τ δ ptq › › › L 2 pM ´1 q " › › › › εf ε,δ,τ δ ptqσpm δ,τ δ ptqq `1 ε Lf ε,δ,τ δ ptq › › › › L 2 pM ´1q ď ε › › ›f ε,δ,τ δ ptq › › › L 2 pM ´1q › › ›σpm δ,τ δ ptqq › › › C 0 x `1 ε › › ›Lf ε,δ,τ δ ptq › › › L 2 pM ´1 q
.

It is now crucial to use the a priori estimate (18) (see Proposition 4.2) to control the intergral term

ż T ^τ δ 0 1 ε › › ›Lf ε,δ,τ δ ptq › › › L 2 pM ´1q dt
uniformly with respect to ε, δ. Using Assumption 6, the estimates ( 16) and ( 18) for m δ,τ δ ptq and f ε,δ,τ δ ptq, and Lemma 4.7, the claim (39) is proved, with ς 2 " ς 1 4 . Since we proved (37) and (38), the family ´ρε,δ,τ δ ¯ε,δ is tight in L 2 T L 2 x , when Assumption 7 is satisfied.

This concludes the proof of Proposition 4.5.

Proof of Proposition 4.6. Let ρ 8 be such that ρ 8 " lim iÑ8 ρ εi,δi , for some sequence pε i , δ i q Ñ p0, 0q.

For all ϕ P Θ lim , define the stochastic process M ϕ as follows: for all t ě 0, M ϕ ptq " ϕpρ 8 ptqq ´ϕpρ 8 p0qq ´ż t 0 Lϕpρ 8 psqqds.

Let us start by proving that, for all ϕ P Θ lim , M ϕ is a square integrable martingale adapted to the filtration generated by ρ 8 .

Let the test function ϕ P Θ lim be fixed. Since ϕ is bounded, to prove that the process M ϕ is square-integrable, it suffices to prove that sup

tPr0,T s E " |Lϕpρ 8 ptqq| 2 ı ă 8. ( 40 
)
Observe that, for all t P r0, T s, the mapping ρ

P C 0 T H ´ς x Þ Ñ |Lϕpρptqq| 2 P R is continuous.
Thus one has the convergence in distribution ˇˇLϕpρ εi,δi,τ δ i ptqq ˇˇ2

d Ý ÝÝ Ñ iÑ8 |Lϕpρ 8 ptqq| 2 (see [Bou04,
Proposition IX.5.7]). In addition, ˆˇˇL ϕpρ εi,δi,τ δ i ptqq ˇˇ2 ˙εi,δi is uniformly integrable: one has

sup iPN E " ˇˇLϕpρ εi,δi,τ δ i ptqq ˇˇ4  À sup ε,δ E " › › ›f ε,δ 0 › › › 4 L 2 pM ´1 q  ă 8,
using the estimates from Proposition 4.2 and Assumption 6, and the expression (21) of Lϕ when ϕ P Θ lim . Using [Bil99, Theorem 5.4], the convergence in distribution and uniform integrability property give

E " |Lϕpρ 8 ptqq| 2 ı " lim iÑ8 E " ˇˇLϕpρ εi,δi,τ δ i ptqq ˇˇ2  À sup ε,δ E " › › ›f ε,δ 0 › › › 2 L 2 pM ´1q  ă 8.
This yields the square integrability property (40). The next step is to prove that M ϕ is a martingale. Let 0 ď s 1 ď ... ď s j ď s ď t and let g P C 0 b ppH ´ς x q j q be a continuous bounded function. Define the mapping

Φ : ρ P C 0 T H ´ς x Þ Ñ ˆϕpρptqq ´ϕpρpsqq ´ż t s
Lϕpρpuqqdu ˙gpρps 1 q, ..., ρps j qq.

To prove that M ϕ is a martingale, it suffices to prove the following claim: E rΦpρ 8 qs " 0.

Let us first check that E " Φpρ εi,δi,τ δ i q ı Ñ E rΦpρ 8 qs when i Ñ 8. This claim follows from the definition of ρ 8 as the limit in distribution of ρ εi,δi,τ δ i and straightforward arguments. The mapping Φ is continuous on C 0 T H ´ς x and ´Φpρ εi,δi,τ δ i q ¯εi,δi is uniformly integrable. Using the same arguments as for the proof of (40), one obtains the following convergence result:

E " Φpρ εi,δi,τ δ i q ı Ý ÝÝ Ñ iÑ8 E rΦpρ 8 qs .
Let us now check that E " Φpρ εi,δi,τ δ i q ı Ñ 0 when i Ñ 8. This claim follows from a martingale property and the perturbed test function to take the limit i Ñ 8. Let ϕ ε,δ be the perturbed test function given by (23), see Proposition 4.3. Using the martingale property from Proposition 4.4, one has

E «˜ϕ εi,δi pf εi,δi,τ δ i ptq, m δi,τ δ i ptqq ´ϕεi,δi pf εi,δi,τ δ i psq, m δi,τ δ i psqq ´ż t^τ δ i s^τ δ i
L εi,δi ϕ εi,δi pf εi,δi puq, m δi puqqdu ¸gpρ εi,δi,τ δ i ps 1 q, ..., ρ εi,δi,τ δ i ps j qq ff " 0.

Using the expression ϕ ε,δ " ϕ `εϕ 1,0 `ε2 ϕ 2,0 `δ2 ϕ 0,2 `εδ 2 ϕ 1,2 (see (23), and the boundedness of g, one obtains the upper bound ˇˇE " Φpρ εi,δi,τ δ i q ıˇˇˇÀ 6 ÿ j"1 E r|r j |s , with r 1 " ε i pϕ 1,0 pf εi,δi,τ δ i ptqq ´ϕ1,0 pf εi,δi,τ δ i psqqq r 2 " ε 2 i pϕ 2,0 pf εi,δi,τ δ i ptqq ´ϕ2,0 pf εi,δi,τ δ i psqqq r 3 " δ 2 i pϕ 0,2 pf εi,δi,τ δ i ptq, m δi,τ δ i ptqq ´ϕ0,2 pf εi,δi,τ δ i psq, m δi,τ δ i psqqq r 4 " ε i δ 2 i pϕ 1,2 pf εi,δi,τ δ i ptq, m δi,τ δ i ptqq ´ϕ1,2 pf εi,δi,τ δ i psq, m δi,τ δ i psqqq r 5 "

ż t^τ δ i s^τ δ i
´Lεi,δi ϕ εi,δi pf εi,δi,τ δ i puq, m δi,τ δ i puqq ´Lϕpρ εi,δi,τ δ i puqq ¯du

r 6 " ż t t^τ δ i Lϕpρ εi,δi,τ δ i puqqdu ´ż s s^τ δ i
Lϕpρ εi,δi,τ δ i puqqdu.

Using estimates (25), ( 26), ( 27) and (28) of Proposition 4.3 and estimates ( 16) and ( 18) on m δi,τ δ i and f εi,δi,τ δ i , one has

|r 1 | À ε i › › ›f εi,δi 0 › › › L 2 pM ´1 q , |r 2 | À ε 2 i p1 `› › ›f εi,δi 0 › › › 2 L 2 pM ´1q q, |r 3 | À δ 2 i p1 `› › ›f εi,δi 0 › › › L 2 pM ´1 q qp1 `δ´α i q, |r 4 | À ε i δ 2 i p1 `› › ›f εi,δi 0 › › › 2 L 2 pM ´1q qp1 `δ´α i q.
Since α ă 1 (see Definition 4.1), using Assumption 6, one obtains E r|r k |s Ý ÝÝ Ñ iÑ8 0, for k P 1, 4 .

To treat the next term r 5 , it is necessary to use Lemma 4.7: using the estimate (24), one obtains E r|r 5 |s À ε i pt ´sq

1 2 ´1 γ `δ2 i p1 `δ´2α i q Ý ÝÝ Ñ iÑ8 0,
using the condition α ă 1. The last term r 6 is treated as follows: using the Cauchy-Schwarz inequality, the expression (21) for Lϕ and the estimate 4.2, one obtains

E r|r 6 |s 2 À E " › › ›f ε,δ 0 › › › 2 L 2 pM ´1 q  E " `ˇt ´t ^τ δi ˇˇ`ˇˇs ´s ^τ δi ˇˇ˘2 ı À P `τ δi ă T ˘Ý ÝÝ Ñ iÑ8 0,
owing to Assumption 6 and to Proposition 4.1 which gives the convergence in probability τ δ Ñ 8.

Gathering the results, one obtains E " Φpρ εi,δi,τ δ i q ı Ñ 0 when i Ñ 8, hence E rΦpρ 8 qs "

lim iÑ8 E "
Φpρ εi,δi,τ δ i q ı " 0. This concludes the proof that, for all ϕ P Θ lim , M ϕ is a squareintegrable martingale adapted to the filtration generated by ρ 8 . The final step is to prove that E " |M ϕ ptq| 2 ı " 0, for all t P r0, T s and ϕ P Θ lim . Let ∆ P p0, 8q be an arbitrarily small real-number and let 0 " t 0 ă t 1 ă ... ă t j " t be a subdivision of r0, ts such that max kP 0,j´1 |t k`1 ´tk | ď ∆. Since M ϕ is a centered martingale, with M ϕ p0q " 0, one has

E " |M ϕ ptq| 2 ı " n´1 ÿ i"0 E " |M ϕ pt k`1 q ´Mϕ pt k q| 2 ı ď 2 n´1 ÿ i"0 E " |ϕpρ 8 pt k`1 qq ´ϕpρ 8 pt k qq| 2 ı `2 n´1 ÿ i"0 E « ˇˇˇż t k`1 t k Lϕpρ 8 psqqds ˇˇˇ2 ff . (41) 
On the one hand, for 0 ď t ď t 1 ď T , one has the identity ˇˇϕpρ 8 pt 1 qq ´ϕpρ 8 ptqq ˇˇ2 " M ϕ 2 pt 1 q ´Mϕ 2 ptq ´2ϕpρ 8 ptqq `Mϕ pt 1 q ´Mϕ ptq ż

t 1 t Lpϕ 2 qpρ 8 psqqds ´2ϕpρ 8 ptqq ż t 1 t Lpϕqpρ 8 psqqds.
The test functions ϕ and ϕ 2 belong to the class Θ lim , therefore, owing to the first part of the proof, M ϕ and M ϕ 2 are centered martingales for the filtration generated by ρ 8 . As a consequence,

E " ˇˇϕpρ 8 pt 1 qq ´ϕpρ 8 ptqq ˇˇ2 ı " E « ż t 1 t Lpϕ 2 qpρ 8 psqqds ´2ϕpρ 8 ptqq ż t 1 t Lϕpρ 8 psqqds ff . ( 42 
)
Since L is a first order derivative operator (see ( 20)), it is straightforward to check that Lpϕ 2 q " 2ϕLϕ. One thus obtains

E " |ϕpρ 8 pt k`1 qq ´ϕpρ 8 pt k qq| 2 ı " 2E "ż t k`1 t k pϕpρ 8 psqq ´ϕpρ 8 pt k qqq Lϕpρ 8 psqqds  ď 2 ż t k`1 t k E " |ϕpρ 8 psqq ´ϕpρ 8 pt k qq| 2 ı 1{2 E " |Lϕpρ 8 psqq| 2 ı 1{2 ds,
owing to the Cauchy-Schwarz inequality. Since ϕ P Θ lim , one may use the inequality (40), and ϕ is bounded. Thus, (42) gives (with t " t k and t 1 " s)

E " |ϕpρ 8 psqq ´ϕpρ 8 pt k qq| 2 ı À s ´tk .
Using (40), one obtains

E " |ϕpρ 8 pt k`1 qq ´ϕpρ 8 ptqq| 2 ı À ż t k`1 t k ps ´tk q 1{2 ds À ∆ 3{2 . ( 43 
)
On the other hand, (40) yields

E « ˇˇˇż t k`1 t k Lϕpρ 8 psqqds ˇˇˇ2 ff À ∆ 2 . ( 44 
)
Finally, (41), ( 43) and (44) yield

E " |M ϕ ptq| 2 ı À ∆ 1{2 `∆ Ý ÝÝ Ñ ∆Ñ0 0.
This concludes the proof that E " |M ϕ ptq| 2 ı " 0. We deduce that, for all t P r0, T s, almost surely, M ϕ ptq " 0. Since ρ 8 P C 0 T H ´ς , M ϕ is a continuous process. As a consequence, almost surely, for all t P r0, T s, M ϕ ptq " 0, which concludes the proof of Proposition 4.6.

Proof of the auxiliary results

Asymptotic behavior of the stopping time

The goal of this section is to provide the proof of Proposition 4.1: τ δ Ñ 8 in probability when δ Ñ 0.

Proof of Proposition 4.1. Let us first prove the first claim: τ δ m Ñ 8 in probability. Introduce the following sequence of real-valued random variables: for all i P t0, 1, . . .u, set

S i . " sup tPri,i`1s }mptq} E .
The random variables S i are almost surely finite, since ErS γ i s ă 8 for all i ě 0 owing to Assumption 3.

Owing to the condition α ą 2{γ, there exists α 1 such that 2{γ ă α 1 ă α. Using Markov inequality and Assumption 3, one obtains

8 ÿ i"1 P ´Si ě i α 1 2 ¯ď 8 ÿ i"1 E rS γ i s i α 1 γ 2 " sup iě1 E rS γ i s 8 ÿ i"1 1 i α 1 γ 2 ă 8.
Using Borel-Cantelli's lemma, there exists a N-valued random variable I 0 , such that almost surely,

@i ą I 0 , S i ă i α 1 2 .
Define the random variable Z " sup 0ďiďI0 S i . Since I 0 is almost surely finite, Z is also an almost surely finite random variable. Observe that almost surely, for all t ě 0, one has

› › m δ ptq › › E ď S ttδ ´2u ď Z `Xtδ ´2\ α 1 2 ď Z ``tδ ´2˘α 1 2 .
We are now in position to conclude the proof of the first claim: for all T P p0, 8q, one obtains

P `τ δ m ă T ˘" P ˜sup tPr0,T s › › m δ ptq › › E ą δ ´α¸ď P ´Z `T α 1 2 δ ´α1 ą δ ´α¯Ý ÝÝ Ñ δÑ0 0,
since α 1 ă α. Thus τ δ m Ñ 8 in probability. It remains to prove the second claim: τ δ ζ Ñ 8 in probability. Let p P pα, 1q be an arbitrary real number. Owing to the Markov inequality and to the continuous embedding

H td{2u`2 x Ă C 1 x ,
for all T P p0, 8q and for all δ P p0, ε 0 s, one has

P `τ δ ζ ă T ˘" P `τ δ ζ ă T, τ δ ζ ă τ δ m ˘`P `τ δ ζ ă T, τ δ ζ ě τ δ m ď P ˜δ sup tPr0,T s › › ›ζ δ,τ δ ptq › › › C 1 x ě 1 ¸`P `τ δ m ă T ď δ 2 E « sup tPr0,T s › › ›ζ δ,τ δ ptq › › › 2 C 1 x ff `P `τ δ m ă T ď δ 2p1´pq sup δ E « δ 2p sup tPr0,T s › › ›ζ δ,τ δ ptq › › › 2 H td{2u`2 x ff `P `τ δ m ă T ˘.
Owing to the first claim, it thus remains to prove that

sup δ E « δ 2p sup tPr0,T s › › ›ζ δ,τ δ ptq › › › 2 H td{2u`2 x ff ă 8,
for all T P p0, 8q.

Let β be an arbitrary multi-index of size |β| ď td{2u `2. For all δ P p0, δ 0 s and T P p0, 8q, one has

E » -sup tPr0,T s › › › › › B |β| ζ δ,τ δ ptq Bx β › › › › › 2 L 2 x fi fl ď ż T d E » -sup tPr0,T s ˇˇˇˇB |β| ζ δ,τ δ pt, xq Bx β ˇˇˇˇ2 fi fl dx. ( 45 
)
Below an upper bound for the expectation on the right-hand side of (45) is obtained using properties of a well-chosen martingale. For all x P T d and all multi-indices β such that |β| ď td{2u `2, introduce the auxiliary function θ β x defined by θ β x p q " B |β| σp q Bx β pxq, for all n P E. Observe that θ β x is an element of the set E ˚pσq, and one may define

ψ β x . " R 0 pθ β x ´θβ
x pσqq, which solves of the Poisson equation ´Lm ψ β x " `θβ

x ´θβ x pσq ˘, see Definition 2.1. Observe that one has the identities

B |β| ζ δ pt, xq Bx β " 1 δ ż t 0 B |β| pσpm δ psqq ´σq Bx β pxqds " 1 δ ż t 0 ´θβ x pm δ psqq ´θβ x ¯ds " ´1 δ ż t 0 L m ψ β x pm δ psqqds.
Finally, for all x P T d , δ P p0, δ 0 s and t ě 0, set

M δ δ 1`p ψ β x ptq " δ 1`p ψ β x pm δ ptqq ´δ1`p ψ β x pmp0qq ´1 δ 2 ż t 0 δ 1`p L m ψ β x pm δ psqqds " δ 1`p ψ β x pm δ ptqq ´δ1`p ψ β x pmp0qq `δp B |β| ζ δ pt, xq Bx β (46)
Then the stopped process pM δ δ 1`p q τ δ " M δ δ 1`p p¨^τ δ q is a martingale. In addition, one obtains the upper bound

E » -δ 2p sup tPr0,T s ˇˇˇˇB |β| ζ δ,τ δ pt, xq Bx β ˇˇˇˇ2 fi fl ď 2E « sup tPr0,T s ˇˇδ 1`p ψ β x pm δ,τ δ ptqq ˇˇ2 ff `E « sup tPr0,T s ˇˇM δ,τ δ δ 1`p ψ β x ptq ˇˇ2
ff .

On the one hand, owing to estimates (6) and ( 16), one obtains

E « sup tPr0,T s ˇˇδ 1`p ψ β x pm δ,τ δ ptqq ˇˇ2 ff À δ 2`2p `1 `δ´2α ˘À 1, since α ă 1.
On the other hand, Doob's Maximal Inequality yields

E « sup tPr0,T s ˇˇM δ,τ δ δ 1`p ψ β x ptq ˇˇ2 ff ď 4E " ˇˇM δ,τ δ δ 1`p ψ β x pT q ˇˇ2  ď 4 δ 2 E « pδ 1`p q 2 ż T ^τ δ 0 ´Lm ´`ψ β x ˘2¯´2 ψ β x L m ψ β x ¯pm δ psqqds ff À T δ 2p `1 `δ´2α À 1,
since p P pα, 1q, using Assumption 5 and the estimates (6) and ( 16). Since all the bounds obtained above are uniform with respect to x P T d , gathering the estimates one obtains (46) yields 

A priori estimate of the solution in L 2 pM ´1q

The goal of this section is to provide the proof of Proposition 4.2, which gives an almost sure a priori estimate for f ε,δ,τ δ in the space C 0 T L 2 pM ´1q and for Lf ε,δ,τ δ in the space L 2 t^τ δ L 2 pM ´1q, in terms of the norm of the initial condition

› › ›f ε,δ 0 › › › L 2 pM ´1q .
Proof of Proposition 4.2. For all δ P p0, δ 0 s and all t ě 0, set η δ pt, ¨q " ż t 0 σpm δ psqqp¨qds " δζ δ pt, ¨q `tσp¨q P C td{2u`2 x , where ζ δ is defined by(15). Note that, owing to (17), for all δ P p0, δ 0 s, and i " 0, 1, one has

sup tPr0,τ δ ^T s › › η δ ptq › › C i x ď 1 `T }σ} C i x . ( 47 
)
Let us now introduce the following family of weight functions M δ indexed by δ P p0, δ 0 s: for all t ě 0, x P T d and v P V , set M δ pt, x, vq " exp `´2η δ pt, xq ˘Mpvq,

The associated weighted L 2 norm is defined by

}f } 2 L 2 pM δ ptq ´1 q . " ij |f px, vq| 2 M δ pt, x, vq dxdµpvq.
Note that for all h P L 2 pM ´1q and all t P r0, τ δ ^T s, the inequality (47) yields

}h} 2 L 2 pM ´1q ď }h} 2 L 2 pM δ ptq ´1q e 2`2T }σ} C 0 x . ( 48 
)
It is thus sufficient to prove estimates in the weight norm }¨} L 2 pM δ ptq ´1q , to retrieve the a priori estimates in the space L 2 pM ´1q, when the condition t ď τ δ ^T is satisfied. For all t ě 0, one has

1 2 B t › › f ε,δ ptq › › 2 L 2 pM δ ptq ´1q " ij f ε,δ pt, x, vq M δ pt, x, vq B t f ε,δ pt, x, vqdxdµpvq ´ij ˇˇf ε,δ pt, x, vq ˇˇ2 2 |M δ pt, x, vq| 2 B t M δ pt, x, vqdxdµpvq " A ε,δ ptq `Bε,δ ptq `Cε,δ ptq with A ε,δ ptq " 1 ε 2 ij f ε,δ pt, x, vq M δ pt, x, vq Lf ε,δ pt, x, vqdxdµpvq B ε,δ ptq " ´1 ε ij f ε,δ pt, x, vq M δ pt, x, vq papvq `εbpvqq ¨∇x f ε,δ pt, x, vqdxdµpvq C ε,δ ptq " ´ij ˇˇf ε,δ pt, x, vq ˇˇ2 M δ pt, x, vq ˆσpm δ q `Bt M δ 2M δ ˙pt, x, vqdxdµpvq.
Note that the third term vanishes: C ε,δ ptq " 0 for all t ě 0. Indeed, the definition of the weight function M δ yields the identity σpm δ q `BtM δ 2M δ " 0. Using the identity f ε,δ " ρ ε,δ M ´Lf ε,δ and the property ş V Lf ε,δ pt, x, vqdµpvq " 0, the first term A ε,δ ptq is written as follows: for all t ě 0,

A ε,δ ptq " 1 ε 2 ij f ε,δ pt, x, vq M δ pt, x, vq Lf ε,δ pt, x, vqdxdµpvq " 1 ε 2 ż T d e 2η δ pt,xq ρ ε,δ pt, xq ż V Lf ε,δ pt, x, vqdµpvqdx ´1 ε 2 ij ˇˇLf ε,δ pt, x, vq ˇˇ2 M δ pt, x, vq dµpvqdx " ´1 ε 2 › › Lf ε,δ ptq › › 2 L 2 pM δ ptq ´1q .
The treatment of the second term B ε,δ ptq requires technical computations. Using an integration by parts arguments, for all t ě 0 one obtains

B ε,δ ptq " ´1 ε ij papvq `εbpvqq ¨f ε,δ pt, x, vq∇ x f ε,δ pt, x, vq M δ pt, x, vq dxdµpvq " ´1 ε ij papvq `εbpvqq ¨1 2 ˇˇf ε,δ pt, x, vq ˇˇ2 ∇ x M δ pt, x, vq |M δ pt, x, vq| 2 dxdµpvq " 1 ε ij papvq `εbpvqq ¨∇x η δ pt, xq ˇˇf ε,δ pt, x, vq ˇˇ2 M δ pt, x, vq dµpvqdx.
Using again the identity f ε,δ " ρ ε,δ M ´Lf ε,δ then gives, for all t ě 0, 

B ε,δ ptq " 1 ε ż T d e 2η δ pt
ż V M δ pt, x, vqdµpvqdx " › › f ε,δ ptq › › 2 L 2 pM δ ptq ´1 q , ( 49 
)
since ş V M δ pt, x, vqdµpvq " e ´2η δ pt,xq for all t ě 0 and all x P T d . As a consequence, using the inequality (47), for all t P r0, τ δ ^T s, one has

ˇˇB 1 ε,δ ptq ˇˇď }b} L 8 p1 `T }σ} C 1 x q › › f ε,δ ptq › › 2 L 2 pM δ ptq ´1q .
• Using the condition ε ď ε 0 with ε 0 satisfying (14), and the inequality (47), for t P r0, τ δ ^T s one has ˇˇB 2 ε,δ ptq ˇˇď

1 4ε 2 › › Lf ε,δ ptq › › 2 L 2 pM δ ptq ´1 q .
• Using Young's inequality, then using the inequalities (47) and (49), one obtains, for all t P r0, τ δ ^T s,

ˇˇB 3 ε,δ ptq ˇˇď 4p}a} L 8 `}b} L 8 q 2 › › ∇ x η δ ptq › › 2 Cx ż T d e 2η δ pt,xq ˇˇρ ε,δ pt, xq ˇˇ2 dx `1 4ε 2 › › Lf ε,δ ptq › › 2 L 2 pM δ ptq ´1 q ď 4p}a} L 8 `}b} L 8 q 2 p1 `T }σ} C 1 x q 2 › › f ε,δ ptq › › 2 L 2 pM δ ptq ´1q `1 4ε 2 › › Lf ε,δ ptq › › 2 L 2 pM δ ptq ´1q .
Gathering the estimates, one obtains the following inequalities: for all t P r0, τ δ ^T s,

|B ε,δ ptq| ď C 0 pT q › › f ε,δ ptq › › 2 L 2 pM δ ptq ´1 q `1 2ε 2 › › Lf ε,δ ptq › › 2 L 2 pM δ ptq ´1q and 1 2 B t › › f ε,δ ptq › › 2 L 2 pM δ ptq ´1q `1 2ε 2 › › Lf ε,δ ptq › › 2 L 2 pM δ ptq ´1 q ď C 0 pT q › › f ε,δ ptq › › 2 L 2 pM δ ptq ´1q .
where C 0 pT q P p0, 8q is a deterministic real number, and does not depend on ε, δ. Applying Gronwall's inequality, for all t P r0, τ δ ^T s, one gets

› › f ε,δ ptq › › 2 L 2 pM δ ptq ´1 q `1 2ε 2 ż t 0 › › Lf ε,δ psq › › 2 L 2 pM δ ptq ´1q ds ď CpT q › › ›f ε,δ 0 › › › 2 L 2 pM ´1 q ,
where CpT q P p0, 8q is a deterministic real number, and does not depend on ε, δ. Finally, using (48), one obtains the a priori estimate (18), which concludes the proof of Proposition 4.2.

Construction of the perturbed test function ϕ ε,δ

The objective of this section is to prove Proposition 4.3: more precisely, given a test function ϕ P Θ lim (which only depends on ρ " f ), we construct the four correctors ϕ 1,0 , ϕ 2,0 , ϕ 0,2 and ϕ 1,2 , such that the perturbed test function ϕ ε,δ defined by (23) satisfies the error estimates ( 24) and (29), and appropriate upper bounds. Below, we first state auxiliary results concerning solutions of Poisson equations. The expression of L ε,δ ϕ ε,δ is then expanded in powers of ε and δ, and the resulting equality yields a family of equations to be satisfied by the correctors in order to satisfy (24). The correctors are finally constructed successively as solutions of appropriate Poisson equations. Eventually, it only remains to check the required regularity properties and upper bounds, this step follows from straightforward computations.

Auxiliary results on Poisson equations

As will be clear below, the construction of the correctors requires to solve Poisson equations of the type ´L2 ψpf, q " ϑpf, q (where is considered as a fixed parameter) and ´Lm ψpf, q " ϑpf, q (where f is considered as a fixed parameter). We describe below the corresponding centering conditions which are needed for the solvability of those Poisson equations, and give the expressions of the solutions.

To solve the first class of Poisson equations, let us introduce the process pg f ptqq tPR `, associated with the infinitesimal generator L 2 , with the initial condition g f p0q " f : for all t ě 0, one has g f ptq " ρM `e´t pf ´ρMq , where ρ " f " g f ptq for all t ě 0.

The solvability of the first class of Poisson equations ´L2 ψ " ϑ is ensured when the following centering condition is satisfied: for all ρ P L 2

x and all P E, ϑpρM, q " 0.

If (50) is satisfied, then the function ψ defined by ψpf, q "

ż 8 0 ϑpg f ptq, qdt, (51) 
for all f P L 2 pM ´1q and P E, is a solution of the Poisson equation ´L2 ψ " ϑ. It is the unique solution such that ψpρM, q " 0 for all ρ P L 2 x and P E. The solvability of the second class of Poisson equations ´Lm ψ " ϑ is ensured when the following centering condition is satisfied: for all f P L 2 pM ´1q, ż E ϑpf, qdνp q " 0.

(52)

If ( 52) is satisfied, then the function ψ defined by ψpf, q "

ż 8 0 E rϑpf, m ptqqs dt. ( 53 
)
for all f P L 2 pM ´1q and P E, is a solution of the Poisson equation ´Lm ψ " ϑ. It is the unique solution such that ş ψpf, qdνp q " 0 for all f P L 2 pM ´1q. In the sequel, the following class of functions ϑ is considered. For all h, k P L 2

x , define θ h,k p q " phσp q, kq L 2

x for all P E. Observe that θ h,k P E ˚pσq (see Definition 2.1). For all f P L 2 pM ´1q and P E, set ϑ h,k pf, q " θ h,k pnq ´θh,k , with θ h,k " ş θ h,k p qdνp q " phσ, kq L 2 x . For such functions ϑ h,k , the solution of the Poisson equation ´Lm ψ

h,k " ϑ h,k " θ h,k ´θh,k is given by ψ h,k " R 0 `θh,k p q ´θh,k ˘,
where the resolvent operator R 0 is introduced in Definition 2.1. Using the estimate (6) and the to Riesz representation Theorem, for all P E, there exists a bounded linear operator R 0 p q : L 2 x Ñ L 2 x such that, for all P E and h, k P L 2 x , ψ h,k p q " pR 0 p qh, kq L 2 . Let us state some useful properties of the operators R 0 p q. piq For all P E, R 0 p q is self-adjoint.

piiq For all P E and h P L 2

x , one has

}R 0 p qh} L 2 À }h} L 2 p1 `} } E q .
piiiq For all P E and all h P H 1 x , one has R 0 p qh P H 1 x , and

}R 0 p qh} H 1 x À }h} H 1 x p1 `} } E q .
The proof of Claim piq is straightforward: for all h, k P L 2 x , θ h,k " θ k,h , thus ψ h,k " ψ k,h , which gives for all P E pR 0 p qh, kq L 2 " ph, R 0 p qkq L 2 .

Claim piiq follows from the estimate (6): one has |ψ h,k p q| À }h}

L 2 }k} L 2 p1 `} } E q, since Lippθ h,k q ď Lippσq }h} L 2 }k} L 2 .
Finally, Claim piiiq is obtained as follows: since

E P C 1 x , one has }θ h,k } LippEq ď }h} H 1 x }k} H ´1 x if h P H 1 x and k P L 2 x . Using the estimate (6) then gives |ψ h,k p q| À }h} H 1 x }k} H ´1 x p1 `} } E q.

Multiscale expansion and family of Poisson equations

Let ϕ ε,δ be of the form (23), where the correctors are not known at this stage. Then L ε,δ ϕ ε,δ is expressed as follows:

L ε,δ ϕ ε,δ " ε ´2L 2 ϕ `δ´2 L m ϕ `ε´1 pL 1 ϕ `L2 ϕ 1,0 q `εδ ´2L m ϕ 1,0 `pL 0 ϕ `L1 ϕ 1,0 `L2 ϕ 2,0 `Lm ϕ 0,2 q `ε´2 δ 2 L 2 ϕ 0,2 `ε2 δ ´2L m ϕ 2,0 `ε pL 0 ϕ 1,0 `L1 ϕ 2,0 `Lm ϕ 1,2 q `ε´1 δ 2 pL 1 ϕ 0,2 `L2 ϕ 1,2 q `ε2 L 0 ϕ 2,0 `δ2 L 0 ϕ 0,2 `δ2 L 1 ϕ 1,2 `εδ 2 L 0 ϕ 1,2 ,
where each line on the right-hand side corresponds to expressions of degree ´2, . . . , 3 in terms of the variables ε, δ. The goal is to construct the correctors such that L ε,δ ϕ ε,δ ´Lϕ goes to 0 when pε, δq Ñ p0, 0q, more precisely such that (24) holds. The following family of conditions provide sufficient conditions on the correctors to satisfy (24): on the one hand, the correctors solve the following system of equations,

L 2 ϕ " L m ϕ " 0, (54) 
L 1 ϕ `L2 ϕ 1,0 " L m ϕ 1,0 " 0, (55) 
L 0 ϕ `L1 ϕ 1,0 `L2 ϕ 2,0 `Lm ϕ 0,2 " Lϕ, (56) 
L 2 ϕ 0,2 " L m ϕ 2,0 " 0, (57) 
L 1 ϕ 0,2 `L2 ϕ 1,2 " 0, (58) 
on the other hand, the following estimates are satisfied,

|L 0 ϕ 1,0 pf, q| `|L 1 ϕ 2,0 pf, q| `|L m ϕ 1,2 pf, q| `|L 0 ϕ 2,0 pf, q| À p1 `}f } 3 L 2 pM ´1q qp1 `} } E q, ( 59 
) |L 0 ϕ 0,2 pf, q| `|L 1 ϕ 1,2 pf, q| `|L 0 ϕ 1,2 pf, q| À p1 `}f } 3 L 2 pM ´1 q qp1 `} } 2 E q, (60) 
for all f P L 2 pM ´1q and P E. The estimates (25), (26), ( 26) and (28) are byproducts of the constructions of the correctors below.

Observe that the last equation in the system, Equation (58), would not appear if ε " δ, or if a constraint of the type ε ´1δ 2 Ñ 0 is satisfied. In the expression of L ε,δ ϕ ε,δ above, the condition (58) corresponds to a contribution of the term of degree 1. One of the novelties of this work is to consider the general case, hence the need to construct the corrector ϕ 1,2 . On the contrary, as will be clear below, the condition (57) on the correctors ϕ 0,2 and ϕ 2,0 is simpler to treat, it only means that ϕ 0,2 pf, q " ϕ 0,2 pρM, q and ϕ 2,0 pf, q " ϕ 2,0 pf q. In the case ε " δ, this only consists in writing the corrector ϕ 2 of order 2 as a sum of two terms ϕ 2,0 `ϕ0,2 .

Recall that the test function ϕ belongs to the class of test functions Θ lim (see Definition 4.2): ϕpf, q " χppρ, ξq L 2 x q. In the sequel, to simplify the expressions, we use the notation χ ρ " χppρ, ξq L 2 x q, χ 1 ρ " χ 1 ppρ, ξq L 2 x q, and similar notation for the higher order derivatives χ 2 ρ and χ 3 ρ . Let us explain how the rest of this section proceeds. We first check that (54) holds when ϕ is a function in the class Θ lim . Then, we successively construct the correctors ϕ 1,0 , ϕ 2,0 and ϕ 0,2 , and ϕ 1,2 , as solutions of Poisson equations, using the tools above. We finally check that (59) and (60) holds. The proof of Proposition 4.3 is concluded when all those steps are completed.

Verification of the condition (54)

The function ϕ is in the class Θ lim : as a consequence ϕpf, q " ϕpρMq does not depend on , and only depends on f through ρ " f . It is then straightforward to check that L m ϕpf, q " L 2 ϕpf, q " 0 for all f P L 2 pM ´1q and P E. Therefore (54) holds.

5.3.4

Construction of the corrector ϕ 1,0 using the condition (55) First, using (53), the condition L m ϕ 1,0 " 0 implies that ϕ 1,0 is independent of : ϕ 1,0 pf, q " ϕpf q for all f P L 2 pM ´1q, P E.

Second, ϕ 1,0 is the solution of the Poisson equation ´L2 ϕ 1,0 pf q " L 1 ϕpf q " ´χ1 ρ p Af , ξq L 2

x .

The centering condition (50) is satisfied for ϑ " L 1 ϕ, indeed AρM " 0 for all ρ P L 2 x . Using the expression (51), one thus defines the corrector ϕ 1,0 as follows: for all f P L 2 pM ´1q and P E, set ϕ 1,0 pf, q " ż 8 0 L 1 ϕpg f ptqqdt.

Recall that g f ptq " ρ and Ag f ptq " e ´t Af for all t ě 0, thus one has, for all f P L 2 pM ´1q and P E, ϕ 1,0 pf, q " ´ż 8 0 e ´tχ 1 ρ p Af , ξq L 2 x dt " ´χ1 ρ p Af , ξq L 2

x " χ 1 ρ pf, Aξq L 2 , (61) using an integration by parts argument in the last equality. Using the expression (61), it is then straightforward to check that the estimate (25) is satisfied. This concludes the construction of the corrector ϕ 1,0 . 5.3.5 Construction of the correctors ϕ 2,0 and ϕ 0,2 using the conditions (56)-(57)

It is required to combine the two conditions (56) and (57) in order to build the correctors ϕ 2,0 and ϕ 0,2 .

First, using (53), the condition L m ϕ 2,0 " 0 implies that ϕ 2,0 is independent of : ϕ 2,0 pf, q " ϕpf q for all f P L 2 pM ´1q, P E. Similarly, using (51), the condition L 2 ϕ 0,2 " 0 implies that ϕ 0,2 pf, q " ϕ 0,2 pρM, q, with ρ " f , for all f P L 2 pM ´1q, n P E.

Second, observe that one has L 0 ϕpf, q `L1 ϕ 1,0 pf, q " ´χ1 ρ pσp qρ, ξq L 2 x ´χ1 ρ p Bf , ξq L 2 x ´χ2 ρ p Af , ξq L 2 x pf, Aξq L 2 ´χ1 ρ pAf, Aξq L 2 " ϑ 0,2 pρM, q `ϑ2,0 pf q, for all f P L 2 pM ´1q and P E, where the auxiliary functions ϑ 0,2 and ϑ 2,0 are defined as follows: ϑ 0,2 pρM, q " ´χ1 ρ pσp qρ, ξq L 2 x ϑ 2,0 pf q " χ 1 ρ pf, Bξq L 2 `χ2 ρ p Af , ξq Indeed, AρM " 0 for all ρ P L 2 x . As a consequence, the correctors ϕ 2,0 and ϕ 0,2 are constructed as the solutions of the Poisson equations ´L2 ϕ 2,0 pf q " pϑ 2,0 pf q ´ϑ2,0 pρMqq , (62) ´Lm ϕ 0,2 pρM, q " ˆϑ0,2 pρM, q ´żE ϑ 0,2 pρM, ¨qdν ˙.

Indeed, if (62) and (63) are satisfied, then the arguments above show that the conditions (56) and (57) hold. It remains to solve the two Poisson equations, and to check that the estimates (26) and ( 27) are satisfied.

On the one hand, the centering condition (50) is satisfied, and (51) gives the following definition for ϕ 2,0 : for all f P L 2 pM ´1q, set ϕ 2,0 pf q " ż 8 0 pϑ 2,0 pg f ptqq ´ϑ2,0 pρMqq dt (64) Using the properties g f ptq " ρ, Ag f ptq " e ´t Af and g f ptq ´ρM " e ´t pf ´ρMq, for all t ě 0, one obtains the following expression for ϕ 2,0 : for all f P L 2 pM ´1q, ϕ 2,0 pf q " ż 8 0 χ 2 ρ p Ag f ptq , ξq Using the expressions (65) and (66), it is then straightforward to check that the estimates (26) and (27) are satisfied. This concludes the construction of the correctors ϕ 2,0 and ϕ 0,2 .

Construction of the corrector ϕ 1,2 using the condition (58)

The last step in the construction of the correctors, is to define ϕ 1,2 : owing to (58), it is constructed as the solution of the Poisson equation ´L2 ϕ 1,2 " L 1 ϕ 0,2 . Using the expression (66) of ϕ 0,2 , one has L 1 ϕ 0,2 pf, q " χ 2 ρ p Af , ξq L 2 x pρ, R 0 p qξq L 2 x `χ1 ρ p Af , R 0 p qξq L 2

x , for all f P L 2 pM ´1q and P E. Note that the centering condition (50) is satisfied: for all ρ P L 2 x and P E, one has L 1 ϕ 0,2 pρM, q " 0, since AρM " 0. Therefore, ϕ 1,2 is defined using (51): for all f P L 2 pM ´1q and P E, ϕ 1,2 pf, q " ż 8 0 L 1 ϕ 0,2 pg f ptq, qdt.

Using the properties g f ptq " ρ and Ag f ptq " e ´t Af for all t ě 0, one obtains the following expression for ϕ 1,2 : for all f P L 2 pM ´1q and P E, ϕ 1,2 pf, q " 

ż
) 67 
Using the expression (67), it is then straightforward to check that the estimate (28) is satisfied. This concludes the construction of the corrector ϕ 1,2 .

Verification of the conditions (59)-(60)

Note that ϕ ε,δ defined by (23) belongs to the class of functions Θ given in Definition 4.3. It thus only remains to check that the conditions (59) and (60) hold. This is done using the following expressions: for all f P L 2 pM ´1q and P E, one has L 0 ϕ 1,0 pf, q " ´χ2 ρ pσp qρ ` Bf , ξq It is then straightforward to check that (59) and ( 60) hold. This concludes the proof of Proposition 4.3.

  sup tPr0,T s ˇˇˇˇB |β| ζ δ,τ δ pt, xq Bx β ˇˇˇˇ2 fi fl dx À 1. The arguments explained above then yield the result: for all T P p0, 8q, P `τ δ ζ ă T ˘À δ 2p1´pq `P `τ δ m ă T ˘Ñ δÑ0 0, therefore one has τ δ ζ Ñ 8 in probability. Since τ δ " τ δ m ^τ δ ζ , the proof of Proposition 4.1 is completed.

  ξ P H 2 x and define the test function ϕ r P Θ lim by ϕ r pρq " χ r ´pρ, ξq L 2 On the other hand, owing to Proposition 4.6, one has, for all t ě 0, ϕ S pρ 8 ptqq " ϕ S pρ 8 p0qq `ż t

			¯.
			x
	Since ρ 8 P C 0 T H ´ς x almost surely, the random variable
	S	. " sup tPr0,T s	ˇˇpρ8ptq, ξq L 2
			0

x ˇˇ, is finite almost surely. On the one hand, by the definition of S, one has ϕ S pρ 8 ptqq " pρ 8 ptq, ξq L 2 x and similarly Lϕ S pρ 8 ptqq " pρ 8 ptq, divpK∇ξq `J ¨∇ξ ´σξq L 2

x , for all t ě 0.

  equation (14.11)]): for all ∆ P r0, T s and all X P C 0 We refer to [Bil99, Theorems 8.2 and 15.2] for tightness criteria in the spaces C 0 T H ´ς x and D T H ´ς . As a consequence, tightness in D T H ´ς x of a family a family of processes `Xε,δ ˘ε,δ implies its tightness in C 0 T H ´ς x . Observe that tightness in D T H ´ς is easier to prove than tightness in C 0 T H ´ς x , owing to [Jak86, Theorem 3.1]. More precisely, since the class of functions Θ lim is closed under addition and separates points, tightness of a family `Xε,δ ˘ε,δ in the Skorokhod space D T H ´ς is equivalent to the following claims:

	T H ´ς x , one
	has
	w X p∆q ď 2w 1 X p∆q.

  ,xq ˇˇρ ε,δ pt, xq ˇˇ2 ∇ x η δ pt, xq ¨ˆż Let us now treat successively the three terms appearing on the right-hand side above.• Owing to Assumption 1 and to the definition of J, one has ş V papvq `εbpvqqMpvqdµpvq " εJ.

									papvq `εbpvqqMpvqdµpvq ˙dx
									V
		`1 ε	ij	papvq `εbpvqq ¨∇x η δ pt, xq	ˇˇLf ε,δ pt, x, vq M δ pt, x, vq	ˇˇ2	dµpvqdx
		´2 ε	ij	papvq `εbpvqq ¨∇x η δ pt, xqρ ε,δ pt, xqLf ε,δ pt, x, vq	Mpvq M δ pt, x, vq	dµpvqdx
		" B 1 ε,δ ptq `B2 ε,δ ptq `B3 ε,δ ptq.
	Therefore						
				ˇˇB 1 ε,δ ptq ˇˇ" ˇˇˇż T d	e 2η δ pt,xq ˇˇρ ε,δ pt, xq	ˇˇ2 J ¨∇x η δ pt, xqdx ˇˇď
									ż
					}b} L 8	› › ∇ x η δ ptq	› › Cx	T d	e 2η δ pt,xq ˇˇρ ε,δ pt, xq	ˇˇ2 dx.
	Owing to the Cauchy-Schwarz inequality, one obtains
	ż T d	e 2η δ pt,xq ˇˇρ ε,δ pt, xq	ˇˇ2 dx ď	ż T d	e 2η δ pt,xq	ż V	ˇˇ2 M δ pt, x, vq ˇˇf ε,δ pt, x, vq	dµpvq

  Note that using (21), for all ρ P L 2x , one has Lϕpρq " χ 1 ρ pρ, div x pK∇ x ξqq L 2

				x	`χ1 ρ pρ, J ¨∇x ξq L 2 x	´χ1 ρ pρ, σξq L 2 x
	" χ 1 ρ `ρ, K : ∇ 2 x ξ ˘L2 x	`χ1 ρ pρ, J ¨∇x ξq L 2 x	´χ1 ρ pσρ, ξq L 2 x
	" χ 1 ρ `ρM, A 2 ξ `Bξ ˘L2	´χ1 ρ pσρ, ξq L 2 x
	" ϑ 2,0 pρMq	`żE	ϑ 0,2 pρM, ¨qdν
	" ϑ 2,0 pρMq	`żE	ϑ 0,2 pρM, ¨qdν.
				2 L 2 x	`χ1 ρ `f, A 2 ξ ˘L2
	" χ 2 ρ p Af , ξq	2 L 2 x	`χ1 ρ `f, A 2 ξ `Bξ ˘L2 ,

  On the other hand, the centering condition (52) is satisfied, and (53) gives the following definition for ϕ 0,2 : for all ρ P L 2x and P E, set

							2 L 2 x	dt	0 `ż 8	χ 1 ρ `gf ptq ´ρM, A 2 ξ `Bξ ˘L2 dt
	"	ż 8 0	e ´2t χ 2 ρ p Af , ξq 2 L 2 x dt	0 `ż 8	e ´tχ 1 ρ `f ´ρM, A 2 ξ `Bξ ˘L2 dt
	"	1 2	χ 2 ρ p Af , ξq 2 L 2 x	`χ1 ρ `f ´ρM, A 2 ξ `Bξ ˘L2
	"	1 2	χ 2 ρ pf, Aξq	2 L 2	`χ1	(65)
					ż 8	"	
	ϕ 0,2 pf, q "		E	ϑ 0,2 pρM, m ptqq	´żE	ϑ 0,2 pρM, ¨qdν	dt
					0	
				"	´ż 8 0	E	" χ 1 ρ ppσpm ptqq ´σqρ, ξq L 2 x	ı	dt
				" ´χ1 ρ pρ, R 0 p qξq L 2 x .	(66)

ρ `f ´ρM, A 2 ξ `Bξ ˘L2 .

  Af , ξq L 2 x pρ, R 0 p qξq L 2

	8 0	e	´t ´χ2		x	`χ1 ρ p Af , R 0 p qξq L 2 x	¯dt
	" χ 2 ρ p Af , ξq L 2 x	pρ, R 0 p qξq L 2 x	`χ1	

ρ p ρ p Af , R 0 p qξq L 2 x " ´χ2 ρ pf, Aξq L 2 pρ, R 0 p qξq L 2 x ´χ1 ρ pf, ApR 0 p qξqq L 2 . (

  L m ϕ 1,2 pf, q " χ 2 ρ pf, Aξq L 2 pρ, σp qξq L 2 Aξq L 2 pσp qf `Bf, Aξq L 2 ´χ2 ρ pσp qρ ` Bf , ξq L 2 x `f ´ρM, A 2 ξ `Bξ ˘L2 ´χ1 ρ `σp qpf ´ρMq `Bpf ´ρMq, A 2 ξ `Bξ ˘L2 , L 0 ϕ 0,2 pf, q " ´χ2 ρ pσp qρ ` Bf , ξq L 2 R 0 p qξq L 2 x ´χ2 ρ pf, Aξq L 2 pρ, ApR 0 p qξqq L 2 x ´χ2 ρ pf, Aξq L 2 pf, ApR 0 p qξqq L 2 ´χ1 ρ `f, A 2 pR 0 p qξq ˘L2 , L 0 ϕ 1,2 pf, q " χ 2 ρ pσp qρ ` Bf , ξq L 2 x pf, Aξq L 2 pρ, R 0 p qξq L 2 Aξq L 2 pσp qρ ` Bf , R 0 p qξq L 2 ApR 0 p qξqq L 2`χ1 ρ pσp qf `Bf, ApR 0 p qξqq L 2 .

	L 1 ϕ 1,2 pf, q " ´χ3 ρ pf, Aξq 2 L 2 pρ, R 0 p qξq L 2 x	´χ2 ρ `f, A 2 ξ ˘L2
						x	`χ2 ρ pσp qf Bf, Aξq L 2 x pρ, R 0 p qξq L 2 x
	`χ2 ρ pf, x	`χ2 ρ pσp qρ ` Bf , ξq L 2 x	pf,
						L 2 x	pf, Aξq L 2	´χ1 ρ pσp qf, Aξq L 2 ,
	L 1 ϕ 2,0 pf, q "	1 2	χ 3 ρ pf, Aξq	3 L 2	`χ2
						x	`χ1 ρ pf, Apσp qξqq L 2 ,
	L 0 ϕ 2,0 pf, q "	´1 2	χ 3 ρ pσp qρ ` Bf , ξq L 2 x ρ pf, x pf, Aξq 2 L 2 ´χ2 pR 0 p qρ, ξq L 2 x ´χ1 ρ pσp qρ ` Bf , R 0 p qξq L 2 x ,

ρ pf, Aξq L 2 `f, A 2 ξ ˘L2 `χ2 ρ pf, Aξq L 2 `f ´ρM, A 2 ξ `Bξ ˘L2 `χ1 ρ `f ´ρM, A 3 ξ `ABξ ˘L2 , x pρ,
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