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Abstract

We consider a class of stochastic kinetic equations, depending on two time scale separation
parameters € and d: the evolution equation contains singular terms with respect to €, and is
driven by a fast ergodic process which evolves at the time scale t/62. ‘We prove that when
(e,6) — (0,0) the density converges to the solution of a linear diffusion PDE. This is a
mixture of diffusion approximation in the PDE sense (with respect to the parameter ¢) and
of averaging in the probabilistic sense (with respect to the parameter ¢). The proof employs
stopping times arguments and a suitable perturbed test functions approach which is adapted
to consider the general regime € # 4.

1 Introduction

Multiscale and/or stochastic models are popular in all fields of science and engineering. In this
paper, we consider a stochastic kinetic partial differential equation of the type

00 + %a(v) Ve fS0 +b(v) - Vo fS +a(m’(t,2)) [0 = E%L fe0, (1)

with initial condition f°(0) = foe"s. The unknow £ is a function of time ¢ > 0, position z € T¢
(the flat d-dimensional torus) and velocity v € V. Assumptions on the velocity fields ¢ and b and
on the mapping o are given below (see Section 2). Note that f5°(t,z,v) may be interpreted as
a density of particles with position z and velocity v at time ¢; the system is not conservative
(the integral of f5 is not constant) due to the source term o (m?)f%°. In addition, the linear
operator L describes interactions between the particles: in this paper, we assume that L is the
Bhatnagar-Gross-Krook operator, given by

Lf=pM—f,

where p is a o-finite measure on V, the spatial density is defined by p = (f) = SV fdu, and where
M e LY(V,dp) is a density function, often called the Maxwellian (see Assumption 1).

The evolution equation (1) depends on the so-called driving process m?, defined as follows:
one has m?(t,z) = m(t/6?, x).
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The stochastic evolution equation (1) depends on two parameters € and . In this paper, we
are interested in the asymptotic behavior when (g,d) — (0,0). We prove the following result:
p=% = (f=°) converges to the solution p of the following partial differential equation:

0p+J-Vp+op=div(KVp), (2)

where J, @ and K are defined below, with initial condition 5(0) = p, = lim p=°(0). We refer
to the main results of this paper, Theorems 3.2 and 3.3 for rigorous statements, in particular
concerning the mode of convergence. Let us describe how the form of the limit equation (2) arises
in the asymptotic regime.

On the one hand, the parameter € drives the behavior of the deterministic part of the evolution.
Under appropriate assumptions (including a centering condition for the velocity field a), the
spatial density p*° = (f )E’(S converges when £ — 0 to the solution of a diffusion partial differential
equation, where the velocity variable v has been eliminated. In the literature, such convergence
results are referred to as diffusion approximation results, see for instance [DGP00]. The result
is also partly an averaging result, since the term b(v) - V, is replaced in the limit equation by
J -V, where J is the average of b (with respect to an appropriate measure).

On the other hand, the parameter ¢ is a time-scale separation parameter which determines the
random part of the evolution. When the process m such that mo(t, z) = m(t/6%, ) is assumed
to be ergodic (see Section 2, for instance one may consider an Ornstein-Uhlenbeck process), the
randomness may be eliminated when 6 — 0: only the average & of o(m) with respect to the
invariant distribution remains in the limit evolution equation (it is a law of large numbers effect).
In the literature, such convergence results are referred to as averaging principle results.

In this paper, we thus prove the mixture of an diffusion approximation result in the PDE
sense, and of an averaging principle result in the probability sense, when simultaneously ¢ — 0
and 0 — 0. To the best of our knowledge, this regime has not been considered in the literature so
far. Note that one of the major tasks in the analysis is to consider the general case when € and §
go to 0 independently. Indeed, the analysis would be simpler if € = §. Note also that it would be
simpler if e =0 and § — 0, or if ¢ — 0 and ¢ = 0, 7.e. if the limits are taken successively. The
latter case is not included in the analysis but may be handled with similar techniques. The limit
equation (2) is the same in all regimes.

For deterministic problems (o = 0), diffusion approximation results have been extensively
studied. We refer for instance to [LK74, BLP79]. Kinetic models with small parameters appear
in various situations, for example when studying semi-conductors [GP92] and discrete velocity
models [LT97], or as limits for description of systems of particles, either with a single particle
[GRO9] or multiple particles [PV03]. The asymptotic behavior of stochastic kinetic multiscale
problems have also been recently studied: we refer to the seminal article [DV12], and the more
recent contributions [DV20, DRV20, RR20]. In those works, the authors have obtained diffusion
approximation results both in the PDE and the probabilistic senses: the limit equation is a
stochastic linear diffusion PDE driven by a Wiener process (with Stratonovich interpretation).
Indeed, in those works o(m?) (with § = ¢) is replaced by m®/§ in (1), and the authors assume
that the driving process m® satisfies an appropriate centering condition. In the present article,
we consider a law of large numbers regime (hence the averaging principle result), instead of a
central limit theorem regime. In spite of this fundamental difference, the setting is very close
to [RR20]: in particular a major technical difficulty which is solved in this paper is to avoid
boundedness assumptions on the driving process m, using only moment conditions, which allow
us to encompass for instance Ornstein-Uhlenbeck processes.

The literature concerning the averaging principle for stochastic differential equations and
stochastic partial differential equations is huge. The averaging principle in the SDE case has
been introduced in the seminal reference [Kha68], see also the monograph [PS08] and references



therein. In the SPDE case, authors have mainly studied the averaging principle for parabolic
semilinear SPDE systems, see for instance [Cer09, CF09, Brél2, Bré20, RXY20] and references
therein. Let us also mention the recent preprints [CX20, XY21] where diffusion approximation
results are proved for such systems. The list of references above is not exhaustive.

The first main result of this manuscript is Theorem 3.2: the convergence of p*9 = < f€’5>
to p is understood as convergence in distribution (in the probabilistic sense), in the space
C°([0,T], H=<(T%)), for all arbitrarily small positive . Under an additional assumption (which
allows us to employ an averaging lemma), the convergence holds in the space L2([0,T], L?(T%)),
see the second main result of this manuscript, Theorem 3.3. The functional spaces above are
the standard spaces where convergence holds in the deterministic case. The convergence in
distribution is the natural mode of the convergence for the probabilistic variable. However, since
the limit equation (2) is deterministic, if the limit initial condition 7, is also deterministic, then
the convergence holds in probability.

Let us now describe the main tools for the proof of the main results of this manuscript. We
follow a martingale problem approach combined with the perturbed test functions method, as in
the classical article [PSV77] (see also [Kus84, EK86, FGPSI07, PS08, dBG12]). Perturbed test
functions in the context of PDEs with diffusive limits applies in various situations, for instance in
the context of viscosity solutions [Eva89], nonlinear Schréodinger equations [dBG12], a parabolic
PDE [PP03] or, as in this article, kinetic SPDEs [DV12, DV20, DRV20, RR20].

The idea of the perturbed test function is to identify the limit generator £ of the limit
equation (2) as 5

: e,0, &,
Lo = (5)6%1_1’)1%0)0)£ v
where ¢ = ©(p) is an arbitrary test function (depending only on the spatial density variable
p = (f) appearing in the limit equation), and ©*° = ©=9(f,m) is the perturbed test function
given by
(,08’6 =p+epro+ 62902’0 + (52(,00,2 + 552@1’2.

We refer to Proposition 4.3 for a rigorous statement. Note that due to the assumption that in
general € # §, the construction of the perturbed test function requires to define the corrector ¢y 2
(corresponding to the term of the order £62). This corrector does not appear in the analysis if
¢ = 6. The construction of ¢; o is one of the novelties of this manuscript.

In addition, like in the preprint [RR20], the driving process is not assumed to be bounded
(like in [DV12] for instance), and only moment conditions are satisfied. This generalization allows
us for instance to consider Ornstein-Uhlenbeck processes. The introduction of stopping times
arguments is required, hence the need to control the asymptotic behavior of the stopping times
79 when 6§ — 0. Note that we prove below that 70 — oo in probability: the arguments to prove
convergence are thus simpler than in [RR20].

The main result of this manuscript is the convergence of p=? to p. In future works, it may
be interesting to study the fluctuations, i.e. to prove that p=°® — 75, properly rescaled, converges
in distribution to a Gaussian process, solution of a linear stochastic evolution equation. Again
the use of the perturbed test functions approach may be a suitable approach. It would also be
interesting to investigate rates of convergence, both in the strong and weak senses, in the spirit
of [Brél2, Bré20] concerning parabolic systems, using Kolmogorov equations techniques. Finally,
the validity of diffusion approximation and averaging principle results is fundamental for the
efficient numerical simulation of the systems. In the deterministic setting, there has been a lot
of activity to develop asymptotic preserving and uniformly accurate numerical methods, see for
instance [Jin99, Jin12]. An asymptotic preserving scheme has been proposed in [AF19] for a class
of kinetic stochastic equations in the diffusion approximation regime. In a future work [BHRR21],



we plan to investigate the generalization of the asymptotic preserving schemes introduced and
analyzed in the recent preprint [BRR20] for stochastic differential equations.

The manuscript is organized as follows. The setting is described in Section 2 (in particular
precise assumptions concerning the driving process m are provided). The main results, Theo-
rems 3.2 and 3.3, are stated and discussed in Section 3. Section 4 is devoted to the proofs of the
main results, using martingale problem formulations, tightness arguments and identification of
the limit. Auxiliary fundamental results are stated there: first, Proposition 4.1 concerning the
asymptotic behavior of the stopping time; second, Proposition 4.2 providing an a priori estimate
in an appropriate weighted L? norm, uniformly with respect to ¢, §; third, Proposition 4.3 giving
the details on the perturbed test functions. The proofs of those three auxiliary results are given
in Section 5. Note that these three results are essential, and their proofs are given in a separate
section since they are the most original technical contributions of this manuscript (compared
with the more standard strategy described in Section 4).

2 Setting

2.1 Notation

The solution f%9 of the stochastic kinetic problem considered in this article is a process & :
(t,z,v) € [0,00) x T? x V — R, where V is a measurable space, equipped with a o-finite measure
u, and T? denotes the flat d-dimensional torus.

Let us introduce the standard Hilbert spaces L? = L?(T¢ R) and L? = L*(T? x V,R) of
real-valued functions, with inner products defined as follows:

(k) = |

hMx)k(z)dx, (h,k);- =J h(z,v)k(z,v)dedu(v).
Td

TixV
The associated norms are denoted by ||, and || .. respectively.

The following notation is used in the sequel: for all f € L*(T? x V), let p € L'(T¢) be defined
by

p=if=| fan

In addition, for all T € (0, ), ¢ € (0,1], i € Ny and p € [1, 0], introduce the Banach spaces
Ci = CY(T4,R), CYH, < = C°([0,T], H—<(T%,R)) and LL.L2 = L?([0,T], L*(T4,R)).

Finally, the state space E of the driving stochastic process is assumed to be a Banach space,
with norm denoted by |-| 5.

2.2 Assumptions on the coefficients

Let us now state the assumptions concerning the linear operator L and the mappings a, b and o.

Assumption 1. 1. Let the mapping M € L*(V, i), be such that M(v) > 0 for all v € V, and
normalized such that {,, M(v)du(v) = 1.

2. The linear operator L is defined as follows: for all f e L*(V, u)
Lf=pM—f=({/fM—F (3)

3. The mappings a : V — R% and b : V — R? are bounded. In addition a satisfies the centering
condition

f a(0) M(v)dp(v) = 0.
\%



4. The linear operators A and B are defined by
Af((L',U) = a(v) : vzf(xa 1)),
Bf(JU,’U) = b(’U) ' v:cf('rav>
5. The mapping o : £ — Cglud/ 242 4 Lipschitz continuous.

Let us also introduce the weighted Hilbert space L?(M™!), with the inner product

(B ) ot 1) = dev W, v)k(, v)da:jiizg.

The associated norm is denoted by || L2(M-1)- Observe that applying the Cauchy-Schwarz

inequality yields the following results: for all f € L2(M™1), one has f € L}(T? x V), p e L2, and
Lfe L?*(M™1), with

f j £ (@, o)l dp(0)dz < | f] 22y

TdxV

leMl 21y = llplez < [flz2m-1)-
In addition, if f; € L*>(M™!) n L? and fo € L?*(M) n L2, then

|(f1s f2) el < I fill g1y 12l 2

as a consequence of the Cauchy-Schwarz inequality.

Ezxample 2.1. The conditions in Assumption 1 above are satisfied in the following two examples:
1. Continuous velocities

e The space V = R¢ is equipped with the Lebesgue measure du(v) = dv.
e The function M(v) = (211)~%? exp(—|v[?/2) for all v € R? is the standard Maxwellian.

e The velocity a is a bounded odd function. For instance, relativistic particles satisfy

a(v) = —=2 in convenient units.
L+]o)?

2. Discrete velocities

e The space V = {il}d is equipped with the counting measure.
e The function M is constant: M(v) = 2 for all v € {+1}¢

e The velocity a is an odd function. For instance, the isotropic discrete velocity is given
by a(v) = v for all v e {+1}%

In both examples, the function o is defined either as
o g(0)(x) =01(l(x)) forall L e E = cl2 and z e T¢, with a mapping o1 : R - R,
e or as o(f)(z) = oo(x,¢) for f € E = R and z € T, with a mapping o5 : T? x R — R,

where o1, 09 are of class Cl92/43 with bounded derivatives of all orders.



2.3 Assumptions on the driving process
The driving process is a Markov process, which satisfies the conditions below.

Assumption 2. The family (m¢(t)),.p defines a E-valued Markov process, where one has the
initial condition mg(0) = ¢. Let L£,, denote its infinitesimal generator, with domain denoted by
D(Ly,).

We assume that this Markov process is ergodic, and that its unique invariant distribution,
denoted by v, is integrable: §, /€] dv(f) < 0.

The following notation is used throughout the article: for all Lipschitz continuous mappings
0:FE— R, set

§=J 0(6)dv(0).

Let ¢y € E be a given initial condition, in the sequel the value of ¢y is omitted to simplify
notation: for all £ > 0, let
m(t) = my, (t).

Assumption 2 is sufficient to state the main convergence results below. However, the analysis
of the asymptotic behavior of f&° when § — 0 requires additional technical assumptions. Since
they are not needed to state the convergence results below, they may be skipped by the reader,
until they are used to prove auxiliary results.

Assumption 3. The Markov process introduced in Assumption 2 satisfies the appropriate
moment bounds: there exists v € (2, 00) such that

< . (4)

sup]El sup [|m(t)[;
€Ng teli,i+1]

The assumption that v > 2 is crucial in the analysis. Observe that Assumption 3 implies the
following results:

[ ave <
sup B [|m(t)]] < o
=0
A mixing assumption is employed below to have quantitative information on the large time
behavior of the driving process.

Assumption 4. The Markov process introduced in Assumption 2 satisfies a mixing property:
there exists a nonnegative function ymix € L*(R™) such that, for all initial conditions ¢1,¢s € E,
there exists a coupling (mj, ,mj,) of (me,,my, ), satisfying the inequality
E [|mf, (t) = m§, ()] 5] < ymix(®) [0 — L2 5
for all ¢t > 0.
Let us recall that a /' x E-valued random process (mj ,mj, ) is a coupling of (my,,my,) if the

marginals safisty mj 4 mye, and my, g my, (where equality is understood in distribution). As a
consequence of Assumption 4, it is straightforward to obtain the following result: if § : £ — R is
Lipschitz continuous, then for all £ € FE and all t > 0, one has

[E[0(m(t))] — 0] < max(1, L [ g dv(€))Lip (0) yanix (8) (1 + 41| ),



where Lip(6) denotes the Lipschitz constant of 6. Due to this consequence of the mixing property
(Assumption 4), the resolvent operator Ry introduced below is well-defined.

*
Definition 2.1 (Resolvent operator). Let C‘L;d/ 242) " be the set of continuous linear forms on

*
clH2 and let E* (o) = {uo olue (de/2J+2> } c Lip(E,R). The resolvent operator Ry is
defined as follows: for all 8 € E*(o)

Ro(6 — 0)(¢) = F E [0(me(t)) — 8] dt.

0

The function ¥y = Ro(# — 6) is the unique solution of the Poisson equation
- ﬁmﬂ)e =0- gv (5)
satisfying the condition 1, = 0.

Note that the functions 1y satisfy the following bound: there exists C € (0,0), such that for
all # € E*(o) and for all £ € E, one has

1o (€)] < CLip(0)(1 + [[£] ), (6)
The remaining assumption deals with the infinitesimal generator L, of the driving process.

Assumption 5. For all 01,0, € E*(0), assume that ¢y, 19, is in the domain D(L,,) of the
generator L,, of the driving process, and that L,, (g, %g,) has at most polynomial growth:

sup L (%/191109;) @ _
teE 1+ 4%

The assumptions above are satisfied if the driving process is a E-valued Ornstein-Uhlenbeck
process, as explained below.

Ezample 2.2. Let (my(t)),cp be defined by
dm@,t = *(mf,t - m)dt + th7 meo = ea (7)

where W is an E-valued Wiener process. It satisfies Assumption 2 since it is ergodic and its
unique invariant distribution is a normal distribution, hence integrable. Moreover, we have

¢
my(t) =Lle " +m(l—e") + J e*tdW. (8)
0
Assumption 3 is satisfied for any v € (2,00). The coupling (mj ,m} ) of Assumption 4 is obtained
by driving both processes by the same Wiener process W. Indeed, (8) becomes

my (t) —mj, (t) = ((1 — La)e™ ",

and Assumption 4 is satisfied with ymix(t) = e~t. Finally, with the notation of Assumption 5, we

have
o0

w0 = [ 600) ~ om) et = o(m) - 610)

0

Since the infinitesimal generator is given by L,,¢(¢) = D (€)-(m—£€)+ 1 Tr (D?*¢(¢)), Assumption
5 is also satisfied.



3 Main result

3.1 Description of the model and of the limit problem

The multiscale stochastic problem considered in this article depends on two parameters € and
d. Since the objective of this work is to prove a convergence result when (e,d) — (0,0), without
loss of generality it is assumed that € € (0,£0] and ¢ € (0, 0], where £¢, §p are fixed — a precise
condition is stated below. To simplify notation, we use the following convention: (X 676)5, s Stands

for the family of random variables (X&&)ee(o c0].6€(0,50]"

First, for all § € (0, 8], the fast driving process m® is defined as follows: for all ¢ > 0, set
m®(t) = m(t/5%), 9)

where m is the driving process given by Assumption 2, with the initial condition m?(0) = m(0) =
£y, which is assumed to be independent of §.

We study the asymptotic behavior when (g,8) — (0,0) of the solution f5? of the following
stochastic kinetic problem

Orf= + Ga(v) + b(v)) Vo 50+ a(m?) f° = éLffﬁ. (10)

with initial condition f=9(0) = f&*°.
For any fixed ¢ € (0,&¢], § € (0,dp], the problem (10) is globally well-posed in the following
sense.

Proposition 3.1. Introduce the linear operator A° = e 1A + B, with domain D(A®) =
{feL2(M™Y) | (z,v) = (e ta(v) + b(v)) - Vo f(z,v) € LM}, for all e € (0,&0].

Let T e (0,00), € € (0,20] and 6 € (0,8]. For any f&° € L2(M™Y), there exists, almost surely,
a unique mild solution f&° of (10) in C°([0,T]; L>(M™1)), in the sense that, almost surely, for
all t € [0,T], one has

fe,é(t) _ e—tAE fgﬁ + Jot e—(t—s)AE (;Lfe,é(s) _ U(mé(s))f€’5(8)> ds.

The proof of Proposition 3.1 is based on a standard fixed point argument, combined with the
following observation:
sup [m’(t)]|, < sup sup  |m(t)]| 5 < o0
te[0,T'] i<T6 241 teli,i+1]
owing to Assumption 3 on the moments of the driving process m. The proof of Proposition 3.1 is
thus omitted.

Note that the statement of Proposition 3.1 is given for fixed € > 0 and ¢ > 0, and does not
provide uniform estimates of the solution f&° with respect to these parameters. Proving such
estimates needs extra arguments, which are not needed to state the main results of the article.
We refer to Proposition... below for the statement of an appropriate a priori estimate in the
L?(M~1) norm, which requires the introduction of a stopping time 7° defined below.

Let us now introduce the so-called averaged equation. First, set

K= f a(v) ® a(v)M(v)du(v) € Sym™ (d)
%

J= f b(v) M(v)du(v) € RY (1)
%

5 f o (O)du(e) € cla/2+2.
E



Note that K and J are well-defined since a and b are assumed to be bounded (see Assumption 1).
In addition, @ is well-defined since o is globally Lipschitz continuous from E to Cglcd/ 21+2 (see
Assumption 1) and since the probability distribution v is integrable (see Assumption 2).

The unknown p of the averaged equation is a mapping defined on [0, 0) x T?. We are finally

in position to write the averaged equation:
oip+J-Vp+op=div(KVp), (12)

with initial condition p(0) = py. In (12) above, V and div are the gradient and divergence
operators with respect to the variable = respectively. We consider solutions of (12) in the weak
sense, see Definition 3.1 below. Note that the solution may be a random process, even if the
evolution is deterministic: it may happen that the initial condition p, is random.

Definition 3.1. Let T € (0,00) and p, be a L2-valued random variable. A stochastic process p
is a weak solution of (12) in L2 if p € LY L2 almost surely and if, for all £ € H2 and ¢ € [0,7],
almost surely,

P05z = (o €)1z + | (Po).iv(VE) + T VE =) . (13)

For any L2-valued random variable, the averaged equation (12) admits a unique weak solution
in the sense of Definition 3.1.

3.2 Convergence results

Let us now state the main results of this article, concerning the asymptotic behavior of p=° and
159 when (g,6) — (0,0). In the sequel, it is convenient to impose the following non restrictive
conditions on the parameters g and dg (such that € € (0,&¢] and 6 € (0, dg]):

-1
g0 < min (1, (4(HCLHLOQ + bl L) (L 4+ T HEHc;)) ) ,  0p < min (17 HEOHEI) ) (14)

Note that the condition for g depends on the initial condition ¢y of the driving process. This is
one of the reasons why it is convenient to assume that it is deterministic and that it does not
depend on §. Extensions to more general initial conditions for the driving process would require
extra technical assumptions and computations, which are omitted to simplify the setting and
focus on the main aspects of the analysis of the asymptotic behavior of the stochastic multiscale
problem (10) when (g,d) — (0, 0).

The initial condition fg % of (10) is assumed to satisfy the following conditions.

Assumption 6. The family of initial conditions ( o ’6) 5 satisfies the following moment bound:
g,

£,0
0

12
sup E [ ] <
£€(0,e0],6€(0,50] L2(M-1)

In addition, the initial density pi° € L2 converges in distribution when (&,8) — (0,0) in L2 to
Po € L2: recall that this means that for any bounded continuous mapping ® : L2 — R, one has



Observe that in general p, is a L2-valued random variable.

We are now in position to state the two main convergence results of this article. First, see
Theorem 3.2, p=% = (f<°) converges in distribution to the unique solution p of the averaged
equation (12), in the space C3H, < for all ¢ > 0. Second, under an additional technical assumption
which allows to apply an averaging lemma, one obtains a stronger result, see Theorem 3.3: p=°
converges in distribution to p in the space L2 L2, and f5° converges in distribution to pM in the
space L%L?*(M™1). Moreover, the convergence results hold in probability if the initial condition
Po (given by Assumption 6) of the averaged equation (12) is deterministic.

Let us state the first main result of this article.

Theorem 3.2. Let Assumptions 1 to 6 be satisfied. Let f° be the solution of (10). Then, when
(e,0) — (0,0), the random variable p*° = (f*°) converges in distribution to the unique weak
solution p of (12), in CRH_*.

In addition, if the initial condition p, = p8’5 € L2 is deterministic, then the

lim
(£,0)—(0,0)
convergence of p=° to p holds in probability.

An additional assumption is required to state Theorem 3.3, as in [RR20] (Assumption 7 below).
It allows us to apply a so-called averaging lemma (see [BD99, Theorem 2.3]), developed for the
study of kinetic PDEs, and to obtain convergence in the space L2 (in Theorem 3.3) instead of
H~¢ (in Theorem 3.2).
Assumption 7. e The space for the velocity variable is given by (V,du) = (R™, %(v)dv),
with a Radon-Nikodym derivative (with respect to Lebesgue measure) satisfying & €
Hl (Rn).
e The mapping a is locally Lipschitz continuous

e There exist C, , € (0,00) and , , € (0,1] such that, for all u € S9!, all A € R and all
71 € (0,0), one has

J;<a(v)~u<>\+n (

We are now in position to state the second main result of this article.

dp

75 (V)

2+W$@

2
>m<QMWa

Theorem 3.3. Let Assumptions 1 to 6 and Assumption 7 be satisfied.

Then, when (g,6) — (0,0), the random variable p*° = ( f&°) converges in distribution to the
unique weak solution p of (12), in the space L3.L2. Moreover, when (g,8) — (0,0), the random
variable f&° converges in distribution to pM, in the space LAZLA(M™Y).

In addition, if the initial condition p, = ( 5%in% ) p8’6 € L2 is deterministic, then the
£,0)—(0,0

convergence of p=° to p and of f&° to pM hold in probability.

3.3 Discussion

The main results, Theorems 3.2 and 3.3, state that diffusion approximation (in the PDE sense)
and averaging (in the probabilistic sense) results hold, when (g,d) — (0,0). These results are
natural generalizations of previously obtained results, either in the deterministic case (¢ — 0,
o = 0), or in the probabilistic case (6 — 0, £ > 0 fixed). In fact, using the same arguments as
in Section 4 below, one may obtain the following results, where the limits ¢ — 0 and § — 0 are
taken successively.
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On the one hand, if 6 > 0 is fixed, then p=° = (f)a’[s converges when ¢ — 0, to the solution
p%% of the evolution equation

01p"° + o(m®)p”° = div(KVp™°) — J - Vp™°.

That result is a standard diffusion approximation result in the PDE sense. Then, when § — 0, p%9
converges to the solution p of the limit equation (12), owing to the standard averaging principle
for stochastic problems.

On the other hand, if € > 0 is fixed, then owing to the standard averaging principle, f&°
converges when § — 0, to the solution f&0 of the evolution equation

1 1
0f™ + Za(v) - Vo +b(v) - Vof ™0 + 70 = Z L.

Then, when £ — 0, p*° = <f>5’0 converges to the solution p of the limit equation (12), owing to
the standard diffusion approximation result in the PDE sense.

To the best of our knowledge, the results above have not been rigorously proved in the
literature, however they are variants of well-studied results. The proofs of Theorems 3.2 and 3.3
do not encompass those regimes when either ¢ = 0 or 6 = 0: essentially this would require to
adapt the construction of the perturbed test function. Indeed, below we directly focus on the
behavior of p*°, thus the convergence f*° — f0 when § — 0 cannot be covered directly, for
instance. In addition, one of the arguments of the proofs is the convergence 70 — o0 when § — 0
(where 79 are stopping times defined below), thus the convergence p° — p®° when € — 0 cannot
be covered without substantial modifications.

Still, one obtains the following result:

. . 5 s . 5 . N -
(%I—I»% lim p7" = limy ?—If(l) = (a,é%l—rf%o,o)p -

where the convergence is understood in the appropriate sense. The analysis presented in this
article thus departs from the setting of [DV12, DV20, DRV20, RR20]. where in all cases there
is only one small parameter ¢ = §. Our result is expected but important: it shows that the
diffusion approximation and the averaging principle can be decoupled. As already mentioned in
the introduction, considering the general case € # § requires new arguments, in particular the
construction of the perturbed test functions needs an additional corrector.

In the setting, it is assumed that the initial condition m?(0) of the fast driving process is
deterministic and independent of §: m?(0) = mg. It would be possible to extend the results to
more general initial conditions, under appropriate modified moment conditions. This would for
instance allow us to include the case where m?(0) is random and distributed following the ergodic
invariant distribution v. Note also that if either the mapping ¢ or the process m would have a
bounded support, the analysis would be simplified.

As explained in the introduction, we have left open several questions for future works: first,
the analysis of fluctuations, second, the identification of (strong and weak) rates of convergence.

4 Description of the proof

In the sequel, the following convention is employed: given variables u and parameters A, the
notation X (u) < X2(u) means that for all parameters A, there exists C'(\) € (0,00) such that
one has X (u) < C(A\)X2(u) for all u. From the context the identification of variables (typically
g,0, f,£) and parameters (typically T, ) will be clear.

11



First, we introduce two of the most important tools of the proofs of the main results: the
stopping time 7° (see Section 4.1), and the perturbed test function ¢*° = o + gp1,0+ 2P0 +
8202 + €6%p1 2 (see Section 4.2), constructed for a class of admissible functions ¢ such that
o(f,0) = ({f)) = w(p). Sections 4.1 and 4.2 contain important auxiliary results, which require
technical arguments in their proofs: the proofs are therefore postponed to Section 5.

The use of the stopping time 79 is instrumental to obtain appropriate moment bounds of the
solutions, uniformly with respect to €,5. We prove that 70 — o0 in probability when ¢ — 0. In
the arguments, as a consequence of Slutsky’s lemma (see more details below), it is then sufficient

6,6,7"S — p5,6(_ A 7_6) and

to consider the stopped processes defined by fg"s’TfS = (- AT, p
mé’ = mo(- A 79).

The use of the perturbed test function method is standard in the analysis of multiscale
stochastic problems, see for instance [DV12, DV20, DRV20, RR20] in a similar context of
stochastic kinetic equations. Compared to those references, note that it is necessary to consider
two parameters £, which may be independent. When § = ¢, the construction of the corrector
1,2 is not needed.

We then proceed to the proof of the main results of this article. The arguments are standard.
We first check a tightness property for (pe";)el 570 in the appropriate function space. We then

check that the Markov process ( fs"s’Ta,m‘s’Ta) is the solution of a martingale problem for all
e > 0,0 >0, and letting (g,0) — (0,0), using the perturbed test function, we prove that any limit
e’ 5 is a weak solution of the averaged equation, in the sense of (13).
€,

point of the family (p

Since 79 — o in probability when 6 — 0, a uniqueness argument for the averaged equation

then concludes the proof of Theorem 3.2. Theorem 3.3 is then obtained by the application of
the averaging lemma. The fact that convergence holds in probability when 5, is deterministic
is a straightforward well-known consequence of Portmanteau Theorem (and is not specific to
the PDE framework of this paper): in that case the solution p of the averaged equation is also
deterministic.

4.1 Stopping times and a priori estimates

% second we state that 70 — oo

In this section, first we give the definition of the stopping time 7
8

in probability when § — 0. Finally, we state an a priori estimate for f&%7" in L?(M™"), which is

uniform with respect to €,d. The proofs are postponed to Section 5.

For all § € (0, 0] and all t > 0, set

o)== f (o(m’(s)) — @) ds € CL¥/2I+2, (15)
0

Definition 4.1. Let a € (%, 1), then for all § € (0, dp], define

= r;; A Tg,
where
73 = inf {tel0,T]] Hm’s(t)HE =6,

ot —inf {te[0,77]|¢°®)]e =071}

Note that 79 is a stopping time for the filtration (]—'{5 ) ep+ generated by the driving process
m®, with F) = o (m°(s))
Assumption 3.

0<s<t’ In the definition above, v is the parameter introduced in

12



The initial conditions of the stopped processes m®™ and (57" satisfy Hm‘S’TCS (O)H = |bo]lp <
B

55t < 07 (since § < §p < 1 and a < 1), and o’ (0) = 0. As a consequence, almost surely
7° > 0, and the following estimates for m® and ¢° hold: for all ¢ > 0 and all § € (0, dy], one has

Hm‘sﬁ& (t)HE = ||m°(t A 7'5)HE <07, (16)

and

R0

o [t A7)y <570 (17)

Let us now study the behavior of the stopping time 7° when § — 0.

Proposition 4.1. When § — 0, 7% — o0 in probability: for all T > 0, one has

P(r° <T) 0.

(g,6)—0

The proof of Proposition 4.1 is postponed to Section 5.
8
Finally, let us state the following a priori estimate in the L2(M~!) norm for %7 (t), in an
almost sure sense.

Proposition 4.2. For T € (0,), there exists C(T) € (0,00), such that for all t € [0,T],
g€ (0,&0] and & € (0,0¢], almost surely one has

Let us emphasize that the constant C(T") appearing on the right-hand side of (18) is deter-
ministic and does not depend on ¢ and §.
The proof of Proposition 4.2 is posponed to Section 5. Note that the a priori estimate
575,7'6 €,0
! (t)‘ L2(M-1) S ‘ O lzz(m-1)
rem 3.2, whereas the upper bound for the integral term on the left-hand side of (18) is used only
in the proof of Theorem 3.3.

S
2 1 tAT 2

5 2
L (s)

£,0
0

fs,a,fé (t)‘

ds < C(T) \ (18)

2 - + 92 - —1y
L2M-1) 2% ), L2(M~1) L2(M~1)

is instrumental in all the arguments of the proof of Theo-

4.2 Perturbed test functions

In this section, we describe the construction of a perturbed test function ¢, such that the
following properties are satisfied:

5

67 >
L £,0—0 ®

CE’6<PE76 '6907
£,0—0

where ¢ is any sufficiently smooth function such that o(f,¢) = ¢((f)), and £ and L are
the infinitesimal generators associated with the Markov processes (f<°,m®) and p, solving (10)
and (12) respectively.

To state more rigorously and more precisely the properties mentioned above, we first introduce
two appropriate classes of test functions, such that ¢ € Oy, and ¢=9 € © for all ¢, §, and such
that the errors |¢=° — | and |£L59¢p%° — Lip| are quantified in terms of ¢, d.

Let us first describe the class of functions Oy, .

13



Definition 4.2. Let Oy, be the class of real-valued test functions ¢ such that for all f € L2(M™1)
and ¢ € E, one has

e(f,0) = o(p) = x((p,€)2), (19)
where we recall that p = (f) = SV fdp, with arbitrary x € C3(R,R) and £ € C3.

Recall that K, J and & are defined by (11). The infinitesimal generator £ associated with the
limit problem (12) is defined by

Lo(p) = Dp(p) - (dive(KVap) = J - Vap —7p), (20)
for all p € L2 and all ¢ € D(L), with the domain D(L) given by
D(L) = {peC’(L}) | Lo eCO(L7)}
Note that Oy, < D(L). In addition, for all ¢ € Oy, of the form (19), one has for all p € L2
Lo(p) = X' ((p, ) p2) (p diva (KVe€) + J - Vol = FE) 2 - (21)

Let us now describe the class of functions ©.

Definition 4.3. Let © be the class of test functions ¢ : L?(M~!) x E — R satisfying the
following conditions.

e Forall {e E, p(-,f) e CL(L>(M™1)).
e Forall fe L2(M™1), o(f, ) e CO(E).
e For all i € {1,2} and all f e L>(M™1), o(f,-)* € D(L,,) and Ly, (¢") € CO(L2(M™1) x E).

e Forall fe L*(M™!) and ¢ € E, denote by Vp(f,£) € L?(M™1) the gradient of ¢ at (f,£),
which is defined defined such that

Vhe L2M ™), (Vo(f, 0 h) 2 agry = Dyp(f, ) - e
Then, for all f € L?(M™') and ¢ € E, one has

dp(v)
M(v)

< 0

| [19:9 02,001 s

e There exists C,,(0,0) such that, for all f,he L*(M™') and 41,05 € E,

(s )] + [Dpe(f, ) (AR + [Dyo(f, ) (BR) + [Dpe(f, 42) (Gh)] + [Dpo(f, 6) (Lh))]
3 3 2 2
< Co (L U1 Eaoamsy + WlZagueny ) (1 + 1l + 18213, -
The infinitesimal generator £59 associated with the stochastic problem (10) with driving
process m®, satisfies the following multiscale expansion in terms of ¢, d:
L0 =Lo+e 'Ly +e 2Ly + 6L (22)

where the infinitesimal generator of the driving process L, is introduced in Assumption 2 above,
and Ly, £1 and Lo are defined as follows: for all f € L2(M~1) and all £ € E, set

Lop(f£) = =Dyp(f. ) - (a()f + Bf),
EQ‘:D(f?E) = Df(p('ﬂf) : Lf7
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for real-valued functions ¢ € D(£5%) where
D(L£5%) = {p e COLAM ™) x E) | L5 p e CO(LAM ™) x E)}

is the domain of the unbounded linear operator £59. Recall that A = a(v) -V, and B = b(v) - V,,
(see Assumption 1).

Note that the following property is satisfied: for all ¢ € ©, one has ¢ € D(£5%) and
% e D(£5?). In addition, observe that O, < ©.

We are now in position to state the main result of this section.

Proposition 4.3. For all ¢ € Oy, there exists functions v1,0, ¥2,0, Yo,2 and @12 such that the
following properties hold.

o Set
@6’6 =p+epro+ €2<,0270 + 52900,2 + 552(,0172. (23)
Then ¢° € ©.
e There exists C(p) € (0,00), such that for all e € (0,e0], § € (0,d0] and all (f,¢) € L>(M™1) x
E, one has
220657 — £o| (£,0) < COA+ 1l Faon) (5L + [Elp) + 82+ D)) (24)

e One has the following upper bounds: there exists C(p) € (0,00), such that for all (f,f) €
LA(M™ Y x E,
ero(H) < C@) 1] L2 arr) » (
2.0(£) < C@A+ IF72 1) (26
02(f, 0l < C@) |l p2pa-ry 1+ 1l ), (
er2(f, 0l < C@)A+ [ fl32 ey + 14l )- (

Note that the following error estimates holds: for all (f,¢) € L2(M~1) x E, one has

20 (fo0) = (D] S (L4 [ FIT2(a0-1)) (€ + 87 (L + €] ). (29)

The proof of Proposition 4.3 is postponed to Section 5. Using the standard terminology, the
functions ¢1,0, ¥2,0, ¥o,2 and ¢, 2 are referred to as the correctors in the sequel.

Note that one of the novelties of the result above is the construction of the corrector ¢; 2,
which is not required in the case € = ¢ which is treated in other contributions, see [DV12, DV20,
DRV20, RR20]. More precisely, if ¢, 4, it suffices to construct a perturbed test function of the

type ©° = ¢ + ep1 + 2p9. In fact, 1 = 1,0 and 2 = @20 + @0 2.

4.3 Martingale property

The proofs of Theorems 3.2 and 3.3 is based on an interpretation in terms of solutions of martingale
problems. Indeed, combined with the perturbed test function approach described above, this
formulation is convenient to identify limit points when (e,4) — (0,0).

Several arguments in the proofs of the auxiliary results below employ the following auxiliary
result.
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Proposition 4.4. Let p € ©. For allt € RT, set
MZO(8) = @(f° (1), m° (1)) — @(£°°(0),m*(0)) — fo L2 (f0(s),m° (s))ds. (30)

Then, Mf,"“g is a cadlag (]-"t‘s) -martingale. In addition, for allt € R™, one has

teRt+

0
1
-

In the statement of Proposition 4.4 above, note that the process M;"S is stopped, where the

E “Mé"”s (ﬂﬂ =E UWG (L2°(9%) = 20L%0) (f7°(s), mé(S))dé’]

0

f (L (9?) — 20Lm0) (fs"s(s),m‘;(s))ds}.

stopping time 7° is given by Definition 4.1. Considering the stopped process allows us to use the
estimate (18) of Proposition 4.2 in the sequel. Moreover, note that ¢ is assumed to belong to the
class of functions © introduced in Definition 4.3: in fact Proposition 4.4 is the justification of the
requirements on ¢ in Definition 4.3.

The proof of Proposition 4.4 is standard and is omitted.

4.4 Proofs of Theorems 3.2 and 3.3

In order to prove the convergence in distribution results of p=9 to p when (g,48) — (0,0), it suffices
to prove that for any arbitrary sequence (g;, d;);, such that (&;,9;) — (0,0) when i — o0, peidi
converges in distribution to p. To simplify the notation, we fix such a sequence and in the sequel
one should interpret € = ¢; and § = ¢;. Moreover, in Proposition 4.6 and in the proofs, (g;,d;)
may also denote a subsequence of the original sequence.

=1

4.4.1 Two technical results

Two additional technical results are required for the proof of the main results of this article.
First, let us state a tightness result.

Proposition 4.5. Let Assumptions 1 to 6 be satisfied.
The family of processes (pa"s)g s Us tight in the space COH<, for all arbitrarily small s € (0, 1].

xr
Moreover, if Assumption 7 is also satisfied, then the family of processes (pe"s)s s Us tight in
the space L3L2.
Second, let us state a result which allows us to identify limit points of the family (p“s)E s

Proposition 4.6. Assume that py, is a C3H_ < -valued random variable, such that peid L» Poos
1—00

in distribution in C.H, <, for some sequence (g;,;) — 0,&; € (0,20],3; € (0, 5]
1— 0

Then, for all ¢ € Onm, almost surely, for allt € [0,T], one has

P (0) = 2l 0) = | L(pn(s))ds = 0.

The proofs of Propositions 4.5 and 4.6 are technical and are given below.
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4.4.2 Proofs of the main results

We are now in position to prove the main results of this article.

Proof of Theorem 3.2. Let ¢ € (0,1) be fixed. Owing to Proposition 4.5, the family of processes

(p=?)_ 5 is tight in the space CJ.H,*. Due to Prohorov Theorem, there exist a C)T H, S-valued

random variable p,, and sequences (g;),.y and (0;);.y, such that ¢, — 0 and §; — 0, and

peindi L Poo- Let us prove that py, is a weak solution of (12): this requires to prove that (13)
1—00

holds and that py, € L L2 almost surely.

To obtain (13), it suffices to use Proposition 4.6 and a localization argument. Introduce the
auxiliary functions x", for all » > 0, such that x" € C3(R), x" is odd and

Vu e [0,7], x" (u) = u,
Yue [r+1,0),x (u) =r+1.

Let £ € H2 and define the test function " € Oy, by
e (p) = X" ((p, §)Lg) :
Since py € CLH, < almost surely, the random variable

?

S = sup ‘(pOO(t)ag)Li
te[0,T]

is finite almost surely. On the one hand, by the definition of S, one has ¢ (po(t)) = (peo(t),€) 12

and similarly £o%(po(t)) = (P (t), div(KVE) 4 J - VE = GE) ., for all t > 0. On the other hand,
owing to Proposition 4.6, one has, for all ¢ > 0, ’

& (pn(t)) = 5 (po(0)) + f £ (pon(s))ds.

Combining the arguments proves that (13) holds, for all £ € H2.
Let us now prove that py € L‘:}OLi. Consider the self-adjoint operator S on L2 defined by

D(S) = H2, Sp=div(KVp) —ap.

Since K is a positive symmetric matrix, the operator & — Aid is invertible when A > ||EHcg. Its
inverse is a compact operator, owing to the compact embedding H2 < L2. Therefore, there exists
a complete orthonormal system (e;),.y, of L2 composed of eigenvectors for (S — Aid)™'. For
i € Np, let \; € R be the eigenvalue of § associated to the eigenvector e;: Se; = A;. Note that
Ai < A for all 7 € Ng.

Fix i € Ng. Since e; € H2, (13) reads for t € [0, T]

t

t
(Polt)€i)sz = (oneidsz + [ ((s)oedy ds+ | (o). Vo) s

0
Therefore, one has, for all ¢ € [0,T]

(poo(t, - +tJ), ei)Lg =Mt (Pos ei)Lg :
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2
Since \it < AT and py € L2, |(po(t,- + tJ),€;) 2| is summable. We thus have po(t) € L2 and

2 2 — 2
[0z = [poo(t - + )72 < M Do) 7z - (31)

This proves that p,, € LE L2, and that po, is a weak solution of (12) in the sense of Definition 3.1.

To prove the convergence in distribution stated in Theorem 3.2, it only remains to prove that
the weak solution of (12) is unique. Since the evolution equation is linear, it is sufficient to prove
that, if p, = 0, then any weak solution p of (12) satisfies p(t) = 0 for all ¢ € [0,7"]. This claim is
a straightforward consequence of (31) (satisfied by any function p satisfying (13)).

As a consequence, any limit point py, of the tight family (ps";)ey s in the space COH_< is the
unique solution 5 of (12). Therefore p*° converges in distribution to the unique weak solution 5
of (12).

When the initial condition 7, is deterministic, the solution p of (12) is also deterministic.
Then, using Portmanteau Theorem, in that case (pf"s)E 5 converges to p in probability.

This concludes the proof of Theorem 3.2. 7

O

Proof of Theorem 3.3. Let Assumption 7 be satisfied. Owing to Proposition 4.5, the family of

processes (,08’6)6 s 1s tight in L2.L2. Therefore, there exist a L2 L2-valued random variable p,

and sequences (g;);.y and (6;),oy, such that &; — 0 and &§; — 0, and p®i+% fd—> Poo- On the
1—00

one hand, convergence in L2 L2 implies convergence in L2-H,°. On the other hand, owing to
Theorem 3.2, p°% converges to p in COH; <, thus in L2H_°. Therefore po, is equal to p in
distribution. By uniqueness of the limit points, one thus obtains the convergence of (ps"s)& stop
in L%Li.

It remains to establish the convergence of & to M.

Note first that the mapping h € L3 L2 — hM € L2.L?>(M™1) is continuous (it is a bounded
linear operator). Thus, p*9M 0 pM in distribution in L2.L?>(M™1).

E,0—>

Owing to Slutsky’s Lemma (éince [Bil99, Theorem 4.1]) and to the identity
f5,5 _ —Lf€’5 + ps,5M
it only remains to prove that Lf&° o 0 in probability in L2 L*(M™1).
£,0—>

Owing to Proposition 4.2, almost lsurely one has

T ATe s 9 ) s 2
£,
L L £ ) 2 pary ds < O | e
Therefore, on the event 7° > T, one has HLfE’éHLZTm(MfI) < E\/C(T)‘ 8’6 ey As a
consequence, we have for n € (0,1)
P (HLfE’(SHL;m(M-l) = ’7) =P (r° <T,[Lf° ‘L;B(M—l) = 7’)
+P <76 =T, |‘Lf876”L%L2(M*1) > 77)
) £,0
<P(r°<T)+P (5\/C(T) ) O PPN 77>
<P(r° <T)+n'el/C(T)E [ o0 L2(M1):| ,
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owing to the Markov inequality. Using Proposition 4.1 and Assumption 6, one obtains the
convergence of Lf? to 0 in probability in L2 L?(M~!) when (g,d) — (0,0). This concludes the
proof of the convergence in distribution of f° to pM.
When p,, is deterministic, p is deterministic, and the convergence results hold in probability,
using Portmanteau Theorem.
This concludes the proof of Theorem 3.3.
O

4.4.3 Proofs of the two technical results
The following lemma is used in the proofs of Propositions 4.5 and 4.6.
Lemma 4.7. Let ¢ : L>(M™!) x E — R be a function such that

. e(£.0)
p 6
rer2(mtyeeE (L4 | fllp2p-1)) (1 + €] )

Then, for all T € (0,), € € (0,&0] and & € (0,00] and for all random times 11 and 2 satisfying
almost surely 0 < 7 < 170 < T, one has

J‘TQ A 7-6
TIATS

Recall that v > 2 is given by Assumption 3.

supE l

I (07 (1), m (1)) dt} SE[R-n]i7. (32)

Proof of Lemma /.7. Since m®™ (t) = m?(t) for all t € [Ty A 70,79 A 70], the estimate (18) from
Proposition 4.2 yields

J‘TQ A T6
T1A TJ

Let p* € [1,00) defined by % + % + pi* = 1. Using the moment estimates for m

£,0 6
0 L2(M-1)

So(fg,(s,T(s (t), m‘s"’_é (t))‘ dt‘| ST#, E lj ’ (1 +

T1 /\7'5

) (1+ [m®)]) dt] .

% (see

Assumption 3) and for 59 (see Assumption 6), and applying Holder inequality, one obtains

JTQ A 7’6
TIATS

(07" (), m5 (1) dt]

£,0 6
0 L2(M-1)

) (s lmb o) | a

e,0)|° 2" s
<. wa) B[+ fmt))] " a
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All the estimates above are uniform with respect to ¢ € (0,&¢] and § € (0, 6g]. This concludes the
proof of Lemma 4.7. O

Before proceeding, let us recall some useful results concerning tightness.
Introduce the Skorokhod space Dy H_ *, which is the space of H *-valued cadlag functions on
[0,T]. For all X € C3.H, < and all A € [0,T], set

wx(A) = sup [ X(s) = X(D)|

0<t<s<t+A<T

wy(A) =supmax  sup [ X(s) — X(t)],

(ti)i vt <t<s<tit1

where (t;), denotes any finite subdivision of [0,7"]. The moduli of continuity wx and w’ satisfy
the following inequality (see [Bil99, equation (14.11)]): for all A € [0,T] and all X € C2.H_*, one
has

wx (A) < 2w (A).

We refer to [Bil99, Theorems 8.2 and 15.2] for tightness criteria in the spaces C3H; < and Dy H <.
As a consequence, tightness in Dy H_* of a family a family of processes (X 5’5) implies its
tightness in C3.H, <.

Observe that tightness in D H ¢ is easier to prove than tightness in C%H_*, owing to [Jak86,
Theorem 3.1]. More precisely, since the class of functions Oy, is closed under addition and
separates points, tightness of a family (X 5’6)5, s in the Skorokhod space DrH™° is equivalent to

the following claims:

€,0

(i) For all n € (0,1], there exists a compact set K, < H_*° such that, for all € € (0,&9] and
o€ (Oa 60]7
P (vte[0,T], X=(t) € K,;) > 1 —n.

(ii) For all ¢ € Oy, (4,0(X57‘5))6 5 is tight in the Skorohod space D([0, T'], R) of cadlag real-valued
functions defined on the interval [0, T].

To check that (i7) is satisfied, we employ Aldous’s criterion, see [JS03, Theorem 4.5 p356] (note
that the criterion is simplified since here ¢ is bounded): it suffices to prove that for all n € (0, c0),
one has

lm limsup ~ sup P (p(X7(r2)) = (X7 (7)) > 1) =0, (33)
A=0 (c,5)-(0,0) n<T2<TI+A

where sup,, <, <, +a denotes the supremum with respect to all (]-"f )
To satisfying a.s. 71,72 € [0,T] and 71 < 72 < 71 + A.

+ep+-Stopping times 71 and

Proof of Proposition J.5. First, recall that 70 — oo in probability, when § — 0 (see Proposition 4.1.
Owing to Slutsky’s Lemma [Bil99, Theorem 4.1], it thus suffices to prove the tightness of the

family (p‘?"“‘S ) .
£,

Let us first establish the tightness in the space C%.H_ <, with an arbitrarily small parameter
¢ > 0. As explained above, in fact we establish the tightness in D7 H ~°, using the criteria stated
above. First, (i) is satisfied: indeed the embedding L2 < H_* is compact, and the a priori
estimate (18) (see Proposition 4.2) yields the uniform moment bound

2

sup E[ sup

£,0 o<t<T

fs,a,fé (t)‘

e,8,7° (t) 2 ] <q El s
p L] Ssup [ sup

] < sup IE[Hfs"S(O)HiZ] <
£,0 o<t<T £,0 x

L2(M-1)
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owing to Assumption 6. Then (i) is a straightforward consequence of Markov inequality.

It remains to establish (ii), using Aldous criterion 33. Let ¢=° be the perturbed test function
given by (23), see Proposition 4.3, and let M;fa be defined as by (30) (in Proposition 4.4). For
all t > 0, set

00 () = (o5 (0)) + 970 (120 (1), mP () — (£ (0),m° (0))
— (o0 (0)) + j L5025 (5),m(s))ds + M, (1), (34)
For all stopping times 71, 72, one has the equality
R0 (7)) = plp™ 7" (1) = (707" (r2) = 6707 (m))
— (¢ (1), m T (72) = 9670 (7))

+ (¢ (), mP T (1) = (o0 (m)) )

On the one hand, owing to the error estimate (29), the estimates (16) and (18) for Hm‘sﬁé (t)H

E
and ‘ff"sfé <t)HL2(M—1) yield
(7 (1), m (1)) — 0o ()] < 1+ 55 ) EH AT,
Since a < 1 in Definition 4.1, we get
E ([ (207" (7). m T (7)) = 007 ()] | 00
fori=1,2.
On the other hand, we claim that
sup sup E [ g’ (12) — g’ (7'1)H 0 0. (35)

€,0 TI<ST2<T1+A
To prove that this claim holds, note that

8
T2 AT 5 5
|£E,5¢5,6(fa,6(5), m‘s(s))’ ds + ’M;’jg (m2) — M:;‘%Z;T (7-1)) .
(36)
To treat the first term on the right-hand side of (36), observe that for (f,¢) € L>(M~!) x E, one
has

96,(5,7’6 (7_2) o 95,5,75 (7_1)) < f

TIATS

225629 (£,0] < & (14 1122001 ) (1 + 1) + 82 (1 + 11 Eapen) ) (14 160°)
+[Lo(p)|
< (1 1122 mny) (1) + 6 (14 D1 apeny ) (1 1EP)

owing to the error estimate (24) for £59¢%° — Li (see Proposition 4.3) and to the expression (20)
of Ly. Using Lemma 4.7, one obtains

< AV2-17
~ A*)O b

€,0 TIST2<T1+A TIAT

sup  sup EU (14 16 aguy) (0 [0 )] ds
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since v > 2 (see Assumption 3. In addition, recall that a@ < 1: using the estimate (16), one
obtains

5
ToOAT 2( )6 3 ) ( 5 2)’
S;g) T1<Tii€1+A]E [L1 ATS ’5 L+ ”f (S)HLZ(M71) L+ Hm (8)” ds s A A—0 0-

5
To treat the second term on the right-hand side of (36), note that M;’jf is a square-integrable
martingale, owing to Proposition 4.4. In addition, since 7 < 75 are stopping times, one has

5 5 2 5 2 5 2
E [)Mj,;‘?f (r2) = M ()| ] =E “Mj,f? ()| = |ME2 ()| ]

- SE l [ ) = 267 ™) (5705, mts(s))ds} .

T1 /\7'(S

Recall the expression (23) of the perturbed test function 9. Since p, 19 and @2 do not
depend on ¢ € E, one has

s 5 2
E UM;’S’J (m2) = M5 ()| ]

= 6°E “TZM (L ((po,2 +e01,2)?) — 2(p0,2 + €01,2) Lin(P0,2 + £01,2)) (f5’5(5)7m6(3))d5] .

T1 /\7-5

The correctors g2 and 1 o satisfy the properties (27) and (28) respectively. In addition, f°
and m® satisfy the estimates (18) and (16) respectively. Using Assumption 5 and the condition
0 <71 — 7 <A, one finally obtains

£,0 2
0

€,8,7° £,5,7° ? 2
B [‘Msﬁ"‘ (72) — Mwa"s (ﬁ)‘ ] S AR [(1 * ‘ ‘Lz(Mfl)

)+ 52|

<A—0,
A—0

since a < 1 and using Assumption 6.
Gathering the estimates for the two terms on the right-hand side of (36), the claim (35) is
proved. One finally obtains

s swp B [[p(o707 (1) = 007 ()] =0,

€,0 TIST2<T1+A A—0

hence (33) holds. This concludes the proof of the tightness of the family (psvéﬁé) 5 is tight in
€,
the space C3.H <.
It remains to prove the tightness of (,05’5’76) 5 is tight in the space L2.L2, if Assumption 7 is
€

satisfied. It suffices to establish the following claims: for all n € (0,1), there exists R € (0,00) and
¢" €(0,1), such that

lim limsup P (wpewha (A) > 77) =0, (37)
A0 (£,6)—(0,0)
and
P (|5 >R <n. 38
Sup ( p Lo 7 (38)
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Indeed, for all R >0, ¢” > 0 and 7 : (0,00) — [0, 00) such that n(A) N 0, the set

K= {pe 1312 | ol 3 er < R and YA € (0,1),u,(A) < n(A)}

is compact in L2.L2, see [Sim87, Theorem 5]
The first claim is a consequence of the tightness of (ps"s’Ta) 5 in C3.H_* proved above,

57
see [Bil99, Theorem 8.2].
Owing to Markov inequality, it suffices to prove the following inequality:

c,8,1°
p

<1 (39)

supE [

"
€,0 L%Hi ]

Let g% = €0, f5% + a(v) - Vo fo? + eb(v) - V. f5°. By Assumption 7, we are in position to
apply an averaging lemma , precisely [BD99, Theorem 2.3] (with f(t) = f9(ct), g(t) = g5°(et)
and h = 0 until time T A 7°). After rescaling the time ¢ ~— ¢/, one obtains the inequality

500 T ATe 500 2
£,0,T .= €:0,7° (¢ H , dt
il PR N Tl
5 2 T/\TE 5 2 T/\‘f'5 5 2
< a) y +J S0 (¢ H dt +f SOT (¢ dt.
fo e [T L) . 9= (t) )
Applying the Cauchy-Schwarz inequality gives
,8,7° €,8,7° 5,7% 1 €,8,7°
570 = |ef=om (o (m® (£)) + ZLFEOT (¢
57O,y = [ O O L 0]
5 5 1 5
< 6‘ ST (¢t ‘a m®7 (t + - HL =0T (¢ :
1970 e @, + 2 e o]

It is now crucial to use the a priori estimate (18) (see Proposition 4.2) to control the intergral

term
T Ard 1 s
| e
0 €

L2(M—1)
uniformly with respect to €, . Using Assumption 6, the estimates (16) and (18) for ms (t) and
feor (t), and Lemma 4.7, the claim (39) is proved, with ¢” = Z/'

Since we proved (37) and (38), the family (ps*‘“é)

satisfied.
This concludes the proof of Proposition 4.5. O

558 tight in L% L2, when Assumption 7 is
€,

Proof of Proposition J.6. Let py be such that p,, = lim p%+% . for some sequence (g4, d;) — (0,0).
71—00
For all ¢ € Oy, define the stochastic process M, as follows: for all ¢ > 0,

Mﬂﬂ:ﬂmﬁ»—%me—Lﬁﬂmew

Let us start by proving that, for all ¢ € Oy, M, is a square integrable martingale adapted to
the filtration generated by po.
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Let the test function ¢ € Oy, be fixed. Since ¢ is bounded, to prove that the process M, is
square-integrable, it suffices to prove that

sup_E [|£6(p0(0)| < o0. (40)
te[0,T]

Observe that, for all ¢ € [0,7], the mapping p € CLH;S — [Lo(p(t))]> € R is continuous.
5, 2
Thus one has the convergence in distribution ‘L',gp(p%‘s” ‘ (t))’ L» |Lo(poo (1))]? (see [BouOd,
1—00

, 2
Proposition IX.5.7]). In addition, (‘Egp(psiv‘s”é” (t))‘ ) is uniformly integrable: one has
€i,0;

i,84,7% 4 £,0
SupE | [Leo(p 5" (1) | < supE || 5
£,0

ieN

4
< 0,
LZ(Ml)]

using the estimates from Proposition 4.2 and Assumption 6, and the expression (21) of Lo when
© € Opim. Using [Bil99, Theorem 5.4], the convergence in distribution and uniform integrability
property give
2
&0 ] < 0.
L2(M-1)

B (100t 0)7] = fim |07 @) | < sup |

This yields the square integrability property (40).
The next step is to prove that M, is a martingale. Let 0 < 51 < ... < 5; < 5 <t and let
g€ CY((H;<)") be a continuous bounded function. Define the mapping

® e CHH = (0p(0) = 9(0(6)) — [ Lololw)du) g(p(s1).erplo)

To prove that M, is a martingale, it suffices to prove the following claim: E [®(p)] = 0.
Let us first check that E [q)(psiv‘sf“é"')] — E[®(py)] when ¢ — oo. This claim follows from

the definition of py, as the limit in distribution of pf“‘sméi and straightforward arguments. The

mapping ® is continuous on C%H_* and (@(pah&iﬁ&i)) s is uniformly integrable. Using the
€i,0%
same arguments as for the proof of (40), one obtains the following convergence result:

.8 .1%
E[@(p ") > E[2(p0)]
1—00
Let us now check that E [@(ps’”‘s’?*"éi )] — 0 when ¢ — co0. This claim follows from a martingale

property and the perturbed test function to take the limit i — 00. Let ¢ be the perturbed test
function given by (23), see Proposition 4.3. Using the martingale property from Proposition 4.4,
one has

i,0i 20i,7% R 504 i,0i,70% R
E [(@E“é’(f“&“ (1), M T (£)) = @O (fE00T (5),m T (s))
)

t AT
N S 5 ) 8. 1% 3,684,701 _
- cf“&w“&(f%é%u>,m&(u))du) 967" (51), s P57 (57)) | = 0

st
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Using the expression g@E’5 =p+epro+ 524,02,0 + 62g00,2 + 5(52901’2 (see (23), and the boundedness
of g, one obtains the upper bound

[§
el ]| < St

j=1
with
30T (1) = ro(f0 T (5)))
£) = p20(f% 7" (s)))
ry = 82002 (F7 00T (£), mP (1) — oo (F5007 (), mP (5)))
ra = €02 (01,2(f50 T (), mP T () — @1 2(f50T (5),mP T (s))

tAT%%
- . - 5 . e85, 7%
ry = J ) (EE’L, i L7 (f 11617 (u))mézv (u)) — £So(p “5“ (U))) du

SATOL

r1 = €i(p1,0

( (t
72 (<P2,0(f8“6” N
" (

S

t 8. 0 . 8. 7%
O B O VT = e
t

aT8i sATO

Using estimates (25), (26), (27) and (28) of Proposition 4.3 and estimates (16) and (18) on moT"
and fai"si’Téi, one has

1] S & | £5° L2(M-1y]
el s B gL )
ol S 07U+ [ 75 L L)+,
4] < 62 (1+( cirds LZ(M_I))(1+5;O‘).

Since o < 1 (see Definition 4.1), using Assumption 6, one obtains E [|ry|] —— 0, for k € [1,4].
1—0

To treat the next term rs, it is necessary to use Lemma 4.7: using the estimate (24), one

obtains L
Eflrs]] S it —s)277 + 67 (1 +6;2%) —— 0,

1—00

using the condition o < 1.
The last term rg is treated as follows: using the Cauchy-Schwarz inequality, the expression (21)
for Ly and the estimate 4.2, one obtains
5 )2]

Bl < B[], . [E[(e—tn

<P(r% <T) —0,

1—00

0

owing to Assumption 6 and to Proposition 4.1 which gives the convergence in probability 70 — oo.
Gathering the results, one obtains E [CID(pEi";i’TSi)] — 0 when ¢ — o0, hence E[®(ps)] =

lim; . E @(pgi"sm{si) = 0. This concludes the proof that, for all ¢ € Oum, M, is a square-
integrable martingale adapted to the filtration generated by poo.
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The final step is to prove that E [|M¢(t)|2] =0, for all t € [0,T] and ¢ € Oppy,.

Let A € (0,00) be an arbitrarily small real-number and let 0 = tg <t; < .. <t; =t bea
subdivision of [0, ] such that maxgefo j—1] [tk+1 — tx| < A. Since M, is a centered martingale,
with M, (0) = 0, one has

= [heof] -

E[IM(te1) - My (0]

5

E [ (pae(tr41)) = 9lpo0 (t2) ]+22E[ j Lolpo(s))ds

2] . (41)

On the one hand, for 0 <t <t < T, one has the identity
2
|<P(Poo (tl)) - ‘P(poo (t))| = Mqﬂ (t/) M (t) - 2‘P(Poo<t)) (Mw(t/) - Mw(t))

jﬁ (9o (5))ds — 20 (1 jc ) (o (5))ds.

The test functions ¢ and ¢? belong to the class Oy, therefore, owing to the first part of the proof,
M, and M- are centered martingales for the filtration generated by pe. As a consequence,

E[|so(poo(t’)) P(p(t) U L") (peo(s))ds = 2¢(poo(t J Lo(po(s ))d1~ (42)

Since L is a first order derivative operator (see (20)), it is straightforward to check that £(p?) =
2¢pLyp. One thus obtains

th+1

E [lotoc () = (ool ] = 22 | [ (0l02(5) — ol (0) Lolpn(s)is|

k

- fkﬂ : [Mpw(s)) - W(pw(t’“)”Q]l/QE [\&P(pm(s))lz]u2 ds,

k

owing to the Cauchy-Schwarz inequality. Since ¢ € Oy, one may use the inequality (40), and ¢
is bounded. Thus, (42) gives (with ¢ = t; and t' = s)

E [[¢(p:e(5)) = plpoo(ti)) ] < s ta.

Using (40), one obtains

B [lpotin) = oo )] < [ (5= 0025 5 292, (43)

k

On the other hand, (40) yields

|

Finally, (41), (43) and (44) yield

L " Lolpuls))ds| | < A2 (44)

k

E[IM,()F] < a2+ 8 —0.
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This concludes the proof that E [|M¢(t)|2] = 0. We deduce that, for all ¢ € [0,T], almost

surely, M,(t) = 0. Since po, € COH™, M,, is a continuous process. As a consequence, almost
surely, for all ¢ € [0,T], M, (t) = 0, which concludes the proof of Proposition 4.6.
O

5 Proof of the auxiliary results

5.1 Asymptotic behavior of the stopping time

The goal of this section is to provide the proof of Proposition 4.1: 78 — oo in probability when
0 — 0.

Proof of Proposition J.1. Let us first prove the first claim: 72, — o0 in probability.

Introduce the following sequence of real-valued random variables: for all ¢ € {0, 1,.. .}, set

Si= sup [m(t)|p.
te[i,i+1]

The random variables S; are almost surely finite, since E[S]] < oo for all i > 0 owing to
Assumption 3.

Owing to the condition o > 2/7, there exists o’ such that 2/y < o/ < «. Using Markov
inequality and Assumption 3, one obtains

o e 4

i—1 172 =1 =112

[e¢] [e¢] [e¢]
Z]P’(SiZiT)éZ [%]:supIE[SZ]Z_, < 0.
i=1
Using Borel-Cantelli’s lemma, there exists a N-valued random variable Ij, such that almost surely,

Ct,
Vi> Iy, S; <i¥.

Define the random variable Z = sup 5;. Since Ij is almost surely finite, Z is also an almost
0<i<lIp
surely finite random variable. Observe that almost surely, for all ¢ > 0, one has

o

Hm‘;(t)HE < Sis—2) <2+ [téfzj% <7+ (t6’2)7 .

We are now in position to conclude the proof of the first claim: for all T € (0, ), one obtains

5 . F) —a o —a’ —x
[P(T77L<T)_P<t€s[g%]|m ), >0 )@(mma > )“»M 0,

since o/ < a. Thus 79, — o0 in probability.
It remains to prove the second claim: Tg — oo in probability. Let p € (a, 1) be an arbitrary

real number. Owing to the Markov inequality and to the continuous embedding H. gEd/ 242 Cl,
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for all T € (0,00) and for all § € (0,0], one has

]P(T?<T)=]P(T<<TTC<T)+]P’(’7’<<TTC 6)

(6 sup HC‘”
te[0,T7]

1) +P (5 <T)
<5y [ @\jl] P <)

te[0,T7]

< §?0P) supEE [52’” S HC‘” HHWHQ] +P (7, <T).

Owing to the first claim, it thus remains to prove that

SUPE |fst sup HCéT H {d/2j+2‘| < 0,
te[0,T]

for all T € (0, o0).
Let 8 be an arbitrary multi-index of size |3| < |d/2] + 2. For all § € (0, 0] and T € (0, 00),
one has
s 2
oPIgo™ (¢, )
oxP

sy |

207 dx. (45)

E| sup
te[0,T]

gf E| sup
Td te[0,77]

Below an upper bound for the expectation on the right-hand side of (45) is obtained using
properties of a well-chosen martingale. For all 2 € T and all multi-indices 3 such that || <
|d/2| + 2, introduce the auxiliary function 62 defined by

L3

oBla(0)
B(p) =
b=(6) = ozP

for all n € E. Observe that 67 is an element of the set E*(0), and one may define ¢ =
Ry (05 — 62(7)), which solves of the Poisson equation —L,,, ¢ = (6% — 6%(7)), see Definition 2.1.
Observe that one has the identities

() 1 * Pl (a(m’(s)) —7)
oxP B gjo oxP (z)ds
1t

=ff(%m%» ) ds
f Lot (md (5))ds

Finally, for all z € T?, § € (0,60] and ¢t > 0, set

My (1) = 8 P02 (1)) = 64726 (m(0)) — ;fywuwﬂ ’(5))ds

aIB\Cé(t )

= SHTYL(m (1)) = 8P (m(0)) + 6P —2
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8

Then the stopped process (M,,,)” = M2, ,(- A 7°) is a martingale. In addition, one obtains

the upper bound

2
PO (¢, )

E | 627
sup 63:5

te[0,T7]

52 2
<2E| sup ‘61+pw5(m6’7 (t))‘ +E| sup ’M(Sl: s (t )’ :
te[0,T] tefo, ]! O Y=

On the one hand, owing to estimates (6) and (16), one obtains

2
E[ sup ‘51+p1/)f(m6’T6(t))' 1 < 522 (1 + 5_20‘) <1,
te[0,T]

since a < 1.
On the other hand, Doob’s Maximal Inequality yields

2
6,7 6,7
[ sup M3 (1) ] <4E [ MY () ]

te[0,T7]
4 T Atd
<AE [@W [ (en (02)°) - 202c002) <m5<s>>ds]
< 6% (14 572)
<1,

since p € (o, 1), using Assumption 5 and the estimates (6) and (16).
Since all the bounds obtained above are uniform with respect to « € T¢, gathering the estimates
one obtains (46) yields

(’)|ﬂ|<§,7—5 (t7 1.) 2

327 dr < 1.

f E | 6%" sup
zeTd te[0,T]

The arguments explained above then yield the result: for all T € (0, o0),

P (Tg < T) < §20-2) 4 p (7'7‘; < T) e 0,

therefore one has Tg — o0 in probability.

Since 70 = 79, A Tg , the proof of Proposition 4.1 is completed. O

5.2 A priori estimate of the solution in L*(M™!)

The goal of this section is to provide the proof of Proposition 4.2, which gives an almost sure a
priori estimate for 597 in the space COL2(M™Y) and for Lfe% ™ in the space L2 sL2 (MY,

in terms of the norm of the initial condition ‘ g 4

tAT

LQ(M—l)'

Proof of Proposition 4.2. For all 6 € (0,dp] and all ¢ = 0, set

775(75’ )= Jt U(mé(s))()ds _ 5C6(t7 ) +ta() e C&d/z]+2’
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where (? is defined by(15). Note that, owing to (17), for all § € (0, 8], and i = 0, 1, one has

sup [n°(t) (47)

te[0,79 AT

Let us now introduce the following family of weight functions M?® indexed by 4 € (0, 8o]: for
allt >0, ze T and v e V, set

M‘S(t,x,v) = exp (—Qn(s(t,x)) M(v),
The associated weighted L? norm is defined by

Hf”L2 (M3 (t)- ‘[ ‘f z,0) d du(v).

txv

Note that for all h e L2(M™') and all ¢ € [0,7° A T, the inequality (47) yields

24277 o

2 2
Al z2 -1y < [Pl 72 a5 1)1y € (48)

It is thus sufficient to prove estimates in the weight norm || ;25 ;)-1), to retrieve the a priori

estimates in the space L?(M™!), when the condition t < 7% A T is satisfied.
For all £ > 0, one has

t
22 IOl a0 = _H IU@fWE%WMW@)

|f55t33v 5
O MO (t dxzd
JJ2|M5tzv| (t,,v)dzdy(v)

= )+855()+C55()

with

e, 5
A 5(t) = J W fs(s(t x,v)dzdu(v)

£, .V
mﬂw——{[i&j;iww+w@»Vwaawmww>

€, 6
Jj |f ttgicz; (G(ma) + zt//\\/t/l;> (t, x,v)drdu(v).

Note that the third term vanishes: C. 5(¢t) = 0 for all ¢ > 0. Indeed, the definition of the weight

function M?° yields the identity o(m?) + 7‘72‘/\,15 =0.

Using the identity £ = p* M — Lf%° and the property §y Lfe0(t, z,v)du(v) = 0, the first
term A 5(t) is written as follows: for all ¢ > 0,

e, (5
Acs(t) = = J-J- I Lfe°(t, x,v)dedu(v)
65 v 2
=§Le“””@mjw”memm—ﬂwf,ﬁ@@m
-3 1255 O o aps 1) -
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The treatment of the second term B, 5(t) requires technical computations. Using an integration
by parts arguments, for all ¢ > 0 one obtains

(¢ z. v &0(t . v
Bes(t) = =2 [[atw) + epoy) - L) gy

€ MO (t,z,v)
1] re,8 2Vz/\/l5 .,
= [ty + ey - 21 (tmi 7o)l B
1 ’fs"s(t,a:,v)|2

== Jf(a(v) + eb(v)) - Vzn‘s(t, x)mdu(v)dx.

€

Using again the identity f° = p=° M — L% then gives, for all ¢ > 0,

B = & [ "0 20 Tt ta) - ([ (o) + b0 ME)ue) )
Stz v 2
Jf ) + eb(v)) - Vo (t, x)Wdu(v)dx
- = Jf ) + eb(v)) - Vo (t, ) p=° (t, ) LF0 (¢, U)/\%du(v)dx
= 85,6( ) + Bs,é( ) + Ba,é(t)'

Let us now treat successively the three terms appearing on the right-hand side above.

e Owing to Assumption 1 and to the definition of .J, one has §,, (a(v) +€b(v)) M (v)du(v) = eJ.
Therefore

|BLs(t)| = U 1" 00) | 20 (1 )| T - Vol (¢, @) d
Td

< ”b”Lm Hvz"f;(t)ch J:Ed 62175(75790) ‘p876(t71')‘2dx.

Owing to the Cauchy-Schwarz inequality, one obtains

Shm) | e 2 St ot x,v
J;rd 6277 @, )|p ’6(t,27)‘ dx < J:Ed 6277 @, )JV WD f M5 t x v)du( )d

= ”.fs’(s(t)”[g(M(S(t)fU ) (49)

since §i, M°(t,z,v)dp(v) = e=21"(t2) for all > 0 and all 2 € T%. As a consequence, using
the inequality (47), for all ¢ € [0,7° A T, one has

B 5] < bl (1 + T [le) 70 2 s 1) -

e Using the condition & < gq with ¢ satisfying (14), and the inequality (47), for t € [0,7° A T
one has

2
|B§,6(t)| < 4762 H fE’(; t)HLZ(ME(t)—I)‘

e Using Young’s inequality, then using the inequalities (47) and (49), one obtains, for all
e [0,70 AT,

820) < el + 1 (9 O, [ 00 |20, do+ 25 120 s
1
< dlal o + B4+ T1ley)* 120 aps ) + 10 HLfE"‘(t) I sy -
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Gathering the estimates, one obtains the following inequalities: for all t € [0,7° A T7,

€,0 2 1 £,0 2
|Bs,5(t)| < CO(T) Hf (t)”L2(M5(t)—1) + @ HLf (t)HLQ(Mé(t)—l)
and
1 8 2 1 5 2 8 2
iat er (t)“L2(M5(t)*1) + 2762 “Lfe (t)HL2(M6(t)—1) < CO(T) ”fg (t)HL2(M5(t)*1) .
where Cy(T) € (0,00) is a deterministic real number, and does not depend on ¢,§. Applying
Gronwall’s inequality, for all ¢ € [0, 7% A T, one gets

£,0 2

0

t

5 2 1 5 2
10 anasiy oy * 522 |, 10O agaaniy a5 < OO
where C(T) € (0,00) is a deterministic real number, and does not depend on ¢,4. Finally,
using (48), one obtains the a priori estimate (18), which concludes the proof of Proposition 4.2.
O

5.3 Construction of the perturbed test function ¢*°

The objective of this section is to prove Proposition 4.3: more precisely, given a test function
¢ € Oy (which only depends on p = (f)), we construct the four correctors 1 0, ¢2.0, ¥o,2 and
(1.2, such that the perturbed test function ¢=° defined by (23) satisfies the error estimates (24)
and (29), and appropriate upper bounds.

Below, we first state auxiliary results concerning solutions of Poisson equations. The expression
of £59¢p%9 is then expanded in powers of € and §, and the resulting equality yields a family of
equations to be satisfied by the correctors in order to satisfy (24). The correctors are finally
constructed successively as solutions of appropriate Poisson equations. Eventually, it only remains
to check the required regularity properties and upper bounds, this step follows from straightforward
computations.

5.3.1 Auxiliary results on Poisson equations

As will be clear below, the construction of the correctors requires to solve Poisson equations of the
type —La0(f,€) = V(f,¢) (where ¢ is considered as a fixed parameter) and —L,,¥(f, ¢) = 9(f,£)
(where f is considered as a fixed parameter). We describe below the corresponding centering
conditions which are needed for the solvability of those Poisson equations, and give the expressions
of the solutions.

To solve the first class of Poisson equations, let us introduce the process (gy(t)),.p+ » associated
with the infinitesimal generator Lo, with the initial condition ¢;(0) = f: for all ¢ > 0, one has

gs(t) = pM+e " (f — pM),

where p = (f) = (g); () for all t > 0.
The solvability of the first class of Poisson equations —Lo1) = 1 is ensured when the following
centering condition is satisfied: for all pe L2 and all £ € E,

I(pM,£) = 0. (50)
If (50) is satisfied, then the function v defined by

w0 = [ " 0gs (1) 0y, (51)
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for all fe L?(M™!) and £ € E, is a solution of the Poisson equation —Lst) = 9. It is the unique
solution such that ¢(pM, ) =0 for all pe L2 and £ € E.

The solvability of the second class of Poisson equations —L,,1) = ¢ is ensured when the
following centering condition is satisfied: for all f € L?(M™1),

JE I(F, 0)dv(0) = 0. (52)
If (52) is satisfied, then the function ¢ defined by
w0 = [ BB @) (53)

for all fe L2(M™!') and £ € E, is a solution of the Poisson equation —L,,1 = ¥. It is the unique
solution such that {(f,¢)dv(¢) =0 for all f e L*(M™1).

In the sequel, the following class of functions ¥ is considered. For all h,k € L2, define
Onr(l) = (hcr(€),k:)Li for all £ € E. Observe that 0y € E*(o) (see Definition 2.1). For all

f € L2(M71) and ¢ € E, set ﬂh,k(f, 6) = Ghyk(n) — gh,ka with ?h’k = S@mk(@)du(é) = (h?,k)Lz.
For such functions 9}, ., the solution of the Poisson equation —L,,n 1 = Inr = Onr — 5;17;6 is
given by a

Ui = Ro (0h,6(0) — Onie)

where the resolvent operator Ry is introduced in Definition 2.1. Using the estimate (6) and
the to Riesz representation Theorem, for all £ € E, there exists a bounded linear operator
Ro(¢) : L2 — L2 such that, for all £ € E and h,k € L2, ¢y (¢) = (Ro(£)h, k), .. Let us state
some useful properties of the operators Ry ().

(1) For all £ € E, Ry(¢) is self-adjoint.
(ii) For all £ € E and h € L2, one has

[Ro(Ohl L2 s Il (1 + [elg) -
(iii) For all £ € E and all h € H}, one has Ro(¢)h € H., and

[Ro(€)hll 1 < [l g (14 [€]5)

The proof of Claim (i) is straightforward: for all h,k € L2, 0, = Ok p, thus ¥px = Vi,
which gives for all / €
(Ro(O)h, k)12 = (h, Ro(£)k) 2 -

Claim (i) follows from the estimate (6): one has |¢p k()] <
Lip(0n.k) < Lip(o) [h] 12 [E] .-

Finally, Claim (i) is obtained as follows: since E € C1, one has [0}, & |Lip(E) < [Pl (5l =
if he Hy and k € L2. Using the estimate (6) then gives [¢px(0)] < |Al g [E] -1 (1 + €] 5)-

|h 2 |k] 2 (14 ]1€]| ), since
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5.3.2 Multiscale expansion and family of Poisson equations

Let ¢=9 be of the form (23), where the correctors are not known at this stage. Then £59¢%9 is
expressed as follows:

LG = e Lo+ 62 L
+e7! (L1 + Lap10) + 55_2£map170
+ (Lo + L1110 + Lo + Limpo2) + 67262£2@0,2 + 525*2£m<p2,0
+e(Lop1,0+ L1920 + Linpr2) +e 182 (L1002 + L2p1,2)
+&2Lopa0 + 02 Lowo2 + 62 L1p1 2
+e6°Lopr2,

where each line on the right-hand side corresponds to expressions of degree —2,...,3 in terms of
the variables ¢, . The goal is to construct the correctors such that £59¢%% — Lo goes to 0 when
(e,8) — (0,0), more precisely such that (24) holds. The following family of conditions provide
sufficient conditions on the correctors to satisfy (24): on the one hand, the correctors solve the
following system of equations,

Lop = Ly =0, (54)
Lip+ Lap1o = Lmpr,o =0, (55)
Lop + L1p1,0 + L2920 + Limpo2 = Lo, (56)
Lopo 2 = Lmpao =0, (57)
Lipoz + Lapr2 =0, (58)

on the other hand, the following estimates are satisfied,

[Loer,0(fs O)| + [L102,0(f, O] + [Lmpr2(f, O] + [Lop2,0(f, ] < (1 + Hf”iz(Mfl))(l + €l ),
(59)

[Lopo.2(£,0)] + [L101.2(F, O] + [Lowr2 (£, Ol £ 1+ [ 17201 + [€13), (60)

for all fe L?(M™1) and ¢ € E. The estimates (25), (26), (26) and (28) are byproducts of the
constructions of the correctors below.

Observe that the last equation in the system, Equation (58), would not appear if ¢ = 4,
or if a constraint of the type e~ 162 — 0 is satisfied. In the expression of £5°p%% above, the
condition (58) corresponds to a contribution of the term of degree 1. One of the novelties of
this work is to consider the general case, hence the need to construct the corrector ¢; 2. On the
contrary, as will be clear below, the condition (57) on the correctors (g2 and s o is simpler to
treat, it only means that o 2(f, ) = @o.2(pM, ) and p2.0(f,¢) = p20(f). In the case € = ¢, this
only consists in writing the corrector ¢, of order 2 as a sum of two terms 2 ¢ + o 2.

Recall that the test function ¢ belongs to the class of test functions Oy, (see Definition 4.2):
o(f,0) = x((p, §)L§). In the sequel, to simplify the expressions, we use the notation x, =

nm
b
Let us explain how the rest of this section proceeds. We first check that (54) holds when ¢ is
a function in the class Oyy. Then, we successively construct the correctors 19, ¢2,0 and g 2,
and 1,2, as solutions of Poisson equations, using the tools above. We finally check that (59)

and (60) holds. The proof of Proposition 4.3 is concluded when all those steps are completed.

x((p, £>L§)’ X, = X'((p, 5)L§)a and similar notation for the higher order derivatives xj, and x
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5.3.3 Verification of the condition (54)

The function ¢ is in the class Oyy: as a consequence ¢(f,¢) = p(pM) does not depend on ¢,
and only depends on f through p = (f). It is then straightforward to check that L,,¢(f,¢) =
Lop(f,€) =0 for all fe L2 (M~!) and £ € E. Therefore (54) holds.

5.3.4 Construction of the corrector ¢; ¢ using the condition (55)

First, using (53), the condition £,,¢1,0 = 0 implies that (1 ¢ is independent of £: ¢1 o(f, ) = ¢(f)
for all fe L2 (M™Y), e E.
Second, ¢1 9 is the solution of the Poisson equation

—Lapr0(f) = L1o(f) = =x, (Af) . &) 2 -

The centering condition (50) is satisfied for ¥ = £;¢, indeed (ApM) = 0 for all p € L2. Using the
expression (51), one thus defines the corrector ¢ ¢ as follows: for all f € L(M™!) and £ € E, set

e10(f.0) = JOOO Lip(gy(t))dt.

Recall that (gf(t)) = p and (Ags(t)) = et (Af) for all ¢ > 0, thus one has, for all f e L*(M™1)
and L € F,

o0

prolf0) == | € (A1) €y dt = —x, (A1) )

0
=X, (f, A&) 2, (61)

using an integration by parts argument in the last equality.
Using the expression (61), it is then straightforward to check that the estimate (25) is satisfied.
This concludes the construction of the corrector ¢ g.

5.3.5 Construction of the correctors ¢3 o and ¢ 2 using the conditions (56)—(57)

It is required to combine the two conditions (56) and (57) in order to build the correctors ¢a ¢
and ©0,2-

First, using (53), the condition £,,¢2 0 = 0 implies that ¢ ¢ is independent of £: 9 o(f, ) =
o(f) for all f e L2(M~1),¢ € E. Similarly, using (51), the condition L3¢ = 0 implies that
(pO,Q(fa E) = 900,2(p~/\/h£)7 with p= <f>7 for all f € Lz(M_1)7n €L

Second, observe that one has

‘COSD(fa f) + £1<p1,0(fa e) = _X;) (J(ﬁ)p,&)Lg - X/p (<Bf> 7§)Lg
XL(AS) €)1 (F A) s — X, (AF, A8)
= Jo,2(pM, £) + I2,0(f),

for all fe L2(M~1) and £ € E, where the auxiliary functions ¥o,2 and Y5 ¢ are defined as follows:

Do,2(pM, ) = —x;, (0(0)p, &) 12
V2.0(f) = X, (f, BE) 2 + xp (Af) €)1 + X, (f, A%€) 1
= Xp({AF), ©)72 + X, (£, A%+ BE) 1.,
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Note that using (21), for all p € L2, one has
Lo(p) = x; (p, diva(KVa8)) 2 + X, (0] - V&) 12 — x5, (0, 7E) 12
=X (0 K 1 V3E) 1o + X, (P2 - Vad) 12 = X, (@0,€) 12
= Xp, (pPM, A% + BE) 1, — X, (@,€) 12

= 19210(,0/\/1) + J‘ 190’2(p./\/l, )dl/
E

= U20(pM) + f Vo,2(pM, -)dv
E

Indeed, (ApM) = 0 for all p e L2.
As a consequence, the correctors ¢, ¢ and g 2 are constructed as the solutions of the Poisson
equations

—Lap20(f) = (V2,0(f) = V2,0(pM)), (62)
—Lompo,2(pM, 0) = (190,2(pM,€) - JE Yo,2(pM, ')dV> . (63)

Indeed, if (62) and (63) are satisfied, then the arguments above show that the conditions (56)
and (57) hold. It remains to solve the two Poisson equations, and to check that the estimates (26)
and (27) are satisfied.

On the one hand, the centering condition (50) is satisfied, and (51) gives the following definition
for g o: for all f e L2(M™1), set

a0
P2,0(f) = J (V2,0(g7(t)) — V2,0(pM)) dt
0
(64)
Using the properties (g¢(t)) = p, (Ags(t)) = e " (Af) and g¢(t) — pM = e~ (f — pM), for all
t = 0, one obtains the following expression for ¢g o: for all f € L2(M™1),

0

loe]
w2.0(f ((Agy(t) 5)2,43 dt+f X} (gf(t)—p/\/l,A?§+B£)L2 dt
0

SXp ((AF) )72 + X, (f — pM, A% + BE)

= 5Xp (f A& T2 + X, (f — pM, A% + BE) . (65)

On the other hand, the centering condition (52) is satisfied, and (53) gives the following
definition for g o: for all p e L? and (€ E, set

w ©
j e—2t "((AF), f)iz dt_"f eitX;) (f—pM,A2§+B§)L2 dt
0 0
1
2
1

po2(f, ) = f “E [%;(pr(t)) - JE Joa(pM, -)du] it

0

_ J:o E [x'p ((o(me(t)) —7)p, OL;;] dt

X, (o, Ro(0)8) 12 (66)

Using the expressions (65) and (66), it is then straightforward to check that the estimates (26)
and (27) are satisfied. This concludes the construction of the correctors ¢z and ¢ 2.
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5.3.6 Construction of the corrector ¢; » using the condition (58)

The last step in the construction of the correctors, is to define ¢4 o: owing to (58), it is constructed
as the solution of the Poisson equation —Lap1,2 = L1¢g,2. Using the expression (66) of ¢g 2, one
has

El@O,Z(fv K) = XZ (<Af> >§)L§ (P, RO(K)g)Lg + X,Io (<Af> 7RO(€)£)L§ ’

for all fe L> (M) and (€ E.
Note that the centering condition (50) is satisfied: for all p € L2 and ¢ € E, one has

Lipo2(pM, t) =0,
since (ApM) = 0. Therefore, 1 5 is defined using (51): for all f e L?>(M~1) and € E,

e12(f,0) = L Lipo,2(gs(t), £)dt.

Using the properties (gf(t)) = p and (Ags(t)) = e " (Af) for all t > 0, one obtains the following
expression for ¢q o: for all f € L2(M™!) and £ € E,

Q0

pralf.0) = | e (AR Oz (0. o003 + X, (AF) Rol00),)
X (AF) )12 (0. Bo(09) 12 + X, ((AF)  Ro(0)8)
X (£, A) 2 (0 Ro(D€) 12 — X (£ A(RA(0€)) 2. (67)

Using the expression (67), it is then straightforward to check that the estimate (28) is satisfied.
This concludes the construction of the corrector ¢ s.

5.3.7 Verification of the conditions (59)—(60)

Note that ¢ defined by (23) belongs to the class of functions © given in Definition 4.3. It thus
only remains to check that the conditions (59) and (60) hold. This is done using the following
expressions: for all f € L?(M~!) and £ € E, one has

Lopro(f,0) = =x, (@(O)p + (Bf) ;&) 2 (f, A 12 — X, (0(O) ], AS) 12,

DX (L AEYS + X (F, A8) 1 (£, 4%) .

+ XZ (f7A£)L2 (f - pMaA2§ + BS)L2 + X/p (f - pM7A35 + ABg)Lz ’

£1<P2,0(f’ f) =

Line12(f,0) = X (f, A 2 (p,0(08) 12 + X, (f, A(0(0)E)) 2,

LowaolF:0) = 5t (00 + (BF) )13 (1 A& — X4 (F, AC) 12 (0(0)f + BS, A8),

XL (0(p+ (BI)€)s (f — pM, A% + BE)
- X;) (U(E)(f - pM) + B(f - pM)a A25 + B&)LQ )
Lopoa(f.0) = —x; (@(Op+ (Bf) &)1z (Ro(0)p,€) 12 — X, (0(O)p + (Bf), Ro(£)§) 12 »
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Liora(f,0) = =X (f, ALz (0, Ro(0)€) 12 — X (f, A%€) 15 (0, Ro(0)€) 2

= Xp (fA8) 12 (p, A(Ro(0)8)) 2 — X (f, A 2 (f, A(Ro(€)S)) 2
- X/p (f7 A2(R0(€)§))L2 )

Lopra(F.0) = X (0(0)p+ (BF) €)1 (£ A€) 2 (p. Bo(0)€) 2 + X (0(0)fBS. AE) 13 (. Ro(D)E) 12

+ X
+ X,

FAQ) > (0(O)p + (Bf), Ro(0)€) 12 + x;, (0(O)p + (Bf) &) 12 (f, A(Ro(0)€))
o(0)f + Bf, A(Ro(£)E)) 2 -

—~ o~

It is then straightforward to check that (59) and (60) hold. This concludes the proof of Proposi-

tion 4.3.
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