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Definition

In phylogenetics, reconciliation is an approach to connect the history of two or more

coevolving biological entities. The general idea of reconciliation is that a phylogenetic tree rep-

resenting the evolution of an entity (e.g. homologous genes, symbionts. . .) can be drawn

within another phylogenetic tree representing an encompassing entity (respectively, species,

hosts) to reveal their interdependence and the evolutionary events that have marked their

shared history (Fig 1). The development of reconciliation approaches started in the 1980s,

mainly to depict the coevolution of a gene and a genome, and of a host and a symbiont, which

can be mutualist, commensalist or parasitic. It has also been used for example to detect

horizontal gene transfer, or understand the dynamics of genome evolution.

Phylogenetic reconciliation can account for a diversity of evolutionary trajectories of what

makes life’s history, intertwined with each other at all scales that can be considered, from mol-

ecules to populations or cultures. A recent avatar of the importance of interactions between

levels of organization is the holobiont concept, where a macro-organism is seen as a complex

partnership of diverse species. Modeling the evolution of such complex entities are one of the

challenging and exciting direction of current research on reconciliation.

Phylogenetic trees as matryoshka dolls

Phylogenies have been used for representing the diversification of life at many levels of

organization: macro-organisms [1], their cells throughout development [2], micro-organisms

through marker genes [3], chromosomes [4], proteins [5], protein domains [6], and can also

be helpful to understand the evolution of human culture elements such as languages [7] or

folktales [8]. At each of these levels, phylogenetic trees describe different stories made of spe-

cific diversification events, which may or may not be shared among levels. Yet because they

are structurally nested or functionally dependent, the evolution at a particular level is bound to

others.

Phylogenetic reconciliation is the identification of the links between levels through the

comparison of at least two associated trees. Originally developed for two trees, reconciliations

for more than two levels have been recently constructed. As such, reconciliation provides evo-

lutionary scenarios that reveal conflict and cooperation among evolving entities. These links

may be unintuitive, for instance, genes present in the same genome may show uncorrelated

evolutionary histories while some genes present in the genome of a symbiont may show a
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strong coevolution signal with the host phylogeny. Hence, reconciliation can be a useful tool

to understand the constraints and evolutionary strategies underlying the assemblage that

makes an holobiont.

Because all levels essentially deal with the same object, a phylogenetic tree, the same models

of reconciliation, in particular those based on duplication-transfer-loss events, which are cen-

tral to this article, can be transposed, with slight modifications, to any pair of connected levels

[9]: an "inner", "lower", or "associate" entity (gene, symbiont species, population. . .) evolves

inside an "upper", or "host" one (respectively species, host, geographical area. . .) (Fig 2). The

upper and lower entities are partially bound to the same history, leading to similarities in their

phylogenetic trees, but the associations can change over time, become more or less strict or

switch to other partners (Fig 1).

In the following part of this text, we will give a review of DTL reconciliation methods and

models, starting by an historical and methodological approach to the construction of the

model. Two-level reconciliation methods, have been reviewed several times, but generally

focusing on a particular pair of levels, e.g. gene/species or host/symbiont [10–16], the following

parts are written with a generic voice and to confront models constructed in different frame-

works. The last part of the article focus on efforts toward reconciliation with more than two

levels, and a description of some biological studies that look at such models.

Fig 1. Phylogenetic reconciliation. A phylogenetic reconciliation between an upper, blue, and a lower, red, tree, with the most often used evolutionary events

(S,D,T,L), and their name in phylogeography, host/symbiont and gene/species frameworks. For instance S event is called allopatric speciation when reconciling

geographical areas and species, cospeciation between host and symbiont, and speciation for gene and species, but always correspond to the same co-

diversification pattern.

https://doi.org/10.1371/journal.pcbi.1010621.g001
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History

The principle of phylogenetic reconciliation was introduced in 1979 [17] to account for differ-

ences between genes and species phylogenies. In a parsimonious setting, two evolutionary

events, gene duplication and gene loss were invoked to explain the discrepancies between a

gene tree and a species tree. It also described a score on gene trees knowing the species tree

and an aligned sequence by using the number of gene duplication, loss, and nucleotide

replacement for the evolution of the aligned sequence, an approach still central today with new

models of reconciliation and phylogeny inference [18].

Fig 2. Reconciliation and biological levels of organization. Phylogenetic trees are intertwined at all levels of organization, integrating conflicts and

dependencies within and between levels. Macro-organism populations migrate between continents, their microbe symbionts switch between populations, the

genes of their symbionts transfer between microbe species, and domains are exchanged between genes (left third). This list of organization levels is not

representative or exhaustive, but give a view of levels where reconciliation methods have been used. As a generic method, reconciliation could take into account

numerous other levels, for instance it could consider the syntenic organization of genes [155,160], the interacting history of transposable elements and species

[180], the evolution of protein complex among species [181]. The scale of evolutionary events considered can go from population events such as geographical

diversification to nucleotides levels one inside genes [34], including for instance chromosome levels events inside genomes such as whole genome duplication

[155].

https://doi.org/10.1371/journal.pcbi.1010621.g002
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The name reconciliation has been used by Maddison, 1997 [19], as a reverse image of "phy-

logenetic discord" resulting from gene level evolutionary events.

Reconciliation was then developed jointly for the coevolution of host and symbiont and the

diversification of species on geography. In both settings, it was important to model a horizon-

tal event that implied parallel branches of the host tree: host switch for host and symbiont and

species dispersion from one area to another in biogeography. Unlike genes and genomes, the

coevolution of host and symbiont and the explanation of species diversification by geography

are not always the null hypothesis. A visual depiction of the two phylogenies in a tanglegram

can help assess such coevolution, although it has no statistical obvious interpretation [20].

Character methods, such as Brooks Parsimony Analysis [21], were proposed to test coevo-

lution and reconstruct scenarios of coevolution. In these methods, one of the trees is forgotten

except for its leaves, which are then used as a character evolving on the second tree.

First models for reconciliation, taking explicitly into account the two topologies and using a

mechanistic event-based approach, were proposed for host and symbiont and biogeography

[22,23]. Debates followed, as the methods were not yet completely sound but integrated useful

information in a new framework [24].

Costs for each event and a dynamic programming considering all pairs of host and symbi-

ont nodes were then introduced in a host and symbiont approach, both of which still underlies

most of the current reconciliation methods for host and symbiont, and species and genes [25].

Reconciliation returned to the framework it was introduced in, gene and species. After charac-

ter models were considered for horizontal gene transfer [26], a new reconciliation model, fol-

lowing and improving the dynamic programming approach presented for host and symbiont,

effectively introduced horizontal gene transfer to gene and species reconciliation on top of the

duplication and loss model [27].

The progressive development of phylogenetic reconciliation was thus possible through

exchanges between multiple communities, the host and symbiont, gene and species, and bioge-

ography one. This story and its modern developments have been reviewed several times, gen-

erally focusing on specific pairs of levels, with a few exceptions [9,28]. New developments start

to bring the different frameworks together with new integrative models.

Pocket Gophers and their chewing lices: a classic example

Pocket gophers (Mammalia: Rodentia) and their chewing lice (Insecta: Phthyraptera) is a well

studied system of host and symbiont coevolution [29]. The phylogeny of host and symbiont

and the matching of their leaves are depicted on the left of Fig 3. Reconciling the two trees con-

sists in giving a scenario with evolutionary events and matching on the ancestral nodes depict-

ing the coevolution of the two trees. The events considered in this system are the events of the

DTL model: duplication, transfer (or host switch), loss, and cospeciation, the null event of

coevolution. Two scenarios were proposed in two studies [30,31], using two different frame-

works which could be deemed as pre-dynamic programming DTL reconciliation. In modern

DTL reconciliation frameworks, costs are assigned to events. The two scenarios were then

showed to correspond to maximum parsimonious reconciliation with different cost assign-

ments [25]. The scenario A uses 6 cospeciations, 2 duplications, 3 losses and 2 host switchs to

reconcile the two trees, while scenario B uses 5 cospeciations, 3 duplications, 3 losses and 2

host switchs. The cost of a scenario is the sum of the cost of its events. For instance with cost of

0 for cospeciation, 2 for duplication, 1 for loss and 3 for host switch, scenario A has a cost of

6×0+1×2+3×1+1×3 = 8 and scenario B of 5×0+1×2+3×1+2×3 = 11, and so according to a par-

simonious principle, scenario A would be deemed more likely (scenario A stays more likely as

long as the cost of cospeciation is less than the cost of duplication).
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Development of phylogenetic reconciliation models

Models and methods used today in phylogeny (Fig 4) are the result of several decades of

research, made of a progressive complexification, driven by the nature of the data and the

quest for biological realism on one side, and the limits and progresses of mathematical and

algorithmic methods on the other. See Fig 4 for an illustration of the models and methods

presented.

Pre-reconciliation models: Characters on trees

Character methods can be used when there is no tree available for one of the levels, but only

values for a character at the leaves of a phylogenetic tree for the other level. A model defines

the events of character value change, their rate, probabilities or costs. For instance the charac-

ter can be the presence of a host on a symbiont tree [21], the geographical region on a species

tree [32], the number of genes on a genome tree [33], or nucleotides in a sequence [34]. Such

methods thus aim at reconstructing ancestral characters at internal nodes of the tree [35].

Although these methods have produced results on genome evolution, the utility of a second

tree appears with very simple examples. If a symbiont has recently acquired the ability to

Fig 3. Pocket gophers and chewing lices. Tanglegrams and two proposed reconciliation scenario for pocket gophers and their chewing lices symbionts. For the host, O.

stands for Orthogeomys, G. for Geomys and T. for Thomomys; for the symbiont G. stands for Geomydoecus and T. for Thomoydoecus.

https://doi.org/10.1371/journal.pcbi.1010621.g003
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Fig 4. Reconciliation methods and summary. Illustration of reconciliation events, inputs, outputs, and computational difficulties. This table is intended to serve as

illustration to Development of phylogenetic reconciliation models section and can be read along it. Inputs are on the left of entries, output on the right. Upper trees are

drawn in blue, lower trees in red. Adding the horizontal Transfer event add new more parsimonious solutions compared to the previous DL model (A). With this new

event, costs must be assigned to D,T and L events, and different costs give different solutions (B). Not all scenarios including transfers are time feasible. Some might

include time constraints incompatible with the upper tree (C). Transfer can go from a species to one of its descendant via a sister lineages that went extinct (D). In

biogeography, a tree like structure can be constructed to account for the possible migrations between different geographical areas (E). In some cases, an exponential

number of scenarios might be most parsimonious, for example when two equivalent patterns have the same cost (F). The lower tree can be unrooted (G), multifurcating

(H), or given as a sample of potential trees (I) and reconciliation can be used to resolve those uncertainties to get a binary rooted lower tree. Reconciliation score can also

be used to help construct an upper tree (J). The dynamic programming is limited, by the fact it assume independence between sister lineages, that makes it unable to

consider replacing transfers or gene conversion (K), as well as Failure to diverge (L) and Incomplete Lineage Sorting (M), two population level events.

https://doi.org/10.1371/journal.pcbi.1010621.g004
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spread in a group of species and thus it is present in most of them, characters methods will

wrongly indicate that the common ancestor of the hosts already had the symbiont. In contrast,

a comparison of the symbiont and host trees would show discrepancies revealing horizontal

transfers.

The origins of reconciliation: The duplication loss model and the lowest

common ancestor mapping

Duplication and loss were invoked first to explain the presence of multiple copies of a gene in

a genome or its absence in certain species [5]. It is possible with those two events to reconcile

any two trees [17] i.e. to map the nodes and branches of the lower and upper trees, or equiva-

lently to give a list of evolutionary events explaining the discrepancies between the upper tree

and lower tree. A most parsimonious Duplication and Loss (DL) reconciliation is computed

through the Lowest Common Ancestor (LCA) mapping: proceeding from the leaves to the

root, each internal node is mapped to the lowest common ancestor of the mapping of its two

children.

A Markovian model for reconciliation

The LCA mapping in the DL model follows a parsimony principle: no event should be invoked

if it is not necessary. However the use of this principle is debated [34] and it is commonly

admitted that it is more accurate in molecular evolution to fit a probabilistic model as a

random walk, which does not necessarily produce parsimonious scenarios. A birth and death

Markovian model is such a model that can generate a lower tree "inside" a fixed upper one

from root to leaves [36]. Statistical inference provides a framework to find most likely scenar-

ios, and in that case, a maximum likelihood reconciliation of two trees is also a parsimonious

one. In addition, it is possible with such a framework to sample scenarios, or integrate over

several possible scenarios in order to test different hypotheses, for example to explore the

space of lower trees. Moreover probabilistic models can be integrated in larger models as prob-

abilities simply multiply when assuming independence, for instance combining sequence evo-

lution and DL reconciliation [37].

Introducing horizontal transfer

Host switch, i.e. inheritance of a symbiont from a kin lineage, is a crucial event in the evolution

of parasitic or symbiotic relationships between species. This horizontal transfer also models

migration events in biogeography and became of interest for the reconciliation of gene and

species trees when it appeared that many discrepancies could not simply be explained by dupli-

cation and loss and that horizontal gene transfer (HGT) was a major evolutionary process in

micro-organisms evolution. This switching, or horizontal transfer, pattern can also model

admixture or introgression [38]. It is considered in character methods, without information

from the symbiont phylogeny [21,39]. On top of the DL model, horizontal transfer enables

new very different reconciliation scenarios (Fig 4A).

The simple yet powerful dynamic programming approach

The LCA reconciliation method yields a unique solution, which has been shown to be optimal

for the problem of minimizing the weighted number of events, whatever the relative weights of

duplication and loss [40]. In contrast, with Duplication, horizontal Transfer and Loss (DTL),

there can be several equally parsimonious reconciliations. For instance a succession of duplica-

tions and losses can be replaced by a single transfer (Fig 4B). One of the first ideas to define a
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computational problem and approach a resolution was, in a host/symbiont framework, to

maximize the number of co-speciations with a heuristic algorithm [30]. Another solution is to

give relative costs to the events and find a scenario that minimizes the sum of the costs of its

events [25]. In the probabilistic model frameworks, the equivalent task consists in assigning

rates or probabilities to events and search for maximum likelihood scenarios, or sample sce-

narios according to their likelihood. All these problems are solved with a dynamic program-

ming approach.

This dynamic programming method consists in traversing the two trees in a postorder. Pro-

ceeding from the leaves and then going up in the two trees, for each couple of internal nodes

(one for each tree), the cost of a most parsimonious DTL reconciliation is computed [25].

In a parsimony framework, costs of reconciling a lower subtree rooted at l with a upper sub-

tree rooted at U is initialized for the leaves with their matching:

cðU; lÞ ¼ 0 if l 2 U else cðU; lÞ ¼ 1

And then inductively, denoting l’,l" the children of l, U’,U" the children of U, cS,, cD, cT, cL

the costs associated to speciation, duplication, horizontal transfer and loss, respectively (with

cS often fixed to 0),

cðU; lÞ ¼ minðcS þminðcðU’; l’Þ þ cðU}; l}Þ; cðU}; l’Þ þ cðU’; l}ÞÞ;

cS þ cL þminðcðU’; lÞ þ cL; cðU}; lÞ þ cLÞ;

cDþ cðU; l’Þ þ cðU; l}Þ;

cTþminðminVðcðV; l’ÞÞ þ cðU; l}Þ;minVðcðV; l}ÞÞ þ cðU; l’ÞÞÞ

The costs minV(c(V,l’)) and minV(c(V,l")), because they do not depend on U, can be com-

puted once for all U, hence achieving quadratic complexity to compute c for all couples of U

and l. The cost of losses only appears in association with other events because in parsimony, a

loss can always be associated with the preceding event in the tree.

The induction behind the use of dynamic programming is based on always progressing in

the trees toward the roots. However some combinations of events that can happen consecu-

tively can make this induction ill-defined. One such combination consists in a transfer fol-

lowed immediately by a loss in the donor lineage (TL). Restricting the use of this TL event [41]

repairs the induction. With an unlimited use it is necessary to use or add other known meth-

ods to solve systems of equations like fixed point methods [42], or numerical solving of differ-

ential equations [43]. In 2016, only two out of seven of the most commonly used parsimony

reconciliation programs did handle TL events [44] although its consideration can drastically

change the result of a reconciliation [12].

Unlike LCA mapping, DTL reconciliation typically yields several scenarios of minimal cost,

in some cases an exponential number. The strength of the dynamic programming approach is

that it enables to compute a minimum cost of coevolution of the input upper and lower tree in

quadratic time [45], and to get a most parsimonious scenario through backtracking. It can also

be transposed to a probabilistic framework to compute the likelihood of coevolution and get a

most likely reconciliation, replacing costs with rates, minimums by sums and sums by prod-

ucts [46]. Moreover the approach is suitable, through multiple backtracks, to enumerate all

parsimonious solutions or to sample scenarios, optimal and sub-optimal, according to their

likelihood.
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Estimation of event costs and rates

Dynamic programming per se is only a partial solution and does not solve several problems

raised by reconciliation. Defining a most parsimonious DTL reconciliation requires giving

costs to the different kind of events (D, T and L). Different cost assignations can yield different

reconciliation scenarios (Fig 4B), so there is a need for a way to choose those costs. There is a

diversity of approaches to do so. CoRe-PA [47] explores in a recursive manner the space of

cost vectors, searching for a good matching with the event frequencies in reconciliations.

ALE [46] uses the same idea in a probabilistic framework to estimate the event rates by

maximum likelihood. Alternatively COALA [48] is a pre-process using approximate bayesian

computation with sequential Monte Carlo: simulation and statistic rejection or acceptance of

parameters with successive refinement.

In the parsimony framework it is also possible to divide the space of possible event costs in

areas of costs which lead to the same Pareto optimal solution [49]. Pareto optimal reconcilia-

tions are such that no other reconciliation has a strictly inferior cost for one type of event

(duplication, transfer or loss), and less or equal for the others.

It is also possible to rely on external considerations in order to choose the event costs. For

example the software Angst [50] chooses the costs that minimize the variation of genome size,

in number of genes, between parent and children species.

The problem of temporal feasibility

The dynamic programming method works for dated (internal nodes are totally ordered) or

undated upper trees. However with undated trees there is a time feasibility issue. Indeed a hor-

izontal transfer implies that the donor and the receiver are contemporary, therefore implying a

time constraint on the tree. In consequence two horizontal transfers may be incompatible,

because they imply contradicting time constraints (Fig 4C). The dynamic programming can

not easily check for such incompatibilities. If the upper tree is undated, finding a time feasible

most parsimonious reconciliation is NP-hard [27,51,52]. It is fixed parameter tractable, which

means that there are algorithms running in time bounded by an exponential of the number of

transfers in the output scenarios [51].

Some solutions imply integer linear programming [53] or branch and bound exploration

[9]. If the upper tree is dated, then there is no incompatibility issue because horizontal trans-

fers can be constrained to never go backward in time. Finding a coherent optimal reconcilia-

tion is then solved in polynomial time [51], or with a speed-up in RASCAL [54,55], by testing

only a fraction of nodes mapping. Most of the software taking undated trees do not look for

temporal feasibility, except Jane [56] which explores the space of total orders via a genetic algo-

rithm, or, in a post process, Notung [57] and Eucalypt [58], which search inside the set of opti-

mal solutions for a time consistent ones. Other methods work as supplementary layers to

reconciliations, correcting reconciliations [59] or returning a subset of feasible transfers [60],

which can be used to date a species tree [60,61].

Expanding phylogenies: Transfers from the dead

In phylogenetics in general, it is important to keep in mind that the species, extant and ances-

tral which are represented in any phylogeny are only a sparse sample of the species that cur-

rently exist or have existed. This is why one can safely assess that all transfers that can be

detected using phylogenetic methods have originated in lineages that are, strictly speaking,

absent from a studied phylogeny (Fig 4D) [62]. Accounting for extinct or unsampled biodiver-

sity in phylogenetic studies can give a better understanding of these processes [63]. Originally,

DTL reconciliation methods did not recognize this phenomenon and only allowed for transfer
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between contemporaneous branches of the tree, hence ignoring most plausible solutions.

However methods working on undated upper trees can be seen as implicitly handling the

unknown diversity by allowing transfers "to the future" from the point of view of one phylog-

eny, that is, the donor is more ancient than the recipient. A transfer to the future can be trans-

lated into a speciation to unknown species, followed by a transfer from unknown species.

ALE [62] in its dated version explicitly takes the unknown diversity into account by adding

a Moran process of speciation/extinctions of species to the dated birth/death model of gene

evolution. Transfer from the dead are also handled in a parsimonious setting by Tera and ecce-

TERA [44,64], showing that considering these transfers improve the capacity to reconstruct

gene trees using reconciliation, and with a more explicit model in [65] and in probabilistic set-

ting, in ALE undated [66].

The specificity of biogeography: A tree like structure for the "evolution" of

areas

In biogeography, some applications of reconciliation approaches consider as an upper tree an

area cladogram with defined ancestral nodes. For instance the root can be Pangea and the

nodes contemporary continents. Sometimes internal nodes are not ancestral areas but the

unions of the areas of their children, to account for the possibility of species evolving along the

lower tree to inhabit one or several areas. In this case, the evolutionary events are migration,

where one species colonizes a new area, allopatric speciation, or vicariance, equivalent to co-

speciation in host/symbiont comparisons (Fig 4E). Despite this does not always give a tree (if

the unions AB and BC of leaves A, B, C exist, a child can have several parents) and this struc-

ture is not associated with time (it is possible for a species to go from A to AB by migration, as

well as from AB to A by extinction), reconciliation methods, with events and dynamic pro-

gramming, can infer evolutionary scenarios between this upper geographical structure and

lower species tree. Diva [67] and Lagrange [43,68] are two reconciliation models constructing

such a tree-like structure and then applying reconciliation, the first with a parsimony principle,

the second in a probabilistic framework. Additionally BioGeoBEARS [69] is a biogeography

inference package that reimplemente DIVA and Lagrange models and allows for new options,

like distance dependent transfers [70] and discussion on statistical model selection [71].

Graphical output

With two trees and multiple evolutionary events linking them to represent, viewing reconciled

trees is a challenging but necessary question in order to make reconciliation studies more

accessible. Some reconciliation software include annotation of the evolutionary events on the

lower trees [57], while others [47,56,58,72] and specific packages, in DL [73] or DTL [74],

trace the lower tree embedded in the upper one. One difficulty in this regard is the variety of

output format for the different reconciliation software, however recently a common standard,

recphyloxml [75], has been established and endorsed by part of the community with available

viewer.

Addressing additional practical considerations

Applying DTL reconciliation to biological data raises several problems related to uncertainty

and confidence levels of input and output. Concerning the output, the uncertainty of the

answer calls for an exploration of the whole solution space. Concerning the input, phylogenetic

reconciliation has to handle uncertainties in the resolution or rooting of the upper or lower

trees, or even to propose roots or resolutions according to their confidence.
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Exploring the space of reconciliations

Multiple DTL reconciliation scenarios can have equal cost or tight probabilities (Fig 4E).

Dynamic programming makes it possible to sample reconciliations, uniformly among optimal

ones [76] or according to their likelihood. It is also possible to enumerate them in time propor-

tional to the number of solutions [58], a number which can quickly become intractable (even

only for optimal ones) (Fig 4F). Finding and presenting structure among the multitude of pos-

sible reconciliations has been at the center of recent methodological developments, especially

for host and symbiont aimed methods. Several works have focused on representing a set of rec-

onciliations in a compact way, from a uniform sample of optimal ones [76] or by constructing

a graph summarizing the optimal solutions [77]. This can be achieved by giving support values

to specific events based on all optimal (or suboptimal) reconciliations [78], or with the use of a

consensus reconciled tree [79,80]. In a DL model it is possible to define a median reconcilia-

tion, based on shared events and to compute it in polynomial time [81].

EMPRess [72] can group similar reconciliations through clustering [82], with all pairwise

distance between reconciliations computable in polynomial time (independently of the num-

ber of most parsimonious reconciliations) [83]. With the same aim, Capybara [84] defines

equivalence classes among reconciliations, efficiently computing representative for all classes,

and outputs with linear delay a given number of reconciliations (first optimal ones, then sub

optimal). The space of most parsimonious reconciliation can be expanded or reduced when

increasing or decreasing horizontal transfer allowed distance [58], which is easily done by

dynamic programming.

Inferring phylogenetic trees with reconciliation

Reconciliation and input uncertainty. Reconciliation works with two fixed trees, a lower

and an upper, both assumed correct and rooted. However, those trees are not first hand data.

The most frequently used data for phylogenetics consists in aligned nucleotidic or proteic

sequences. Extracting DNA, sequencing, assembling and annotating genomes, recognizing

homology relationships among genes and producing multiple alignments for phylogenetic

reconstruction are all complex processes where errors can ultimately affect the reconstructed

tree [85]. Any topology or rooting error can be misinterpreted and cause systematic bias. For

instance, in DL reconciliations, errors on the lower tree bias the reconciliation toward more

duplication events closer to the root and more losses closer to the leaves [86].

On the other hand, reconciliation, as a macro evolutionary model, can work as a supple-

mentary layer to the micro evolutionary model of sequence evolution, resolving polytomies

(nodes with more than two children) or rooting trees, or be intertwined with it through inte-

grative models in order to get better phylogenies.

Most of the works in this direction focus on gene/species reconciliations, nevertheless some

first steps have been made in host/symbiont, such as considering unrooted symbiont trees [87]

or dealing with polytomies in Jane [56].

Exploring the space of lower trees with reconciliation. Reconciliation can easily take

unrooted lower trees as input (Fig 4G), which is a frequently used feature because trees

inferred from molecular data are typically unrooted. It is possible to test all possible roots, or a

thoughtful triple traversal of the unrooted tree allows to do it without additional time complex-

ity [41]. In a duplication-loss model the set of roots minimizing the costs are found close to

one another, forming a "plateau", [88] a property which does not generalizes to DTL [79,87].

Reconciliation can also take as input non binary trees (Fig 4H), that is, with internal nodes

with more than two children. Such trees can be obtained for example by contracting branches

with low statistical support. Inferring a binary tree from a non binary tree according to
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reconciliation scores is solved in DL with efficient methods [57,89–92]. In DTL, the problem is

NP hard [93]. Heuristics [94] and exact fixed parameter tractable algorithms [93] are possible

resolutions.

Another way to handle uncertainty in lower trees is to take as input a sample of alternative

lower trees instead of a single one. For example in the paper that gave reconciliation its name

[17] it was proposed to consider all most likely lower trees, and choose from these trees the

best one according to their DL costs, a principle also used by TreeFix-DTL [95].

The sample of lower trees can also reflect their likelihood according to the aligned

sequences (Fig 4I), as obtained from bayesian Markov chain Monte Carlo methods as imple-

mented for example in Phylobayes [96]. AngST [50], ALE [42] and EcceTERA [64] use "amal-

gamation", a extension of the DTL dynamic programming that is able to efficiently traverse a

set of alternative lower trees instead of a single tree.

A local search in the space of lower trees guided by a joint likelihood, on the one hand from

multiple sequence alignments and on the other hand from reconciliation with the upper tree,

is achieved in Phyldog with a DL model [97] and in GeneRax with DTL [18]. In a DL model

with sequence evolution and relaxed molecular clock the lower tree space is explored with an

MCMC in [98]. MowgliNNI [99] can modify the input gene tree at poorly supported nodes to

increase DTL score, similarly TreeSolve resolve the multifurcations added by collapsing poorly

supported nodes [100].

Finally, integrative models, mixing sequence evolution and reconciliation, can compute a

joint likelihood via dynamic programming (for both reconciliation and gene sequences evolu-

tion) [42], use Monte Carlo Markov Chain to include molecular clock to estimate branch

lengths, in a DL model [36] or with a relaxed molecular clock [98], and in a DTL model [101].

These models have been applied in gene/species frameworks, not yet in host/symbiont or

biogeography.

Inferring upper trees using reconciliation. Inferring an upper tree from a set of lower

trees is a long standing question related to the supertree problem [102]. It is particularly inter-

esting in the case of gene/species reconciliation where many (typically thousands of) gene trees

are available from complete genome sequences. Supertree methods attempt to assemble a spe-

cies tree based on sets of trees which may differ in terms of contemporary species sets and

topology, but usually without consideration for the biological process explaining these differ-

ences. However some supertree approaches are statistically consistent for the reconstruction of

the species tree if the gene trees are simulated under a DL model. This means that if the num-

ber of input lower trees generated from the true upper tree via the DL model grows toward

infinity, given that there are no additional error, the output upper tree converges almost surely

to the true one. This has been shown in the case of a quartet distance [103], and with a general-

ized Robinson Foulds multicopy distance [104], introduced in [105], with better running time

but assuming gene trees do not contain bipartitions contradicting the species tree, which

seems rare under a DL model.

However, reconciliation can also be used for the inference of upper tree. It is a computa-

tionally hard problem: already resolving polytomies in a non binary upper tree with a binary

lower one, minimizing a DL reconciliation score, is NP-hard [106]. In particular, reconstruct-

ing the species tree giving the best DL cost for several gene trees is called the Gene Duplication

problem or more generally Gene Tree parsimony. The problem was seen as a way to detect

paralogy to get better species tree reconstruction [107,108]. It is NP-hard, with interesting

results on the problem complexity [109,110] (Fig 4J) and the behavior of the model with differ-

ent input size, structure and ILS presence [111]. Multiple solutions exists, with ILP [112] or

heuristics [113,114], and with the possibility of a deep coalescence score [115].
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ODTL [46] takes as input gene trees and searches a maximum likelihood species tree

according to a DTL model, with a hill-climbing search. The approach produces a species tree

with internal nodes ordered in time ensuring a time compatibility for the scenarios of transfer

among lower trees (see paragraph The problem of temporal feasibility).

Addressing a more general problem, Phyldog [97] searches for the maximum likelihood

species tree, gene trees and DL parameters from multiple family alignments via multiple

rounds of local search. It thus performs the exploration of both upper and lower trees at the

same time. MixTreEM [116] presents a faster solution.

Limits of the two-level DTL model

A limit to dynamic programming: non independent evolution of children

lineages

The dynamic programming framework, like usual birth and death models, works under the

hypothesis of independent evolution of children lineages in the lower tree. However this

hypothesis does not hold if the model is complemented with several other documented evolu-

tionary events, such as horizontal transfer with replacement of an homologous gene in the

recipient lineage, or gene conversion. Horizontal transfer with replacement is usually modeled

by a rearrangement of the upper tree, called Subtree Prune and Regraft (SPR) (Fig 4K left).

Reconciling under SPR is NP-hard, even in dated trees, and fixed parameter tractable regard-

ing the output size [117,118].

Another way to model and infer replacing horizontal transfers is through maximum agree-

ment forest, where branches are cut in the lower and upper trees in order to get two identical

(or statistically indistinguishable [119]) upper and lower forests. The problem is NP-hard

[120], but several approximations have been proposed [121]. Replacing transfers can be con-

sidered on top of the DL model [122]. In the same vein gene conversion can be seen as a

"replacing duplication" (Fig 4K right). In this latter case, a polynomial algorithm which does

not use dynamic programming and is an extension of the LCA method, can find all optimal

solutions including gene conversions [118].

Integrating population levels: Failure to diverge and incomplete lineage

sorting

In host/symbiont frameworks, a single symbiont species is sometimes associated to several

hosts species. This means that while a speciation or diversification has been observed in the

host, the populations are indistinguishable in the symbiont. This is handled for example by

additional polytomies in the symbiont tree, possibly leading to intractable inference problems,

because polytomies need to be resolved. It is also modeled by an additional evolutionary event

"failure to diverge" (Jane [56], Amocoala [123]) (Fig 4L). Failure to diverge can be a way to

allow "free" host switch in a population, a flow of symbionts between closely related hosts. Fol-

lowing that vision, host switch allowed only for close hosts is considered in [58]. This idea of

horizontal flow between close populations can also be applied to gene/species frameworks,

with a definition of species based on a gradient of gene flow between populations [124].

Failure to diverge is one way of introducing population dynamics in reconciliation, a frame-

work mainly adapted to the multi-species level, where populations are supposed to be well dif-

ferentiated. There are other population phenomena that limit this framework, one of them

being deep coalescence of lineages, leading to Incomplete Lineage Sorting (ILS), which is not

handled by the DTL model [89,125]. The multi species coalescent is a classic model of alleles

evolution along a species tree, with birth of alleles and sorting of alleles at speciations, that
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takes into account population sizes and naturally encompass ILS [111,126–129]. In a reconcili-

ation context, several attempts have been made in order to account for ILS without the com-

plex integration of a population model. For example, ILS can be seen as a possible

evolutionary pattern for the gene tree (Fig 4M). In that case children lineages are not indepen-

dent of one another, leading to intractability results. ILS alone can be handled with LCA, but

ILS + DL reconciliation is NP hard, even without transfers [130].

Notung [89] handles ILS by collapsing short branches of the species tree in polytomies and

allowing ILS as a free diversification of gene trees on those polytomies. EcceTERA [131]

bounds the maximum size of connected parts of the species tree where ILS can happen, pro-

posing a fixed parameter tractable algorithm in that parameter.

ILS and DL can be considered on an upper network instead of tree. This models in particu-

lar introgression, with the possibility to estimate model parameters [132].

More integrative reconciliation models accounting for ILS have been proposed including

both DL and multispecies coalescent [133], with DLCoal. It is a probabilistic model with a par-

simony translation [134], proposing two sequential LCA-type heuristics handled via an inter-

mediate locus tree between gene and species. However outside of the gene/species

reconciliation framework ILS seems, for no particular reason, never considered in host/symbi-

ont, nor in biogeography.

Reconciliation in models with more than two levels

A striking aspect of reconciliation is the common methodology handling different levels of

organization: it is used for comparing domain and protein trees, gene and species trees, hosts

and symbiont trees, population and geographic trees. However, now that scientists tend to

consider that multi-level models of biological functioning bring a novel and game changing

view of organisms and their environment [135], the question is how to use reconciliation to

bring phylogenetics to this holobiont era (Fig 2).

Coevolution of entities at different scales of organization is at the basis of the holobiont idea:

macro-organisms, micro-organisms and their genes all have a different history bound to a com-

mon functioning in a single ecosystem. Biological system like the entanglement of host, symbionts

and their genes imply functional and evolutionary dependencies between more than two levels.

Examples of multi-level systems

Genes coevolving beyond genome boundaries. The holobiont concept [136] stresses the

possibility of genes from different genomes to cooperate and coevolve [137–139]. For instance,

certain genes in a symbiont genome may provide a function to its host, like the production of

a vital compound absent from available feeding sources. An iconic example is the case for

blood-feeding or sap-feeding insects, which often depend on one or several bacterial symbi-

onts to thrive on a resource that is abundant in sugar, but lacks essential amino-acids or vita-

mins [140]. Another example is the association of Fabaceae with nitrogen-fixing bacteria. The

compound beneficiary to the host is typically produced by a set of genes encoded in the symbi-

ont genome, which throughout evolution, may be transferred to other symbionts, and/or in

and out of the host genome. Reconciliation methods have the potential to reveal evolutionary

links between portions of genomes from different species. A search for coevolving genes

beyond the boundaries of the genomes in which they are encoded would highlight the basis for

the association of organisms in the holobiont.

Horizontal gene transfer routes depend on multiple levels. In intracellular mutualistic

symbiont insect systems, multiple occurrence of horizontal gene transfers have been identified,

whether from host to symbiont, symbiont to host or symbiont to symbiont [141].
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Transfers of endosymbiont genes involved in nutrition pathways beneficiary to the insect

host have been shown to occur preferentially if the donor and recipient lineages share the

same host [142–144]. This is also the case in insect with bacterial symbionts providing defen-

sive protein [145] or in obligate leaf nodule bacterial symbionts associated with plants [146].

In the human host, gene transfers has been shown to occur preferentially among symbionts

hosted in the same organs [147].

A review on horizontal gene transfers in host/symbiont systems [148] stresses the impor-

tance of supporting HGTs with multiple evidence. Notably it is argued that transfers should be

considered better supported when involving symbionts sharing a habitat, a geographical area,

or a same host. One should however keep in mind that most of the diversity of hosts and sym-

bionts is unknown and that transfers may have occurred in unsampled closely related species,

hosts or symbionts.

The idea that gene transfer in symbionts is constrained by the host can also be used to

investigate hosts history. For instance, based on phylogeographical studies, it is now accepted

that the bacteria Helicobacter pylori has been associated with Human populations since the ori-

gins of the human species [149,150]. Analysis of the genomes of Helicobacter pylori in Europe

suggests that they are issued from a recombination between African and Asian Helicobacter
pylori. This strongly implies early contacts between the corresponding human populations.

Similarly, an analysis of HGTs in coronaviruses from different mammalian species using

reconciliation methods has revealed frequent contact between viruses lineages which can be

interpreted as frequent host switches [151].

Cultural evolution. The evolution of elements of human culture, for instance languages

and folktales, in association with human population genetics, has been studied using concepts

from phylogenetics. Although reconciliation has never been used in this framework, some of

these studies encompass multiple levels of organization, each represented by a tree or the evo-

lution of a character, with a focus on the coevolution of these levels.

Language trees can be compared with population trees in order to reveal vertically transmit-

ted folktales, via a character model on this language tree [152]. Variants in each folktales fam-

ily, languages, genetic diversity, populations and geography can be compared two by two, to

link folktales diversification with languages on one side and with geography on the other side

[153]. As in genetics with symbionts sharing host promoting HGTs, linguistic barriers can

foreclose the transmission of folktales or language elements [154].

Investigating three-level systems using two-level reconciliation

Multi level reconciliation is not as developed as two-level reconciliation. One way to approach

the evolutionary dependencies between more than two levels of organization is to try to use

available standard two-level methods to give a first insight into biological system’s complexity.

Multi-gene events: Implicit consideration of an intermediate level. At the gene/species

tree level, one typically deals with many different gene trees. In this case, the hypothesis that

different gene families evolve independently is made implicitly. However this needs not be the

case. For instance, duplication, transfer and loss can occur for segments of a genome spanning

an arbitrary number of contiguous genes. It is possible to consider such multi-gene events

using an intermediate guide for lower trees inside the upper one. For instance one can com-

pute the joint likelihood of multiple gene tree reconciliations with a dated species tree with

duplication, loss and whole genome duplication [155] or in a parsimonious setting [107,156–

158], and one definition of the problem is NP-hard (Fig 5A). Similarly the DL framework can

be enriched with duplication and loss of chromosome segments instead of a single gene (Fig

5B). However DL reconciliation becomes intractable with that new possibility [159].
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Fig 5. Multi-scale reconciliation. Illustration of input, output and events, of published methods which can be identified with 3-level methods. The formalism is similar to

the one on Fig 4. Multiple gene lineages can undergo joint events like whole genome duplication (A) or segmental events (B), some events might be more probable than

others, like specific horizontal transfers with highway of transfers or hybridization (C). Cophylogenetic patterns can be compared, to see for instance if the common

pattern of a host and a symbiont are not just the common pattern of the symbiont and the geography (D). Characters can evolve on reconciled phylogeny, like gene

synteny (E), or two levels can be reconciled with the constraint of an upper one (F). Transfers can be upper dependent, more likely between two intermediate entities that

belong to a same upper one (G). Three levels can be reconciled together, sequentially, the intermediate in the upper before adding the lower, or trying to find a joint most

parsimonious scenario for the two reconciliations (H). These multi-level models can also be used to reconstruct the intermediate phylogeny (I).

https://doi.org/10.1371/journal.pcbi.1010621.g005
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The link between two consecutive genes can also be modeled as an evolving character, sub-

ject to gain, loss, origination, breakage, duplication and transfer [160]. The evolution of this

link appears as an additional level to species and gene trees, partly constrained by the gene/spe-

cies tree reconciliation, partly evolving on its own, according to genome organization. It thus

models the synteny, or proximity between genes. At another scale it can as well model the evo-

lution of the belonging of two domains to a protein.

The detection of "highways of transfers", the preferential acquisition of groups of genes

from a specific donor, is another example of non-independence of gene histories [161], simi-

larly multi-gene transfers can be detected [162]. It has also led to methodological developments

such as reconciliations using phylogenetic networks, seen as a tree augmented with transfers

edges, which can be used to constrain transfers in a DTL model [163]. Networks can also be

used to model introgression and Incomplete Lineage Sorting [38,164,165] (Fig 5C).

Detecting coevolution in multiple pairs of levels. It is a central question to understand

the evolution of an holobiont to know what are the levels that coevolve with each others, for

instance between host species, host genes, symbionts and symbiont genes. It is possible to

approach the multiple inter-dependencies between all levels of evolution by multiple pairwise

comparisons of two evolving entities.

Reconciliation of host and symbiont on one side and geography and symbiont on the other

side, can also help to identify patterns of diversification of host and symbiont that reflect

coevolution on one side, and patterns that can be explained by a common geographical diver-

sification on the other [166–169] (Fig 5D). Similarly, a study used reconciliation methods to

differentiate the effect of diet evolution and phylogenetic inertia on the composition of mam-

malian gut microbiomes. By reconstructing ancestral diets and microbiome composition onto

a mammalian phylogeny, the study revealed that both effects contribute but at different time

scales [35].

Explicit modeling of three or more levels

In a model of a multi-level system as host/symbiont/genes, horizontal gene transfers should be

more likely between two symbionts of a same host. This is invisible to a two-level gene tree/

species tree or host/symbiont reconciliation: in some cases looking at any combination of two

levels can lead to miss an evolutionary scenario which can only be the most likely if the infor-

mation from the three trees are considered together (Fig 6).

Trying to face the limitation of these use of standard two-level reconciliations with systems

involving inter-dependencies at multiple levels, a methodological effort has been done in the

last decade to construct and use multi-level models. It requires the identification of at least one

"intermediate" level between the upper and the lower one.

Pre-reconciliation: Characters onto reconciled trees. A first step towards integrated

three levels model is to consider phylogenetic trees at two levels and another level represented

only with characters at the leaves of one of the trees (Fig 5E). For instance a reconciliation of

host and symbiont phylogenies can be informed by geographic data [170]. Ancestral geo-

graphic locations of host and symbiont species obtained through a character inference method

can then be used to constraint the host/symbiont reconciliation: ancestral hosts and symbionts

can only be associated if they belong to the same geographical location (Fig 5F).

At another scale the evolution at the sub-gene level can be approached with a character

method [171]. Here, parts of genes (e.g. the sequence coding for protein domains) is reconciled

according to a DL model with a species tree, and the genes they belong to are mentioned as

characters of these parts. Ancestral genes are then reconstructed a posteriori via merge and

splits of gene parts.
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Two-level reconciliations informed by a third level. As pointed by several studies (see

paragraph Horizontal gene transfer routes depend on multiple levels), an upper level can

inform a reconciliation between an intermediate and lower one, notably for horizontal trans-

fers. Three level models can take into account these assumptions to guide reconciliations

between an intermediate and lower trees with the knowledge of an upper tree. The model can

for example give higher likelihoods to reconciliation scenarios where horizontal gene transfers

happen between entities sharing the same habitat. It has been achieved for the first time with

DTL gene/species reconciliations nested with a DTL gene domain and gene reconciliation

Fig 6. Inter-host and intra-host horizontal gene transfers between symbionts. Higher level of organization can shed light on lower levels reconciliation. In this example,

the goal is to reconstruct the history of a gene present in a symbiont genome. A single transfer and a single loss of gene is the most parsimonious scenario for the

reconciliation of the gene tree with either the host or the symbiont tree. Yet when considering the reconciliation of the symbiont and host trees, this scenario implies a gene

transfer between two symbionts across branches of the host tree (left). Such an inter-host transfer should be considered unlikely because a series of hidden events are

necessary for the gene to come in contact with its next recipient symbiont. Considering the three levels together puts forward a new scenario without inter-host transfer

(right) which is slightly less parsimonious in two-level reconciliations, but implies a more likely event of gene transfer within host.

https://doi.org/10.1371/journal.pcbi.1010621.g006
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[125]. Different costs for inter and intra transfers depend on whether or not transfers happen

between genes of the same genomes (Fig 5G and 5H).

Note that this model explicitly considers three levels and three trees, but does not yet define

a real three level reconciliation, with a likelihood or score associated [125]. It relies on a

sequential operation, where the second reconciliation is informed by the result of the first one.

The reconciliation problem in multi-level models. The next step is to define the score of

a reconciliation consisting of three nested trees and to compute, given the three trees, three-

level reconciliations according to their score. It has been achieved with a species/gene/domain

system, where genes evolve within the species tree with a DL model and domains evolve within

the gene/species system with a DTL model, forbidding domain transfers between genes of two

different species (Fig 5G) [172]. Inference involves candidate scenarios with joint scores (Fig

5H joint). Computing the minimum score scenario is NP-hard, but dynamic programming or

integer linear programming can offer heuristics [172,173]. Variation of the problem when

multiple domains are considered [174] and a simulation framework [175] is available.

Fig 7. Reconciliation inference software. Reconciliation software that aim at inferring reconciliation scenarios.

https://doi.org/10.1371/journal.pcbi.1010621.g007
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Inferring the intermediate tree using model of 3-level lower/intermediate/upper recon-

ciliation. Just like two-level reconciliation can be used to improve lower or upper phyloge-

nies, or to help constructing them from aligned sequences, joint reconciliation models can be

used in the same manner. In this vein a coupled gene/species DL, domain gene DL and gene

sequence evolution model in a bayesian framework improves the reconstruction of gene trees

[176] (Fig 5I).

Software

Multiple software have been developed to implement the various models of reconciliation.

Tables from Fig 7 and Fig 8 do not aim for exhaustivity but present a consequent number of

software aimed at reconciling trees to infer reconciliation scenarios (Fig 7) or for other usage

such as correcting or inferring trees, or testing coevolution (Fig 8). The levels of interest sec-

tion detail the levels for which the software was implemented, even though it is entirely possi-

ble, for instance, to use a software made for species and gene reconciliation to reconcile host

and symbionts [177]. Parsimony or probability is the underlying model that is used for the

reconciliation.

Future directions

Reconciliation is now mature as a methodological research subject, a network of researchers

and labs working together is emerging, with an active research, a good diversity of available

software, and cooperative initiatives like RecPhyloXML, a common standard of output of rec-

onciliations [75]. In the future methodological advances which sustain the development of

Fig 8. Auxiliary software. Reconciliation software which primary goal is not to infer reconciliation scenarios. Most of them are used for tree correction using

reconciliation score, some are used for rates inference or graphical visualization of scenarios.

https://doi.org/10.1371/journal.pcbi.1010621.g008
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new models will certainly play an important part in the possibilities of studies surrounding rec-

onciliations. Notably, new approaches may depart from the dynamic programming solution

for DTL which progresses along a rather narrow road: almost each new constraint or event on

top of it yields intractability results.

In this article we progressed from two to three embedded trees, and there is potentially an

infinity of interacting and coevolving levels to study (see four levels examples in

[144,146,152,153,178,179]). Current quantitative methods obviously cannot yet handle such a

complexity. In order to compare hypotheses, and assess them in a statistically grounded frame-

work, they are still to be developed and generalized to help the understanding of multi-level

evolving systems, including protein domains, genes, protein complexes, micro and macro

organisms, and their ecology.

We showed that there have been multiple first steps in the modeling and methods for the

embedding of three trees with lower/intermediate and intermediate/upper reconciliations.

Methodological efforts could propose new hints for a joint optimization with horizontal trans-

fers for each levels, and moreover offer a probabilistic framework.

Three level reconciliations have only been applied to domain/gene/species combinations

while they could handle the classic holobiontic combination gene/symbiont/host. Models

could allow the identification of the coevolving entities inside an ecosystem or a holobiont. For

example, the parts of a symbiont tree which follow its hosts, while other parts escape this host

but follow geography. Or, at another level, the parts of gene trees evolving with symbiont

genomes, and the parts evolving with hosts, indicating at which level they are selected.
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