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ABSTRACT 1 

Spatiotemporal data, and more specifically origin-destination matrices, are critical inputs to 2 

mobility studies for transportation planning and urban management purposes. 3 

In this paper, we propose a methodology to infer origin-destination (O-D) matrices based on 4 

passively-collected cellular signaling data of millions of anonymized mobile phone users in the 5 

Rhône-Alpes region, France. This dataset, which consists of records time-stamped with users’ 6 

unique identifier and tower locations, is used to first analyze the cell phone activity degree 7 

indicators of each user in order to qualify the mobility information involved in these records. 8 

These indicators serve as filtering criteria to identify users whose device transactions are 9 

sufficiently distributed over the analyzed period to allow studying their mobility. Trips are then 10 

extracted from the spatiotemporal traces of users for whom the home location could be detected. 11 

Trips have been derived based on a minimum stationary time assumption that enables to determine 12 

activity (stop) zones for each user. As a large, but still partial, fraction of the population is 13 

observed, scaling is required to obtain an O-D matrix for the full population. We propose a method 14 

to perform this scaling and we show that signaling data-based O-D matrix carries similar 15 

estimations as those that can be obtained via travel surveys. 16 

 17 

 18 

 19 

Keywords: Passive cellular signaling data, travel survey, home detection, trip extraction, 20 

origin-destination matrices 21 

22 
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1. INTRODUCTION 1 

 2 

Spatiotemporal data are extremely valuable to study human mobility for transportation and 3 

urban planning purposes (1, 2). Traditional approaches rely on household travel surveys to collect 4 

mobility data that typically record one day of travel diaries per household. While travel surveys 5 

provide highly useful data to formalize and estimate behavioral transport models (e.g. travel 6 

demand and route or transportation mode choice models), they are much less useful for 7 

constructing origin-destination (O-D) matrices due to limited sample sizes, which result in empty 8 

cells in the matrix estimation. Indeed, surveys are increasingly confronted by issues during the 9 

sample construction phase (3), by declining response rates (4) and by unreported trips (5), which 10 

reduce even further the quality of the resulting matrices. Additionally, travel surveys typically 11 

involve high costs that restrict their frequency (once or twice per decade) and prevent to follow the 12 

dynamics of population mobility over time. 13 

Several kinds of sensor data dealing with the position and mobility of individuals have 14 

become recently available due to the wide deployment of pervasive computing equipments. Hence, 15 

large volumes of data are being produced automatically and passively from different technologies, 16 

such as GPS based-devices, smart cards and mobile phones, which make it possible to identify the 17 

presence of individuals in both space and time (6). In particular, data collected from cell phones 18 

have become one of the most important data sources to study travel behavior (7). Their proper 19 

attributes, such as large coverage of geographic area and population, and high detailed location 20 

information have attracted researchers to analyze them to support transportation studies. A number 21 

of studies have been conducted to use different types of mobile phone data (e.g., Call Detail 22 

Records (CDR), cellular network data); but, few have attempted to validate the results with 23 

external sources due to the different nature of mobile phone footprints. Yet, the validation process 24 

allows to identify possible biases and to gain a clearer idea of their potential. Moreover, the quality 25 

and accuracy of data is essential to ensure that investment or transport policy decisions are based 26 

on reliable analyses. Therefore, considerable efforts are needed to pre-process mobile phone data 27 

and to validate the related research outputs. 28 

 The aim of this paper is to explore cellular signaling data from 2G and 3G networks to 29 

produce origin-destination matrices. Although the potential of these data is promising due to the 30 

involved large amounts of individual spatiotemporal traces comparing to CDR data, there is still a 31 

remarkable lack of studies based on them.   32 

Our primary goal is to test whether these massive signaling data could act as cheap and 33 

reliable alternative data source to capture individual trips. Therefore, we propose a full workflow 34 

to transform cell phone network logs into O-D flow matrices supported by a validation step using 35 

travel survey data. We also present a case study conducted within the Rhône-Alpes region, France, 36 

for which we were able to analyze very recent mobile phone signaling data provided by Orange, 37 

the largest French mobile operator, and compare them with the data obtained from the latest travel 38 

survey performed in the same region. 39 

This paper is structured as follows. Section 2 describes related work. In Section 3, an 40 

overview of the data used in our analysis is presented. In Section 4, the methodology applied to 41 

estimate the O-D matrix is discussed. While in Section 5, our results are summarized and validated 42 

with respect to travel survey data. Finally, Section 6 concludes the paper and identifies several 43 

suggestions for future research directions. 44 

  45 



Fekih, Bellemans, Smoreda, Bonnel, Furno and Galland   4 

 

2. RELATED WORK 1 

Due to the wide adoption of mobile devices (mobile phones, smartphones and tablets), the 2 

usefulness of mobile phone data has been proven for the study of human mobility for 3 

transportation research. González et al. (8) have proposed one of the first studies of large-scale 4 

mobility using a sample of over 100,000 mobile phone users. This study demonstrated that the 5 

distribution of users’ trips is well approximated by a truncated power-law distribution. In recent 6 

years, mobile phone data have been explored for mobility pattern extraction (9–11), traffic flow 7 

estimation (12, 13), population estimation (14, 15) and route choice modeling (13). Furthermore, 8 

there have been several limited-scale researches aimed at analyzing the potential of mobile phone 9 

data for origin-destination estimation. In 2002, a small sample from one morning has been used to 10 

study traffic O-D matrices on specific roads (16). Later in 2007, Caceres et al. (17) calculated an 11 

O-D matrix for a road between the cities of Huelva and Seville in Spain with four possible O-D 12 

pairs. Both of these studies are based on small samples of CDR in very limited areas. More 13 

recently, CDR data have been explored to generate “transient O-D matrices” and to convert them 14 

into intersection-to-intersection O-D flows in the road network of Boston and San Francisco (10) 15 

and in Dhaka, Bangladesh (18). To validate the estimations, probe vehicle GPS data and limited 16 

traffic counts are used showing high correlations with CDR-based O-D matrices for both study 17 

areas. Calabrese et al. (12) and Mellegard et al. (19) used also CDR data for the same purpose but 18 

no detailed comparison for all the matrix cells with external data sources has been performed. 19 

Alexander et al. (20) have conducted analysis on triangulated CDR data (with estimated (x, y) 20 

coordinates rather than cell tower location) to infer O-D individual trips per purpose (home, work 21 

or other) and time of the day. After a filtering process, they kept only about 16% of users to extract 22 

trips. Results evaluation, in particular for home-work trips, presented strong similarities against 23 

travel survey and census data on the Boston metropolitan area. Although CDR data have supported 24 

interesting findings for O-D extraction, their limited temporal granularity can introduce biases 25 

since they are event-driven traces (location only available when user makes call, SMS or data 26 

connections) (12). For this reason, cellular network signaling data (see Section 3.1) are more likely 27 

to be suitable to such O-D estimation since they capture all network-based events providing higher 28 

spatiotemporal granularity. Few existing works applied these data to extract vehicular patterns (21) 29 

and to estimate the route choice (13). In a recent study conducted in the Paris region (22), authors 30 

used signaling data collected from 2G network in 2009 to produce O-D matrix of individual travels 31 

and compared them with the local household travel survey. They obtained similar estimations for 32 

O-D with high traffic.  33 

The aim of this research is to advance the state-of-the-art on the potential of network-based 34 

signaling data for origin-destination flow matrix extraction. To that aim, our method explores a 35 

mobile-network-signaling dataset, collected in 2017 from both 2G and 3G networks in the Lyon 36 

region. The following section describes in details the used datasets and the study area. 37 

  38 
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3. DATA SETS AND STUDY AREA DESCRIPTION 1 

 2 

3.1. Cellular Signaling Data 3 

Mobile network data are continuously collected by telecom operators for billing and 4 

technical measurement purposes. Among mobile network technologies, we focus on the traditional 5 

GSM network, which provides 2G services, and the UMTS network for 3G ones. Both GSM and 6 

UMTS networks have different infrastructures, but they still work with the same coverage concept 7 

with an antenna that covers a cell, which belongs to a larger Location Area (LA). Typically, tens or 8 

even hundreds of cells share a single LA. In many studies on cellular networks, the theoretical 9 

coverage area of the cells is represented by means of Voronoi polygons. 10 

In this paper, we present analyses of datasets issued from Orange mobile network signaling 11 

probes. The explored dataset includes 2G and 3G signaling records from June 2017 of over 2 12 

million mobile phone users. For legal privacy restrictions, data from only one day is used. 13 

Concerning the spatial dimension, this dataset covers the entire Rhône-Alpes region in France, and 14 

thus can be used to estimate origin-destination flows within this territory. Figure (1-a) presents the 15 

cellular network coverage within the Rhône-Alpes region and the aggregation in 3G Location 16 

Areas. There are about 2,230 cell towers in the study area. 17 

The signaling data include all the events that are generated by mobile devices or by the 18 

network itself (23). Such dataset contains several types of events: i) communication events (i.e., 19 

calls and SMS); ii) itinerancy events: handover (i.e., cell changes during a communication) and 20 

Location Area (LA) update; iii) attachment/detachment events; iv) data/internet connections. The 21 

mentioned event types are the main characteristics of network-driven data comparing to 22 

event-driven data (e.g. CDR), which explains their higher temporal granularity. Each record in our 23 

data includes: the anonymized user ID, the event type, the cell tower coordinates to which the 24 

terminal is connected and the assigned timestamp.  25 

 26 

3.2. Travel Survey Data 27 

The Rhône-Alpes region authorities have conducted a travel survey for the first time, at the 28 

level of the whole region, between 2012 and 2015 (called EDR 2015). 37,450 individuals, aged 29 

over 11 years, have been surveyed, and 143,000 trips have been identified. Data has been collected 30 

by phone interviews using a representative sample of the region population. The sample has been 31 

constructed using geographical stratified random sampling. The geographical stratification 32 

corresponds to a zoning system of 77 zones (denoted as EDR-sectors) for the whole region (Figure 33 

1-b shows the 77 EDR-sectors and their aggregation in 14 macro-zones). Each EDR-sector 34 

involves at least 450 surveyed individuals.  35 

The survey collects socio-demographic characteristics of the individuals and of the 36 

household, as well as information about all the trips that were made the day before the survey 37 

(from 3:00am to 3:00am next day). The most important attributes characterizing a trip are: 38 

transport mode, begin and end time of the trip at minute-level granularity, activity at the origin and 39 

activity at the destination, location of the origin and location of the destination. Data has been 40 

collected through three waves in 2012/2013; 2013/2014 and 2014/2015 from late autumn to early 41 

spring gathering only working day trips. Survey methodology is similar to other travel surveys 42 

conducted in urban areas in France (24) and elsewhere in the world. 43 

 44 



Fekih, Bellemans, Smoreda, Bonnel, Furno and Galland   6 

 

  

FIGURE 1 (a) Cell tower distribution and cellular network coverage (b) aggregation of EDR 1 

sectors into 14-zone zoning system in the Rhône-Alpes region 2 

 3 

4. METHODOLOGY 4 

In previous work (25), we introduced a first simple approach to generate the O-D matrices 5 

from only 3G signaling data. All observed users in the dataset have been involved to study travel 6 

flows and hence one generic expansion factor has been applied to the entire region to expand 7 

extracted trips. In this paper, a comprehensive workflow is presented in order to transform 8 

signaling data into comprehensible O-D flow matrices supported by a validation step (Figure 2). It 9 

consists of i) analyzing the cell phone activity indicators to better characterize and understand the 10 

dataset; ii) identifying users’ home locations; iii) filtering the detected residents based on their 11 

activity indicators to only retain users whose device traces are important enough to study their 12 

displacements; iv) extracting and scaling up trips according to estimated expansion factors to 13 

aggregate them at the travel survey zoning level (EDR-sectors) and infer the O-D matrix. 14 

Due to user’s privacy protection concern, data from at most 24-hour observation period can 15 

be used. We have analyzed the data of June 1
st
, 2017. It is a working day (Thursday), which is 16 

similar to the average of the working days available in the dataset. In order to be comparable to 17 

EDR, cellular network-based data is collected from 1
st
 June 3:00am to 2

nd
 June 2017 3:00am.  18 
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 1 

FIGURE 2 Workflow of Origin-Destination matrix construction from signaling mobile 2 

phone data 3 

 4 

 

 

  
 

 

  

FIGURE 3  Cumulative distribution function per user of (a) number of observation (b) 5 

Average Inter-event Time (c) Maximum Inter-event Time [7am-10pm] and (d) Entropy 6 

a b 

c d 
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4.1. Cell Phone Activity Indicators 1 

Given the nature of monitored cellular networks, the fact that digital footprints collected in 2 

real-world networks represent only expected signaling behaviors cannot be assumed. Indeed, due 3 

to increasing pervasiveness and wide adoption of embedded connected devices, telecom networks 4 

do not only capture human mobile phone communications, but also transactions from machines 5 

that use the same technology (i.e., Internet of Things). Thus, before using the signaling data, the 6 

information that best corresponds to the user's tracks has to be properly selected (26). 7 

Some basic mobile phone activity indicators are introduced below in order to measure the 8 

amount of logs per user, to examine the uniformity of traces distribution over the study period, and 9 

to identify the outlier devices, which should not be included in the O-D flow estimation process. In 10 

the following, we make the assumption that each mobile phone (terminal) corresponds to one user.  11 

 12 

 Number of observations (NO):  13 

This indicator allows measuring the number of records (logs) for each terminal. Figure 3-a 14 

shows that records frequency on the dataset widely varies among observed devices. 15 

Around 99% of users have less than 450 events and 0.97% have only 1 record.  A small part 16 

of devices (1%) seems to be extremely active with a very high number of observations 17 

(more than 1,000), which is not imputable to human behaviors, but very likely caused by 18 

device anomalies (e.g. buggy terminals continuously sending messages). 19 

 20 

 Average Inter-event Time (AIT): 21 

This measurement is largely used when dealing with individual temporal data. It gives an 22 

overview of the average time between users’ successive observations. Figure 3-b shows 23 

that AIT values range from 0 minute (few seconds) to 1372 minutes (22 hours), and the 24 

average value is about 40 minutes (while in CDR data the average time would typically be 25 

longer than four hours (27)). Most of the users (99%) are characterized by an AIT smaller 26 

than 200 minutes. The CDF shows a peak on 180 minutes that corresponds to idle mobile 27 

phones, which typically generate periodical Location Area Update (LAU) events every 3 28 

hours.  29 

 30 

 Maximum Inter-event Time (MIT): 31 

This indicator is different from the previous one. Since with AIT the entire 24 hours are 32 

covered, this could have an impact on its values given that, during night-time, devices are 33 

typically less active than the rest of the day. Therefore, In order to select the users for our 34 

studies, we propose to examine the maximum inter-event time during an interval of time 35 

that excludes deep night and early morning (7:00am-10:00pm). The MIT distribution is 36 

more skewed to the right (Figure 3-c), showing that 70% of users present a MIT lower than 37 

180 minutes. This indicates that about 30% of the observed users in the dataset are either 38 

not present in the study area during the whole [7:00am-10:00pm] time window, or were 39 

disconnected from the network (e.g. mobile phone switched off) for a certain time longer 40 

than 3 hours. 41 

 42 

 Entropy (H): 43 

This metric consists in measuring the uniformity of the number of signaling events per user 44 

over the 24 hours. It gives more precise information about the temporal distribution. The 45 

entropy is defined as 𝐻(𝑋) =  − ∑ 𝑝(𝑥𝑖) log(𝑝(𝑥𝑖))𝑛
𝑖=1 . For our case, we consider X as the 46 

distribution of the records of a user over 24 hours and 𝑝(𝑥𝑖) as the fraction of the records in 47 
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the 1-hour time-slot 𝑥𝑖. Figure 3-d shows that about 5% of the devices have all observed 1 

traces in only one hour time-slot, which is described by an entropy value of 0. While 99% 2 

of devices have an entropy value less than 0.9 (more uniform behavior). 3 

 4 

4.2. Home Detection 5 

Cellular network-based data do not contain any socio-demographic information that 6 

characterizes the users due to privacy concerns. However, a large plethora of works have 7 

investigated basic mining solutions to detect users’ home location (15, 27) in combination with 8 

home activity identification (14, 28). 9 

In our study, the focus is on the detection of the users’ home locations by considering only 10 

those that reside in the region of interest and expanding estimations to the whole region based on 11 

population census data. The adopted method to compute home location consists of the following 12 

steps: 13 

1. Filter user traces to keep only device events that could be generated in a stationary state 14 

such as Call, SMS, Attachment, Detachment, Data, and periodical events (e.g. periodic 15 

LAU); 16 

2. Filter user traces  to select only those occurring at night time from 3:00am to 7:00am and 17 

from 10:00pm to 3:00am; 18 

3. For each user, extract all observed cell towers to which the user’s cell phone has been 19 

connected; 20 

4. For each user, derive the most frequent observed cell tower, assign it to the corresponding 21 

sector and consider it as the home location zone of the user. 22 

 23 

The presented method differs from the existing home detection methods by the inclusion of 24 

the event filtering step that basically considers more events that can be found in CDR data. Hence, 25 

a new approach is introduced to adapt existing algorithms to the signaling data. By applying this 26 

method, 1.27 million resident users are identified. This corresponds to 62% of all mobile phone 27 

users that are observed in the dataset, and about 25% of the total region population. 28 

 29 

4.3. User Filtering based on Cell Phone Activity Indicators 30 

As mentioned before, processing mobile signaling data without proper filtering can lead to 31 

estimation errors. Therefore it is proposed to leverage the cell phone activity indicators introduced 32 

in Section 4.1 to further filter the retrieved set of resident users. Our filtering approach requires the 33 

definition of thresholds associated to the indicators’ values, and consists in a pipeline of selection 34 

rules as follows:  35 

 36 

 Maximum Inter-event Time(MIT)  180 minutes: according  to the network system 37 

if a mobile phone remains inactive during 3 hours, a periodic event (periodical 38 

Location Area Update (LAU)) is generated. We consider this value to ensure the 39 

presence of the user during the day period;  40 

 Entropy (H)  0.9: as stated before, newly collected signaling data involves also 41 

Machine-to-Machine communications between objects equipped with SIM cards, 42 

which should not be considered in our analyses as they are not handled by individuals 43 

and do not reflect regular human mobility patterns. Thus, all devices that have an 44 

extremely uniform distribution of observations during the 24-hour period are filtered 45 

out based on their entropy value; 46 
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 Number of observations (NO)  4: this threshold value is defined with regard to the 1 

definition of a trip (see subsection of Trip Detection). 2 

After the filtering process, a large sample of 985,483 users is still retained. This represents 3 

approximately 77.3% of the total users for whom a home location could be attributed, and around 4 

50% of observed users in the original dataset. It is important to mention here that the suggested 5 

filtering process aims to filter out devices that do not generate enough traces or are not suitable to 6 

study the individual travel behavior and results. We also remark that it is not appropriate to 7 

perform a very restrictive filtering to keep only (highly) active users, as done in (20, 29), since that 8 

could affect the representativeness of the users’ sample and could lead to estimation biases.   9 

 10 

4.4. Trip Detection 11 

After identifying and filtering the resident users who are potentially appropriate to study the 12 

origin-destination matrices, trips can finally be extracted. A trip has been defined by CERTU for 13 

the purposes of the EDR as follows (24): a “trip is the movement of one person conducted for a 14 

certain purpose on infrastructure open to the public, between an origin and a destination with a 15 

departure time and an arrival time using one or more means of transport”. Hence, to apply this 16 

definition for trip extraction, it is necessary to identify an origin and a destination and therefore a 17 

stationary activity in both locations. 18 

With the huge amounts of footprints and high spatiotemporal resolution, signaling data collected 19 

from mobile devices provides an unprecedented scale of observation. These proper characteristics 20 

allow quantifying user’s trips at a higher level of geographical detail (e.g. cell area) for which 21 

travel surveys cannot provide accurate estimations. Since the scope of this paper is to generate an 22 

O-D matrix and to be able to validate it at a level for which EDR data are enough reliable, the trip 23 

extraction method at the EDR-sector level is presented in the following. The detailed experiments 24 

and additional data processing steps needed to study signaling data at a more fine-grained spatial 25 

level will be matter of future work. 26 

To extract trips, stationary activities need to be identified first. Thus, consecutive 27 

observations of a user in EDR-sector zone within a minimum stationary time threshold are 28 

considered. However, the size of the zones (average area of EDR-sector is 582 km²) and the fact 29 

that user is travelling should be taken into account. In case of large areas, consecutive observations 30 

might be in the same zone even while the user is traveling and this puts some lower bounds on the 31 

time threshold that can be applied. Therefore an activity assumption has been defined as follows: if 32 

an individual is present for at least a given time threshold in a sector, she/he performed a stationary 33 

activity there and the origin or the destination of a trip is located in that sector (the choice of the 34 

time threshold and its impact are discussed in the result section). 35 

Based on the previous hypotheses, the following pipeline is proposed to identify users’ trips: 36 

 37 

For each user: 

- Extract all the observed location points and associate to each location an EDR sector 

with the help of a conversion table.  

Cell tower  Sector  

- Sort the extracted locations by timestamp  

- Extract only locations where the user spent time t  thresholdmin : obtain activity 

locations. 
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Trips are then evaluated as paths between user‘s activity locations at sector level. Each trip (U, O, 1 

D) is characterized by user id U, origin location O and destination D. 2 

 3 

4.5. Expansion Factors Definition 4 

 5 

Albeit large, the analyzed mobile phone user sample does not represent the full population. 6 

Therefore, extracted trips need to be properly scaled in order to be representative of the mobility of 7 

the full population. After applying home detection, an expansion factor can be calculated for each 8 

filtered user as the ratio of the census population and the number of residents estimated by the 9 

cellular signaling data in his home sector. It follows that users with the same home sector have the 10 

same scaling factor. Therefore, an expansion factor is defined at sector level as in Equation (1), 11 

where 𝑠𝑖 is a sector. Moreover, given that a home location has been identified for each individual, 12 

the expansion factor of the home location sector is applied to all trips of the individual.  13 

 14 

𝐹𝑒𝑥𝑝(𝑠𝑖) =  
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖 (𝑜𝑣𝑒𝑟 11 𝑦𝑒𝑎𝑟𝑠)

𝑁𝑏 𝑜𝑓 ℎ𝑜𝑚𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖 
     (1) 15 

 16 

Figures 4-a and 4-b illustrate the probability distribution of the expansion factors through sectors 17 

before and after the user filtering step. The 1
st
, 2

nd
 and 3

rd
 quartiles of the expansion factors after 18 

filtering are 4.32, 5.39 and 6.71 respectively.  19 

 20 

  
 

 

FIGURE 4 Probability distribution of sector expansion factors (a) before and (b) after 21 

filtering (c) the spatial distribution of expansion factors after user filtering 22 

a b 

c 
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The spatial distribution of home expansion factors (Figure 4-c) shows that the sectors in the 1 

metropolitan regions of the study area tend to be more heavily weighted. One of the potential 2 

reasons is that actually in these areas the number of subscribers using the 4G cellular network –not 3 

covered by our study- is expected to be higher than in the other zones. Thus, a lower fraction is 4 

observed in the available dataset, which yields a larger expansion factor. 5 

 6 

5. RESULTS AND VALIDATION 7 

After identifying the users’ home, filtering the residents, extracting and expanding the trips, the 8 

origin-destination trips can be constructed for each user on all the 24-hour period. As stated in 9 

Section 4, the definition of a trip leads us to the assumption of the minimum activity stationary 10 

time. Considering the size of a sector, most trips between two zones are made by motorized 11 

transport mode, except for pairs of adjacent zones. According to EDR data, the average duration of 12 

a trip to cross a sector with motorized mode is estimated to be lower than one hour. Meanwhile, the 13 

sampling rate of events in mobile phone footprints should be considered; as stated in section 4, the 14 

measured average inter-event time was about 40min. Therefore, it was decided to apply different 15 

stationary time thresholds to test the impact of such parameter on the number of generated trips, as 16 

the produced OD matrix elements are expected to change according to this threshold. Hence, 17 

thresholds are tested between 30 minutes and 60 minutes to show the sensitivity of the trip 18 

estimation at different levels. It would not be preferable to apply time thresholds, which are less 19 

than 30 minutes; otherwise false-positive stationary detections may occur, yielding false-positive 20 

trips. 21 

 22 

5.1. Trip Distribution 23 

In this section, we investigate the distribution of the number of trips on a typical weekday with 24 

respect to the users and the overall shape of OD matrix estimated from signaling data before 25 

expansion and at sector level. The idea is to study how this distribution behaves without the 26 

additional assumption of scaling, as the latter could impact the trip distribution on individual and 27 

spatial level. 28 

The frequency of total trips per user for two stationary thresholds (30min and 60min) is 29 

shown in Figure 5. The two distributions have a long tail, with first, second, and third quartiles of 30 

1, 2 and 3 trips per user per day, respectively, demonstrating that the large majority of users have a 31 

reasonable small number of trips. As expected, a higher threshold of 60 minutes tends to give a 32 

lower number of trips (the threshold impact will be analyzed in more details in the next 33 

sub-section).    34 

  

FIGURE 5 Probability distribution of total trips per user with a threshold 30min and 60min 35 
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Moreover, detailed analyses were performed to study the OD pairs inferred in the 1 

origin-destination matrix at EDR-sector level and compare them with those of the travel survey.  2 

The data from the EDR contain all the trips made by residents of the Rhône-Alpes Region 3 

irrespectively of the purpose and the duration of the activity collected on working days. However, 4 

the assumption of the minimum stationary time in a sector has been considered in order to identify 5 

an origin or a destination in the case of mobile phone data. We do extract therefore information 6 

from the EDR data and apply time thresholds to avoid considering false activities and therefore 7 

false trips when dealing with the comparison.   8 

To have an overview of the generated O-D flows based on the mobile phone sample, the 9 

number of OD pairs is calculated when they are involved in both OD matrices estimated from 10 

signaling data and EDR for different thresholds (note that the total number of possible OD pairs is 11 

5,929). We observe that in the travel survey matrix, less than the half of OD sector pairs are 12 

assigned to trips, while in the mobile phone-based matrix we obtain a yield of 95% for all 13 

thresholds that were considered. This confirms the sampling bias that is inevitably present in OD 14 

matrices that are constructed based on travel surveys. Indeed, it is cost prohibitive to obtain 15 

sufficient observations to produce an OD matrix at reasonable level of geographic detail. On the 16 

other hand, it is relatively cheap to get a large sample from cellular network-based data which 17 

reduces the zero-cell problem for such geographical level, and which enables the investigation at a 18 

higher geographical level. Moreover, signaling data can cover more easily large-scale geographic 19 

areas as the collection is not dedicated but rather an operational by-product. 20 

 21 

5.2. Origin-Destination flow matrices comparison  22 

In this study, the aim is to test the potential of network signaling data to infer reliable 23 

origin-destination matrices and to investigate similarities and differences of the results with the 24 

traditional survey estimations. Therefore analysis is performed to compare both the structure and 25 

flows of OD matrices from the two data sources.  26 

While travel survey data can be representative of the population at sector level, combining 27 

origins and destinations typically leads to the fact that they are not representative anymore since 28 

the number of observed trips per matrix cell becomes too small. The confidence intervals are very 29 

wide for many O-D pairs. Therefore, the 77 EDR sectors are aggregated into 14 macro zones 30 

(Figure 1-b) in order to produce a relevant origin-destination matrix, which gives a sufficient 31 

number of trips for most of the origin-destination pairs in the EDR. This enables a comparison 32 

with the mobile phone data matrix, which has also been aggregated to correspond to the 14-zone 33 

zoning system. The analyses are presented regarding the correlation between the two matrices 34 

after expansion and at macro-zone level by removing the intra-zone pairs since the focus here is on 35 

inter-zone flows. Table 1 summarizes the total number of trips from signaling data and the EDR. 36 

 37 

TABLE 1 Total number of inter –zone trips from signaling data and the EDR (aggregation 38 

into 14 macro-zones) 39 

 40 

Stationary activity time threshold    60 minutes 50 minutes 40 minutes 30 minutes 

EDR (in thousand) 2,211 2,260 2,344 2,448 

Mobile phones (in thousand) 1,607 1,743 1,905 2,108 

 41 

The amounts of trips from the two sources are much closer when a stationary time around 30 42 

and 40 minutes is considered. With such an interval, the majority of the sectors can be crossed by 43 

travelers: these thresholds identify activities which do not have short durations, but, on the other 44 

hand, they are still large enough to limit the number of false-positive trips due to excessively low 45 
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travel time between sectors. Therefore, in the following analyses, we retain a value of 30 minutes 1 

for activity threshold. 2 

In order to highlight the weight of each O-D pair in the cellular data and travel survey-based 3 

matrices, the structure of the two matrices is visually compared in Figure 6. 4 

 5 

 

FIGURE 6 Distribution of signaling data and EDR trips over the 14 macro-zones of 6 

Rhône-Alpes region 7 

According to the distribution of OD trips from mobile phone and EDR data with a stationary 8 

time of 30 minutes, the two matrices show very similar shapes even though the total numbers of 9 

trips are different. To see how different our results are with respect to the EDR, the Spearman’s 10 

rank correlation is calculated at macro-zone level, and the result is ρ= 0.95 (p <0.0001). Hence, 11 

although both matrices are developed using different techniques and technologies, they appear to 12 

resemble well. 13 

We further investigate our results by means of a regression analysis aimed at supporting the 14 

comparison of the amount of flows corresponding to each O-D pair. That helps us to identify a 15 

coefficient of proportionality between the numbers of trips in each cell of the two matrices after the 16 

scaling step.  17 

In addition to the total amount of trips, the coefficient of determination R
2
=0.96 between 18 

macro-zone trips gives a high-level indication that the distributions of O-D flows are similar 19 

(Figure 7-a) with a regression equation yij = 0.70  xij + 2,193, where yij is the number of trips from 20 

signaling data for the O-D pair ij and xij is the number of trips from EDR. Clearly, using large 21 

aggregation zones has a significant impact on correlation and results in a notable improvement in 22 

accuracy due to the reduction of sampling bias as a result of the aggregation. Results are more 23 

satisfactory than the first approach (25) for the same threshold (for 30 minutes, we obtained 24 

R
2
=0.87).  25 

As visually reported in the regression plot (see the two right-most points in Figure 7-a), the 26 

two O-D pairs of Lyon conurbation have very high number of trips in comparison with all other 27 

O-D. That is also shown in Figure 6 for the O-D pairs 1-2 and 2-1. These two O-D pairs could have 28 

a strong effect on the slope of the regression line. Therefore, new regression analysis is performed 29 

without considering the O-D flows between Lyon conurbation zones (Figure 7-b). 30 

By eliminating the outliers corresponding to the Lyon O-D pairs, the results improve. The 31 

regression provides much better parameters with a regression equation yij = 0.85  xij + 877. The 32 

slope is closer to one (0.85), and the constant (877) is relatively small compared to the mean 33 

number of observed trips on the O-D pairs (11,500) and the constant of the first regression (2,193). 34 

According to R
2
 value, 95% of the variance is explained by the fitted model. This means that, the 35 
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majority of the O-D pair flows over the region match well. This strong correlation is significant 1 

given that users’ trips were expanded based on their home sector. Thus, this result illustrates that 2 

the applied methodology based on home detection and expansion process could serve as a proper 3 

tool to extract accurate travel patterns from cellular signaling data passively collected over a 4 

limited period of observation (e.g., 24-hour period in our case). 5 

In addition to the previous analyses, the O-D matrices were investigated to estimate, for each 6 

O-D pair, the percentage disparity between mobile phone counts and those from EDR. As a result, 7 

some of these percentages were very high. In most cases, these correspond to low (or very low) 8 

flows (less than 200 trips for EDR), and they mainly concern non-adjacent zones with similar 9 

percentage differences for both directions (4-6, 6-4, 12-7, 7-12, 7-10, 10-7, 3-9, 9-3). In these 10 

cases, mobile phone data generates higher flows, which illustrates that travel surveys may not 11 

reliably estimate trips due to the sample size of surveyed people and the sampling coverage. 12 

However, the under-estimation cases mainly concern very high flows corresponding to dense 13 

territories, such as the Lyon conurbation and its suburban areas. We suggest that this is caused by 14 

the minimum stationary time assumption, as a threshold of more than 30 minutes seems to be 15 

extremely large for those small sectors of the metropolitan area (e.g., sectors of Lyon metropolitan 16 

area). Thus, more investigation is required on this parameter and will be matter of future work. 17 

 18 

  

Figure 7 : Regression plot between the two matrices from signaling and EDR data with (a) 19 

all inter-sector pairs (b) with all inter-sector pairs except Lyon OD pairs 20 

6. CONCLUSION 21 

For decades, traditional approaches such as travel surveys have been the major source of 22 

information for transportation planners to estimate origin-destination flows necessary for 23 

calibration and simulation of transport models. These travel surveys, although providing rich 24 

demographic details about the respondent and his/her trips, suffer from several drawbacks such as 25 

estimation bias due to the limited sample size of involved individuals, the high deployment costs 26 

and, subsequently, the low frequency of the gathered information making them rapidly outdated 27 

and inappropriate for dynamic travel behavior studies. 28 

In this paper, we presented a workflow of steps to generate O-D matrices from cellular 29 

network signaling data, continuously collected by telecom providers. The proposed method was 30 

applied to a dataset of about 2 million cell phone users collected in the Rhône-Alpes region, 31 

France. By analyzing passive signaling data over a 24-hour period, we show that it is totally 32 

feasible and compelling to use such data in order to estimate O-D matrices that are similar to the 33 

a b 
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ones produced via the travel survey-based method.  1 

Detailed evaluation and validation process with the available EDR data for the Rhône-Alpes 2 

region have been performed to deal with the potential of the inferred O-D matrix. Results 3 

demonstrate strong similarities with a R
2
 coefficient of 0.96 at an aggregated geographical level. 4 

That proves on one hand the efficiency of our method as only one day data are explored which 5 

reduces considerably its execution time. On the other hand, our findings show that cell network 6 

signaling data could represent a valuable, cost-effective alternative data source for 7 

origin-destination estimation. Moreover, with the increasing usage of mobile phones, cell 8 

network-based traces are expected to produce even larger-scale and higher-frequency data that will 9 

cover a growing number of people, thus allowing for estimating mobility patterns at a 10 

finer-grained spatiotemporal granularity than the one provided by travel survey estimations, which 11 

are not enough reliable due to sample bias.  12 

Potential improvements of the proposed workflow will consist in investigating in more 13 

details the assumed hypothesis related to the stationary time threshold and the trip expansion 14 

method based on identified home locations from signaling data from a single operator. In addition 15 

to the suggested data filtering and processing steps, it will be very interesting to explore how the 16 

spatial accuracy of signaling data, which depend on cell network coverage, can compare with 17 

traditional survey accuracy according to the study area (e.g., urban or rural). Such information 18 

brings new insights for transportation practitioners to fully benefit from the new promising 19 

massive datasets at a low cost, especially with the rising transport networks complexity. 20 

 21 
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