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Abstract

Estimating the probability of rare failure events is an essential step in the reliability as-

sessment of engineering systems. Computing this failure probability for complex non-linear

systems is challenging, and has recently spurred the development of active-learning relia-

bility methods. These methods approximate the limit-state function (LSF) using surrogate

models trained with a sequentially enriched set of model evaluations. A recently proposed

method called stochastic spectral embedding (SSE) aims to improve the local approxima-

tion accuracy of global, spectral surrogate modelling techniques by sequentially embedding

local residual expansions in subdomains of the input space. In this work we apply SSE to

the LSF, giving rise to a stochastic spectral embedding-based reliability (SSER) method.

The resulting partition of the input space decomposes the failure probability into a set of

easy-to-compute domain-wise failure probabilities. We propose a set of modifications that

tailor the algorithm to efficiently solve rare event estimation problems. These modifications

include specialized refinement domain selection, partitioning and enrichment strategies. We

showcase the algorithm performance on four benchmark problems of various dimensionality

and complexity in the LSF.

Keywords: reliability analysis – uncertainty quantification – surrogate modelling –

stochastic spectral embedding – active learning – rare event estimation – sparse polynomial

chaos expansions

1 Introduction

Ensuring the reliability of structures and systems is a core task in many engineering dis-

ciplines. This includes the reliability of machines (Bertsche, 2008), medical devices (Fries,
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2017), electronic systems (LaCombe, 1999) and civil engineering systems (Haldar, 2006).

With the increasing availability of computer simulations, and continuous developments in

numerical methods, model-based reliability analysis has become the state-of-the-art in re-

liability assessment. In this context, the task of reliability analysis lies in estimating the

probability that an engineering system fails or performs undesirably. The computation of

this so-called failure probability is the objective of quantitative model-based reliability meth-

ods.

In reliability problems, the system under consideration is typically parameterized by a

vector of random input parameters X : Ω→ DX ⊆ RM following a probability distribution

X ∼ fX . To identify the safe/failure state of a system as a function of the input parameters,

a so-called limit-state function g : DX → R is introduced. It encodes the system performance

w.r.t. the limit states that apply to the system under consideration (e.g., ultimate stresses

or maximum displacements at critical locations). Importantly, the function g depends on

one or several, often computationally demanding, engineering models. By convention, if

g(x) ≤ 0, then x corresponds to a failed configuration, otherwise it corresponds to a safe

configuration. The interface between the resulting safe and failure domains is known as the

limit-state surface.

One can then define the probability of failure Pf as:

Pf
def
= P [g(X) ≤ 0] =

∫

DX

1Df
(x)fX(x) dx, (1)

where the indicator function 1Df
(x) takes the value 1 in the failure domain Df and 0 every-

where else:

1Df
(x) =





1, if g(x) ≤ 0,

0, if g(x) > 0.

(2)

Analytical computation of the failure probability is rarely possible in practice and di-

rect numerical integration (e.g., via quadrature) is often hindered by the inherently small

scale of the failure probability and the potentially high input dimensionality M . For these

reasons, initial efforts in the reliability literature focused on developing methods that approx-

imate the limit-state surface (Basler, 1960; Hasofer and Lind, 1974; Rackwitz and Fiessler,

1978; Zhang and Der Kiureghian, 1995; Hohenbichler et al., 1987; Breitung, 1989; Tvedt,

1990; Cai and Elishakoff, 1994). These approximation methods remain competitive for a

certain class of reliability problems even today, but there exist well known examples where

the shape of the limit-state surface leads to gross errors in the estimated failure probability

(e.g., high-dimensional, non-linear problems Valdebenito et al. (2010)). In those cases the

direct estimation of the failure probability by means of probabilistic simulation methods is

the method of choice. The most widely used methods for this are Monte Carlo simulation

(MCS, Fishman (2011); Rubinstein and Kroese (2016)), approximation methods in conjunc-

tion with importance sampling (IS, Hohenbichler and Rackwitz (1988); Melchers (1999)),

its adaptive variants (sequential IS, Papaioannou et al. (2016) and cross entropy-based IS,
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Kurtz and Song (2013); Papaioannou et al. (2019)) and subset simulation (SuS, Au and Beck

(2001); Zuev et al. (2012)). Other noteworthy methods that can be used to directly estimate

the failure probability are radial-based importance sampling (RBIS, Harbitz (1986)), direc-

tional simulation (DS, Bjerager (1988)) and line sampling (LS, Koutsourelakis et al. (2004);

Papaioannou and Straub (2021)).

Computationally expensive models remain challenging to analyse, even with the most

efficient simulation methods. In this setting, cheap to evaluate surrogate models can lead to

significant computational savings, especially with so-called active learning reliability meth-

ods. These methods approximate the limit-state function g using a sequence of increasingly

accurate surrogate models. The first method in this family was efficient global reliability

analysis (EGRA, Bichon et al. (2008)). Arguably the best known method today is adaptive

Kriging MCS (AK-MCS, Echard et al. (2011)) and its variants (Echard et al., 2013; Huang

et al., 2016). A recent review of the field is given in Moustapha et al. (2021).

In this paper we propose a novel active learning reliability method that utilizes the

recently proposed stochastic spectral embedding method (SSE, Marelli et al. (2021)) and

more specifically the active learning sequential partitioning approach developed for Bayesian

inverse problems in Wagner et al. (2021). The proposed approach, termed stochastic spectral

embedding-based reliability (SSER), benefits from a handful of modifications to the original

SSE, namely new refinement domain selection, partitioning and sample enrichment schemes.

We present them in Section 2, and benchmark the algorithm on four applications of increasing

complexity against other state-of-the-art methods in Section 3.

2 Stochastic spectral embedding-based reliability

2.1 Stochastic spectral embedding

Stochastic spectral embedding (SSE, Marelli et al. (2021)) is a function approximation tech-

nique that works by sequentially expanding residuals R̂kS(X) in subdomains of the parameter

space DkX ⊆ DX . At each level ` in the sequence, SSE constructs local spectral expansions

of the residual of the current approximation at a set of P` subdomains, as illustrated in

Figure 1. As for any other metamodeling techniques, this approach can be used in reliability

analyses to directly approximate the limit-state function:

g(X) ≈ gSSE(X) =
∑

k∈K
1Dk

X
(X) R̂kS(X), (3)

where K ⊆ N2 is a set of index pairs with elements k = (`, p) for which ` = 0, . . . , L, and

p = 1, . . . , P`, where L is the number of levels, and 1Dk
X

is the indicator function that is equal

to 1 in the k-th subdomain and 0 everywhere else. For further derivations, it is beneficial

to distinguish between standard and terminal domains among the card(K) domains used in

the SSE representation. We refer to terminal domains as the unsplit domains (top layers in
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(a) Quantile space (b) Real space

Figure 1: Stochastic spectral embedding : Illustration of SSE representation in Eq. (3) in the

quantile and real space. Red points denote the experimental design and orange areas denote

terminal or unsplit domains, that partition the input space into a set of disjoint subdomains

such that DX =
⋃

k∈T Dk
X .

Figure (a)), and gather their indices in the set T . With this, Eq. (3) is expanded to

gSSE(X) =
∑

k∈K\T
1Dk

X
(X) R̂kS(X) +

∑

k∈T
1Dk

X
(X) R̂kS(X), (4)

In principle, any spectral expansion technique could be used to expand the residuals

(Marelli et al., 2021). In the present contribution, we consider only polynomial chaos expan-

sions (PCEs) such that

R̂kS(X)
def
=
∑

α∈Ak

akαΨk
α(X), (5)

where Ak is a multi-index set describing the dimension-wise polynomial degrees, {Ψk
α}α∈Ak

are mutually orthogonal polynomial basis functions and akα denote the corresponding coeffi-

cients (Xiu and Karniadakis, 2002; Blatman and Sudret, 2011; Lüthen et al., 2021).

For computational and bookkeeping ease, we manage the SSE construction in what we

call the quantile space, i.e., the M -dimensional unit hypercube denoted by DU . As discussed

in Marelli et al. (2021), for every real input space DX there exists an isoprobabilistic mapping

to DU (Figure (a)), such that the partitioning of the input space can be conducted in the

quantile space without any loss of generality.

The SSE representation shown in Figure 1 ultimately partitions the input space into

card(T ) disjoint subdomains such that
⋃
k∈T DkX = DX . Using this representation, the

failure probability from Eq. (1) can be rewritten as a sum of domain-wise failure probabilities

Pf =
∑

k∈T
VkP kf , with Vk =

∫

Dk
X

fX(x) dx, (6)

where Vk is the domain-wise probability mass that is readily available from the construction

in the quantile space, and P kf is the k-th domain-wise failure probability given by

P kf
def
= P

[
g(X) ≤ 0|X ∈ DkX

]
≈ P

[
gSSE(X) ≤ 0|X ∈ DkX

]
. (7)
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This domain-wise failure probability is estimated here with suitable probabilistic simulation

methods utilizing the SSE representation of the limit-state function (more details are pro-

vided in Section 2.3). Assuming the simulation method is accurate enough, the accuracy of

the failure probability estimate depends only on that of the SSE representation itself.

To devise an adaptive algorithm, it is necessary to devise a suitable error measure on

each domain-wise failure probability estimate. As shown in Marelli et al. (2021), the SSE

representation provides domain-wise prediction error estimators, e.g., by means of cross-

validation (e.g., leave-one-out error). Such estimators can in principle be used as a proxy

to assess the accuracy of P kf . However, these estimators are not robust in the presence of

very localized behaviour that is typical for limit-state functions. An improved estimator that

takes into account the point-wise prediction accuracy can be derived by means of the local

error estimation of bootstrap PCE (bPCE), originally introduced in a reliability context in

Marelli and Sudret (2018).

2.1.1 Bootstrap SSE

The idea of bPCE is to use bootstrap resampling (Efron, 1979) on the original experimental

design to create a set of B experimental designs and construct B sparse PCEs with them.

The individual bootstrap PCE realizations can then be used to estimate point-wise statistics

of the PCE prediction.

This idea can be applied to the residual expansions within the SSE approach. Due to

the sequential embedding of the residual expansions, the prediction error of the full SSE

approximation can be assessed solely based on the prediction errors in the terminal domains

(Marelli et al., 2021). In every terminal domain, we therefore construct B residual expansions

to obtain B bootstrap predictions

g
(b)
SSE(X) =

∑

k∈K\T
1Dk

X
(X) R̂kS(X) +

∑

k∈T
1Dk

X
(X) R̂k,(b)S (X), for b = 1, · · · , B. (8)

By analogy with Marelli and Sudret (2018), we can define an estimate of the point-wise

misclassification probability as:

P̂m(x)
def
=

1

B

B∑

b=1

∣∣∣1Df,SSE
(x)− 1

(b)
Df,SSE

(x)
∣∣∣ , (9)

where 1Df,SSE
and 1

(b)
Df,SSE

are evaluated with the mean and bootstrap predictors of SSE

respectively (see also Eq. (2)).

The bootstrap replications can also be used to directly obtain statistics of the domain-

wise failure probability estimates, such as variance or confidence bounds. As an example,

the domain-wise failure probability variance is given by

Var
[
P̂ kf

]
= Var

[{
P̂
k,(1)
f , · · · , P̂ k,(B)

f

}]
, (10)

with the failure probability of the b-th replication given by

P̂
k,(b)
f

def
= P

[
g

(b)
SSE(X) ≤ 0|X ∈ DkX

]
. (11)
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By means of Eq. (6), this domain-wise failure probability variance can be used to write

an expression for the total failure probability variance as

Var
[
P̂f

]
=
∑

k∈T

(
Vk
)2

Var
[
P̂ kf

]
. (12)

Similarly, the bootstrap replications can be used to define confidence bounds on the total

failure probability. Let P̂
(b)
f

def
=
∑
k∈T VkP̂

k,(b)
f be the total failure probability estimated with

the b-th replication from all terminal domains. The equal tail confidence bounds
{
P̂ kf , P̂

k
f

}

are then defined by

P
[
P̂ kf ≤

{
P̂

(1)
f , · · · , P̂ (B)

f

}]
≈ α,

P
[{
P̂

(1)
f , · · · , P̂ (B)

f

}
≤ P̂ kf

]
≈ 1− α

(13)

with α ∈ [0, 0.5] and γ
def
= 1 − 2α is called the symmetrical confidence level. It is common

practice to take γ = 95% and α = 2.5%.

2.1.2 Dependent input parameters

Generally, the input random vector X may have mutually dependent marginals that we treat

with copula theory in this work (Nelsen, 2006; Joe, 2015). A typical approach to address

dependence in reliability problems is to use isoprobabilistic mappings to an independent

space, e.g., the standard normal space. However, sparse spectral techniques acquire their

strength from the sparsity of effects principle (Montgomery, 2019), which states that in

many engineering models the majority of the output is attributable to low-interaction order

terms. A mapping to the standard normal space might therefore reduce the efficiency of

those techniques.

Nonetheless, dependence is challenging for the construction of the spectral basis functions

Ψk
α in Eq. (5). However, as extensively studied in Torre et al. (2019a), polynomial chaos

expansions seem to be most accurate for predictive purposes when dependence is simply

ignored and the basis is derived by tensor product of univariate bases orthogonal to the

marginals instead. Applying this to SSE suggests it is best to construct the domain-wise

polynomial basis by assuming the domain-wise marginals to be independent.

As mentioned before, the partitioning into orthogonal subdomains is defined in the in-

dependent quantile space (Marelli et al., 2021). Therefore, the transformation of those

domains to the dependent physical space results in non-orthogonal domains (see Figure 2).

Constructing the univariate polynomial bases requires knowledge of the marginal bounds in

the physical space, which cannot be computed in a straightforward fashion.

To approximate these bounds, we therefore (1) randomly sample the (M−1)-dimensional

boundary of the hypercube in the quantile space, (2) transform those points to the real space

using a suitable isoprobabilistic transform (Rosenblatt, 1952; Torre et al., 2019b) and pro-

ceed to (3) compute the basis with an orthogonal enveloping hypercube in the physical space
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(a) Quantile space (b) Real space

Figure 2: Stochastic spectral embedding : Illustration of how dependence is handled in the algo-

rithm. For two mutually dependent input parameters X1 and X2, the plots show a set of sample

points in the real and quantile space with a subset of points inside an exemplary subdomain.

The parameter dependence leads to a loss of orthogonality of the subdomains, which necessi-

tates the introduction of an enveloping hypercube in the real space to construct the spectral

basis functions Ψk
α.

around those transformed points (see Figure (b)). It is interesting to note that for predic-

tion purposes, the resulting multivariate basis will only be evaluated inside the subdomain

boundary and not the subdomain boundary envelope, as the region outside the subdomain

boundary belongs to neighbouring subdomains.

2.2 An updated sequential partitioning algorithm

Failure domains typically occupy only a small fraction of the input space. The original equal

probability partitioning strategy presented in Marelli et al. (2021); Wagner et al. (2021) is

therefore expected to converge only slowly to those domains. We therefore propose modifi-

cations that make the algorithm more efficient for reliability problems. The structure of the

proposed algorithm follows the sequential partitioning algorithm used in the adaptive SSLE

approach presented in Wagner et al. (2021). It is repeated here in an abbreviated form.

1. Initialization

(a) Sample from input distribution

(b) Calculate initial expansion

2. Select refinement domain:

(a) Partition domain

(b) For each subdomain:

i. Enrich sample

7



ii. Create residual expansion

iii. Update domain-wise error

(c) Go to Step 2

The main modifications to the algorithm that are specific to reliability problems pertain

to the refinement domain selection (Step 2), partitioning (Step 2a) and sample enrichment

(Step 2(b)i) strategies, which utilize the point-wise prediction error estimators available

from bPCE. These modifications are detailed in the following sections. The full SSE-based

reliability (SSER) algorithm is sketched in Section 2.2.4.

2.2.1 Refinement domain selection

At every step, the adaptive sequential partitioning algorithm chooses a refinement domain

from the set of terminal domains T to be split and enriched with sample points. To choose

a domain, the terminal domains are ranked based on their importance to the overall ap-

proximation. In the present setting, the goal of refinement is the reduction of uncertainty

associated with the failure probability. Viewing Eq. (12) as a variance decomposition of the

estimator variance, it is natural to refine the terminal domain that has the largest contri-

bution to this variance estimator. More formally, out of the terminal domains we refine the

domain with the largest

Ek def
=
(
Vk
)2

Var
[
P̂ kf

]
, (14)

This equation depends on the domain-wise probability mass Vk and the variance of the

domain-wise failure probability estimator Var
[
P̂ kf

]
. In practice, Var

[
P̂ kf

]
is estimated with

Eq. (10), which in turn depends on the B estimates of P̂
k,(b)
f . These estimates are computed

with accurate simulation methods using the bootstrap SSE approximations (see Section 2.3).

If the SSE approximation in the current subdomain is not sufficiently accurate, it can

happen that all bootstrap replications miss existing failure regions, ultimately resulting in

a gross underestimation of Ek. To avoid overlooking such domains as possible refinement

domains, the algorithm additionally prioritizes them based on the probability mass Vk. The

refinement domain is ultimately chosen as

krefine,i = arg max
k∈T




Vk, if Eq. (16) is met,

Ek, otherwise,

(15)

which depends on the following intermediate re-prioritization criterion

Var
[
P̂

(i−2)
f , P̂

(i−1)
f , P̂

(i)
f

]

(
P̂

(i)
f

)2 < εP̂f
, (16)

where P̂
(i)
f is the total failure probability estimator at the i-th iteration of the algorithm

and the threshold is heuristically chosen to εP̂f
= 0.1%. This criterion is triggered when the

failure probability estimator does not change significantly in three successive iterations.
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2.2.2 Partitioning strategy

Once a refinement domain Dkrefine

X is selected, the partitioning strategy determines how it

is split. Refinement domains are split into two subdomains with unequal probability mass.

For notational simplicity, we omit the superscript krefine denoting the refinement domain

in this section and emphasize instead that the following equations are valid for all k ∈ T .

For illustrative purposes, the partitioning strategy is exemplified for a simple problem in

Figure 3.

To maximize enrichment efficiency, we base our splitting strategy on separating regions

that predict failure/safety correctly from those that do so incorrectly. A measure of prediction

accuracy in this respect is given by the misclassification probability Pm (Echard et al., 2011)

defined for bootstrap SSE in Eq. (9). To this end, we define two auxiliary conditional random

vectors in the quantile space DU as

Z0 def
= U |P̂m = 0, and Z+ def

= U |P̂m > 0. (17)

These vectors identify regions of zero (Z0) and non-zero (Z+) misclassification probability

in the current refinement domain.

Based on these random vectors, we compute the location of the split. We choose a set of

splitting locations in each dimension υi ∈ DUi , i = 1, · · · ,M that ideally completely separate

the support of Z+ from Z0 (see Figure 3). Due to the likely disjoint support of each auxiliary

random vector, the split should instead confine a maximum of Z+’s probability mass to one

side of the split, while confining a maximum of Z0’s probability mass to the other side of

the split. Denoting by Z+
i and Z0

i the marginals of the auxiliary random vectors in the i-th

dimension, we pick the splitting location

υ̂i = arg max
υi∈DXi

Li(υi), with Li(υi)
def
= −1 + max




P
[
Z+
i ≤ υi

]
+ P

[
Z0
i > υi

]
,

P
[
Z+
i > υi

]
+ P

[
Z0
i ≤ υi

]
,

(18)

where the objective function Li characterizes the split properties by returning the maximum

of the respective auxiliary probability masses in the resulting subdomains. The splitting

location υ̂i that maximizes Li thus splits the initial domain DX into two subdomains D(1)
Xi

and

D(2)
Xi

that fulfil the initially stated goal of optimally separating regions that correctly predict

failure/safety from regions that do so incorrectly. The objective function Li is bounded

between [0, 1], where a value of 1 indicates a perfect split that creates one subdomain with

only non-zero and one subdomain with all zero misclassification probability regions.

To ultimately choose a splitting direction d ∈ {1, · · · ,M}, we compare the values of the

objective functions Li(υ̂i) and split along the dimension that achieves the best split, i.e.,

d = arg max
i∈{1,··· ,M}

Li(υ̂i). (19)

In practice, a sufficiently large sample of the auxiliary random vectors Z0 and Z+ is used

to conduct the computations of this section. This sample is readily available, as the SSE

surrogate model can be evaluated at a negligible computational cost.
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Figure 3: Partitioning strategy exemplified on a one dimensional function showing the bootstrap

replications and the resulting support of Z+ and Z0 as well as the objective function L. The

splitting location υ is highlighted as a vertical, dashed red line. The plots are shown in the

quantile space DU .

No misclassified sample points

It might occur that the the algorithm does not detect misclassified sample points at the

time of partitioning. When this happens, the misclassification probability Pm (Eq. (9)) is

zero everywhere and consequently the auxiliary random vector Z+ is not defined. Because

of the preceding refinement selection criterion in Eq. (15) this can only happen at the first

step of the algorithm or after the intermediate re-prioritization criterion (Eq. (16)) has been

triggered.

To let the algorithm proceed in this case, the definition of the auxiliary random vectors

is updated to discriminate based on the probability to predict values within a predefined

empirical quantile around the limit-state surface. More formally, Pm in Eq. (17) is then

replaced with

Pt(x)
def
=

1

B

B∑

b=1

1
(b)
Dt

(x), (20)

where 1
(b)
Dt

is defined with an empirical quantile t such that P [|gSSE(X)| ≤ t] = εt as

1
(b)
Dt

(x)
def
=





1, if |g(b)
SSE(x)| ≤ t,

0, if |g(b)
SSE(x)| > t.

(21)

The value εt = 0.01 has proven to be a good choice in practice.

10



2.2.3 Sample enrichment

After partitioning a selected refinement domain, in the original SSE algorithm points are

added such that every subdomain contains exactly a total of Nref points. Because the parti-

tioning strategy now allows the creation of domains with considerably different probability

mass, the original sample enrichment approach is problematic. As an example, splitting in

a far quantile will result in one large domain with Nref points from the previous step and

one smaller domain with 0 points. In this case, no new points would be added to the large

domain. The subsequently constructed residual expansion would be based on (almost) the

same information as the parent domain expansion and be prone to over-fitting. We therefore

employ a different strategy here, which always adds Nref points to every domain, indepen-

dent of the existing points inside that domain. We refer to those points as the sample budget

here.

The second change pertains to the placement of the sample budget. The original algo-

rithm used random sampling to place points uniformly in the refinement subdomain. To

exploit the fact that the SSE for reliability applications needs to be more accurate near the

limit-state surface, we propose a slightly modified strategy: we split the sample budget and

randomly place

Nuni = max





Nref

2 − Ncurr

2

0

(22)

points uniformly in the refinement domain quantile space, where Ncurr is the number of

existing points in the refinement domain. The remainder of the sample budget is used

to randomly place sample points in the subset of the refinement domain with non-zero

misclassification probability Pm. This corresponds to sampling the auxiliary random vector

Z+ defined in Eq. (17). We do this to ensure stability of the residual expansions that are

known to deteriorate in accuracy when the experimental design clusters in a subspace.

In the extreme case of no existing points (i.e., Ncurr = 0), this places half of the sample

budget uniformly and the other half according to Z+. In the other extreme case of Ncurr ≥
Nref , the whole sample budget is devoted to sampling Z+.

At the first iteration, to construct the initial expansion, the enrichment occurs randomly

in the entire input quantile space. We observed from repeated tests that the algorithm is

less stable if the initial expansion is less accurate. To account for this, we start out with an

initial experimental design of size 2Nref and switch to the experimental design size of Nref

in all subsequent iterations.

Finally, we note that Nref is a tuning parameter of the algorithm. Larger values of Nref

lead to more accurate local expansions, resulting in increased stability of the algorithm at

the cost of slower convergence rates. Vice-versa, smaller values of Nref can significantly

increase the convergence rates, but can potentially produce inaccurate limit-state function

approximations that lead to biased failure probability estimates.
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2.2.4 Stochastic spectral embedding-based reliability algorithm

Taking all presented ingredients, the full stochastic spectral embedding-based reliability

(SSER) algorithm is written as follows:

Input:

• Input parameters X, limit-state function g

• Expansion parameters Nref , pmax, B

• Algorithm parameters NED, εβ̂ , εP̂f
, εt

1. Initialization:

(a) D0,1
X = DX

(b) Sample from the input distribution an initial experimental design X = {x(1), · · · ,x(2Nref )}
(c) Calculate the truncated expansion R̂0,1

S (X) of g(X) in the full domain D0,1
X , re-

trieve its approximation error E0,1 and initialize T = {(0, 1)}
(d) R1(X) = g(X)− R̂0,1

S (X)

2. For (`, p) = krefine from Eq. (15)

(a) Split the current subdomain D`,pX in 2 sub-parts D`+1,{s1,s2}
X according to Eq. (19)

and update T
(b) For each split s = {s1, s2}

i. Enrich sample X with min{Nref , NED − |X |} new points inside D`+1,s
X

ii. If Nref new points inside X

A. Create the truncated expansion R̂`+1,s
S (X) of the residual R`+1(X) in the

current subdomain using a subset of X inside D`+1,s
X

B. Update the residual on the next level in the current subdomain R`+2(X) =

R`+1(X)− R̂`+1,s
S (X)

iii. Retrieve E`+1,s from Eq. (14)

(c) Retrieve P̂f from Eq. (6) and its variance from Eq. (12)

(d) If stopping criterion in Eq. (23) is met or less than two new expansions were

created, terminate the algorithm, otherwise go back to 2

3. Termination

(a) Return P̂f and its variance

A graphical sketch of the algorithm for a two-dimensional toy problem is shown in Fig-

ure 4.

2.2.5 Stopping criterion

The algorithm can be terminated based on any stopping criterion from the active learning

literature (Moustapha et al., 2021). In the present implementation, we opt for a criterion

based on the stability of the reliability index bounds, also known as beta bounds. The

12



(a) Initialization (b) First iteration (c) Second iteration

Figure 4: Graphical representation of the first steps of the active learning algorithm described

in Section 2.2.4 for a two-dimensional toy problem with independent inputs. Upper row: par-

titioning in the quantile space; lower row: partitioning in the unbounded real space with fX

contour lines in dashed blue. Red dots show the adaptive experimental design with Nref = 4.

The terminal domains T are highlighted in orange. The red area denotes the failure domain. In

this illustrative example the failure probability is P̂f ≈ 4.2 · 10−2.
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generalized reliability index can be computed from the failure probability as β = −Φ−1(Pf ),

where Φ−1 is the inverse normal CDF Ditlevsen (1979). Using the 95% confidence intervalls

on β̂ from the bootstrap replications as defined for the failure probability in Eq. (13), the

stopping criterion is given by

β̂ − β̂
β̂

< εβ̂ , (23)

where the failure threshold is heuristically set to εβ̂ = 3%. For stability, we abort the

algorithm only if this criterion is fulfilled in three consecutive iterations.

Additionally, the algorithm is terminated if the computational budget NED, correspond-

ing to the total number of admissible limit-state evaluations, has been exhausted.

2.3 Domain-wise failure probability estimation

In the SSE approach, the total failure probability is decomposed into a sum of weighted,

domain-wise failure probabilities (see Eq. (6)). As a side effect of the proposed partitioning

strategy (Section 2.2.2), these domain-wise failure probabilities typically end up being quite

large or negligibly small.

Because of the SSE surrogate, simulation methods can be used at a low computational

cost. The case of large domain-wise failure probabilities can be treated easily with simple

Monte Carlo simulation. The case of small domain-wise failure probabilities, however, is more

challenging even with surrogate models. Small failure probabilities should not be underes-

timated by the algorithm in large domains, because they can contribute significantly to the

total failure probability. In cases where the Monte Carlo simulation does not detect failure

domains with the provided computational budget, we therefore switch to subset simulation

(Au and Beck, 2001) that is known to effectively estimate very small failure probabilities

(Moustapha et al., 2021).

3 Applications

In this section, the proposed SSER algorithm is applied to four problems of varying complex-

ity. These applications were selected to benchmark the algorithm performance in different

types of reliability problems: the first two applications have analytical limit-state func-

tions that are challenging for many standard reliability methods. They are the well-known

four-branch function with two input parameters and four distinct failure regions, and a two-

dimensional piecewise linear reliability problem that is known to be challenging for subset

simulation. The third and fourth applications are engineering models that involve finite ele-

ment simulations. The third application is an engineering model of a five-story frame with

M = 21 mutually dependent input parameters. Lastly, the fourth application is a continuum

mechanical problem of a plate with a hole, where the Young’s modulus is parametrized by a

high dimensional (M = 869) random field.
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All computations were done in MATLAB with the UQLab uncertainty quantification

framework Marelli and Sudret (2014). Specifically, we used the input module Lataniotis

et al. (2021) for modeling the random inputs, the PCE module Marelli et al. (2021) for

the domain-wise spectral expansions with bootstrap replications and the reliability module

Marelli et al. (2021) for computing the domain-wise failure probabilities.

A summary of the results and comparisons to other state-of-the-art reliability algorithms

is given in Table 1, and a detailed rundown of each is provided in the following.

3.1 Four-branch function

The four-branch function is a common benchmark in the active learning literature (Schuere-

mans and Gemert, 2005; Echard et al., 2011). It simulates a series system with four distinct

limit-state surfaces. The input random parameter is distributed according to a bivariate stan-

dard normal distribution, i.e., X ∼ N (0,12). The limit-state function is given analytically

as

g(X) = min





3 + 0.1(X1 −X2)2 − X1+X2√
2

3 + 0.1(X1 −X2)2 + X1+X2√
2

X1 −X2 + 6√
2

X2 −X1 + 6√
2
.

(24)

The reference failure probability of this problem from Monte Carlo simulation is Pf =

4.46 · 10−3 (β = 2.62) obtained with N = 107 limit-state evaluations.

We perform 50 independent runs of SSER on this problem, with different random seeds

and initial designs. The number of refinement samples was set to Nref = 15 and the maximum

polynomial degree for the residual expansions to pmax = 2. The domain-wise accuracy was

estimated with B = 500 bootstrap replications.

The convergence to the reference reliability index for a selected run of SSER and all 50

independent runs is shown in Figure 5. The median number of steps required to reach the

stopping criterion is 7, corresponding to 2Nref︸ ︷︷ ︸
initial

+(6 · 2)Nref = 210 limit-state evaluations.

A more in-depth look at the SSER performance is shown in Figure 6, where four selected

steps of the algorithm run from Figure (a) are displayed. It is important to note that due to

the Gaussian probability measure, the importance of regions shrinks exponentially with the

distance from the domain centre (i.e., (0, 0)). The initial approximation is a paraboloid that

underestimates the failure probability by misclassifying regions near the domain centre. At

the second step, SSER partitions the initial domain along d = 2 at X̂2 ≈ 2 corresponding

to the 98th percentile (i.e., û2 = 0.98). By Step 6 the overall approximation is extremely

accurate near the centre of the domain, while it remains poor near the unimportant four

corners of the safe domain. Three steps later, at Step 9, the stopping criterion is met and

the algorithm is terminated.

15



Four-branch Piecewise linear Five-story frame Plate with a hole

Section 3.1 Section 3.2 Section 3.3 Section 3.4

Reference Method MCS MCS MCS SuS

(Uribe et al., 2020)

P̂f 4.46 · 10−3 3.2 · 10−5 1.49 · 10−6 3.75 · 10−6

[P̂f , P̂f ] [4.42, 4.51] · 10−3 [3.1, 3.3] · 10−5 [1.1, 1.8] · 10−6 [3.59, 3.91] · 10−6a

β̂ 2.62 4 4.67 4.48

[β̂, β̂] [2.61, 2.62] [3.99, 4] [4.64, 4.73] [4.47, 4.48]

N 107 108 108 1.62 · 106

Competing

algorithms

Method AK-MCS+U

(Echard et al., 2011)

– sPCE+MCS

(Blatman and Sudret, 2010)

b iCEred

(Uribe et al., 2020)

P̂f 4.42 · 10−3 – 3.9 · 10−7 3.57 · 10−6

[P̂f , P̂f ] – – – [3.21, 3.93] · 10−6

β̂ 2.62 – 4.94 4.49

[β̂, β̂] – – – [4.47, 4.51]

N 126 – 450 2,396c

(Uribe et al., 2020)

Proposed al-

gorithm

Method SSER SSER SSER SSER

P̂f 4.44 · 10−3 3.16 · 10−5 1.49 · 10−6 3.27 · 10−6

[P̂f , P̂f ] [4.43, 4.47] · 10−3 [3.16, 3.16] · 10−5 [1.2, 1.64] · 10−6 [3.26, 5.47] · 10−6

β̂ 2.62 4 4.67 4.5

[β̂, β̂] [2.6, 2.63] [4, 4] [4.65, 4.71] [4.4, 4.51]

N 270 480 480 1,400

[N,N ]d [180, 330] [320, 720] [320, 720] [1,200, 2,000]

Table 1: Applications summary : If not given with an external reference, the values were computed

with UQLab (Marelli and Sudret, 2014; Marelli et al., 2021). Values in square brackets correspond to

the 95% confidence intervals. N denotes the number of limit-state evaluations needed to compute the

reported values. For SSER confidence intervals are also given for the number of limit-state evaluations

until convergence from a set of independent runs. The used methods are Monte Carlo simulation

(MCS), subset simulation (SuS), adaptive kriging Monte Carlo simulation with U learning function

(AK-MCS+U), sparse polynomial chaos expansions with Monte Carlo simulation (sPCE+MCS),

improved CE method with failure-informed dimension reduction (iCEred).

aEstimated from 100 independent SuS runs with reported CVP̂f
= 0.215 as P̂f · (1± 2CVP̂f

/
√

100).
bReported value P̂f = 3.9 · 10−7 does not lie within reference confidence intervals.
cAdditional 675 gradient evaluations.
dFrom independent algorithm runs to reach convergence.
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(a) Single run (b) 50 independent runs

Figure 5: Four-branch function: Convergence to the reference reliability index β as a function of

limit-state evaluations and algorithm steps. The 95% confidence intervals in Figure (a) are based

on the bootstrap replications. This figure shows the convergence until the stopping criterion

in Eq. (23) is met at Step 9 of SSER. The bounds in Figure (b) are the 90%, 75% and 50%

confidence intervals from the mean predictions of the independent SSER runs.

3.2 Piecewise linear function

The piecewise linear function was devised in Breitung (2019) to break the subset simulation

algorithm Au and Beck (2001). This function has two limit-state surfaces, one with a large

and the second with a negligible failure probability. By providing a steep limit-state function

in the direction of the second limit-state surface, the subset simulation algorithm overlooks

the first limit-state surface.

The input random parameter is again distributed according to a bivariate standard nor-

mal distribution, i.e., X ∼ N (0,12), and the limit-state function is given analytically by

g(X) = min





g1(X) =





4−X1, if X1 > 3.5;

0.85− 0.1 ·X1, if X1 ≤ 3.5;

g2(X) =





0.5− 0.1 ·X2, if X2 > 2;

2.3−X2, if X2 ≤ 2.

(25)

We obtain a reference failure probability of Pf = 3.2 · 10−5 (β = 4) for this problem from

Monte Carlo simulation with N = 108 samples.

We perform 50 independent runs of SSER, with different random seeds. The number

of refinement samples was set to Nref = 40 and the maximum polynomial degree for the

residual expansions to pmax = 6. The domain-wise accuracy was estimated with B = 500

bootstrap replications.
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(a) Step 1 (b) Step 2

(c) Step 6 (d) Step 9

Figure 6: Four-branch function: Misclassification of failure/safe points for selected steps of

SSER. The white areas were classified correctly, while the gray areas were misclassified. The

thick black line indicates the limit-state surface. The domain bounds identified by the SSER are

shown as thin black lines. The black points are the used experimental design and the red points

are the points added at the shown step of the algorithm. The convergence of the reliability index

estimator is shown in Figure (a).
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(a) Single run (b) 50 independent runs

Figure 7: Piecewise linear function: Convergence to the reference reliability index β as a function

of limit-state evaluations and algorithm steps. The 95% confidence intervals in Figure (a)

are based on the bootstrap replications. This figure shows the convergence until the stopping

criterion in Eq. (23) is met at Step 6 of SSER. The bounds in Figure (b) are the 90%, 75% and

50% confidence intervals from the mean predictions of the independent SSER runs.

The convergence of SSER to the reference reliability index is shown in Figure 7. As

intended by this limit-state function, most runs of the algorithm initially overestimate the

reliability index. Due to its refinement domain selection strategy, however, SSER later

returns to the high failure probability domains and accurately estimates the reliability index.

The median number of steps required to reach the stopping criterion is 5, corresponding to

2Nref︸ ︷︷ ︸
initial

+(4 · 2)Nref = 400 limit-state evaluations.

Figure 8 reveals why SSER initially overestimates the reliability index and underestimates

the failure probability. After the initial approximation, at Step 2, the algorithm partitions

along d = 2 to isolate the region where it suspects the highest misclassification probability.

In the following steps, it focuses again on the big region that incorporates the larger failure

domain and accurately approximates it at Step 4. Two steps later, at Step 6, the stopping

criterion is fulfilled and SSER is terminated.

3.3 Five-story frame

In this example we consider the five-story structural frame described in Figure 9. This exam-

ple has been investigated before in Liu and Der Kiureghian (1991); Wei and Rahman (2007);

Blatman and Sudret (2010). It consists of eight different structural elements with uncertain

dimensions and material properties. The structure is subject to uncertain, horizontal loads

P1, P2 and P3.
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(a) Step 1 (b) Step 2

(c) Step 4 (d) Step 6

Figure 8: Piecewise linear function: Misclassification of failure/safe points for selected steps of

SSER. The white areas were classified correctly, while the gray areas were misclassified. The

thick black line indicates the limit-state surface. The domain bounds identified by SSER are

shown as thin black lines. The black points are the used experimental design and the red points

are the points added at the shown step of the algorithm. The convergence of the reliability index

estimator is shown in Figure (a).
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The input parameters are collected in a random vector X = {P1, · · · , A21} and sorted

according to Figure (c). These parameters are not mutually independent. Instead, we

impose a Gaussian copula (Nelsen, 2006) such that the joint input distribution function can

be written as

FX(x) = Φ21(Φ−1(FX1
(x1)), · · · ,Φ−1(FX21

(x21));R). (26)

In this expression FXi are the cumulative distribution functions (CDF) of the parameters

as listed in Figure (c), Φ21(U ;R) is the CDF of a 21-variate Gaussian distribution with

mean 0 and correlation matrix R ∈ R21×21 and Φ−1 is the inverse CDF of the standard

Gaussian distribution. Correlation is assumed only between some parameters, as reflected

by the entries of the correlation matrix R detailed below

Geometrical properties The geometrical properties are assumed to be correlated with

ρAi,Ij = ρIi,Ij = ρAi,Aj
= 0.13. For geometrical properties belonging to the same

element type, a stronger correlation of ρAi,Ii+8
= 0.95, i = 6 · · · , 13 is assumed.

Material properties The two Young’s moduli are correlated with ρE4,E5
= 0.9.

The quantity of interest is the top-floor displacement u(X). This displacement can be

computed as the solution of an elastic structural mechanics problem that is approximately

solved with the linear finite element method. We consider the problem of determining the

probability that this top-floor displacement exceeds a threshold of uth = 9 cm. This yields

the limit-state function

g(X) = uth − u(X). (27)

This leads to a reference failure probability of Pf = 1.49 ·10−6 (β = 4.67) computed with

Monte Carlo simulation and N = 108 evaluations of the limit-state function.

We perform 50 independent runs of SSER on this problem, with different random seeds.

The number of refinement samples is set to Nref = 40 and the maximum polynomial degree

for the residual expansions to pmax = 4. The domain-wise accuracy is estimated with B = 500

bootstrap replications.

The convergence to the reference reliability index for a single run of SSER and all 50 runs

is shown in Figure 10. The median number of steps required to reach the stopping criterion

is 3, corresponding to 2Nref︸ ︷︷ ︸
initial

+(2 ·2)Nref = 240 limit-state evaluations. The stopping criterion

for the shown run in Figure (a) is met at Step 6.

3.4 Plate with a hole

This last example was previously analysed in Uribe et al. (2020) and its description here

follows closely the description there. Consider a two-dimensional, square steel plate under

plane stress conditions with a hole in the middle (see Figure 11). The plate is defined on

a square domain Dξ with side lengths 0.32 m, thickness 0.01 m and a centre hole of radius

0.02 m. The coordinates in the domain are parametrized by ξ = [ξ1, ξ2] ∈ Dξ. The plate
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(a) Structure

B1 B2 B3 B4 C1 C2 C3 C4

E4 E4 E4 E4 E5 E5 E5 E5

I10 I11 I12 I13 I6 I7 I8 I9
A18 A19 A20 A21 A14 A15 A16 A17

(b) Elements properties

Parameter Distributiona µ σ
P1 (kN) Lognormal 133 40
P2 (kN) Lognormal 89 35.6
P3 (kN) Lognormal 71.2 28.5

E4 (kN/m2) Gaussian 2.17 · 107 1.92 · 106

E5 (kN/m2) Gaussian 2.38 · 107 1.92 · 106

I6 (m4) Gaussian 8.13 · 10−3 1.08 · 10−3

I7 (m4) Gaussian 0.0115 1.3 · 10−3

I8 (m4) Gaussian 0.0214 2.6 · 10−3

I9 (m4) Gaussian 0.026 3.03 · 10−3

I10 (m4) Gaussian 0.0108 2.6 · 10−3

I11 (m4) Gaussian 0.0141 3.46 · 10−3

I12 (m4) Gaussian 0.0233 5.62 · 10−3

I13 (m4) Gaussian 0.026 6.49 · 10−3

A14 (m2) Gaussian 0.313 0.0558
A15 (m2) Gaussian 0.372 0.0744
A16 (m2) Gaussian 0.506 0.093
A17 (m2) Gaussian 0.558 0.112
A18 (m2) Gaussian 0.253 0.093
A19 (m2) Gaussian 0.291 0.102
A20 (m2) Gaussian 0.373 0.121
A21 (m2) Gaussian 0.419 0.195

aGaussians truncated to [0,+∞]

(c) Parameter marginals

Figure 9: Five-story frame: Problem setup with (a) static system, (b) a table of element prop-

erties and (c) a table of the parameter marginal distributions. The element properties are listed

as eight sets of Young’s moduli E, second moment of area I and area A for each element type

Bi and Ci with i = 1, · · · , 4. The parameter marginals are given per input parameter where µ

and σ denote the mean and standard deviation respectively. For the truncated Gaussians those

moments apply to their untruncated variants.
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(a) Single run (b) 50 independent runs

Figure 10: Five-story frame: Convergence to the reference reliability index β as a function of

limit-state evaluations and algorithm steps. The 95% confidence intervals in Figure (a) are based

on the bootstrap replications. This figure shows the convergence until the stopping criterion

in Eq. (23) is met at Step 6 of SSER. The bounds in Figure (b) are the 90%, 75% and 50%

confidence intervals from the mean predictions of the independent SSER runs.

is assumed to deform elastically with an isotropic Young’s modulus E(ξ). Neglecting body-

forces results in the following system of partial differential equations (PDEs)

E(ξ)

2(1 + ν)
∇2u(ξ) +

E(ξ)

2(1− ν)
∇(∇u(ξ))ᵀ = 0, (28)

where u(ξ) is the 2D displacement field and ν = 0.29 is the steel Poisson’s ratio. As sketched

in Figure 11 a Dirichlet boundary condition is applied on the left domain border such that

u(ξ) = 0 for ξ ∈ Γ1. Additionally, a Neumann boundary condition is applied on the right

domain border such that σ11(ξ) = q for ξ ∈ Γ2, where σ11 is the stress component in the

first direction.

The Young’s modulus E(ξ) is modelled as lognormal random field with mean µE =

2 ·105 MPa and standard deviation σE = 3 ·104 MPa. We use an isotropic exponential kernel

k(ξ, ξ′) = exp (−`−1||ξ − ξ′||2) as the autocorrelation function of the underlying Gaussian

random field with correlation length ` = 0.04 m. To parametrize this random field, we resort

to the Karhunen-Loève expansion Ghanem and Spanos (1991) and write

E(ξ) ≈ Ê(ξ,θ)
def
= exp

(
µE′ +

K∑

k=1

√
λkϕk(ξ)θk

)
, (29)

where λk and ϕk(ξ) are the ordered (i.e., λk ≥ λk+1) eigenvalues and eigenfunctions of

the covariance operator C(ξ, ξ′)
def
= σ2

E′k(ξ, ξ′). The mean and variance of the underlying

Gaussian field are µE′ and σ2
E′ respectively and θ ∈ Rk denotes the standard Gaussian vector

of random coefficients. The expansion is truncated at K = 868 terms, which account for

23



ξ

ξ

Figure 11: Plate with a hole: Finite element discretization with 282 eight-node serendipity

quadrilateral elements (Uribe et al., 2020). The red star ∗ marks the location of the control

node for the stress exceedance criterion in Eq. (31).

92.5% of the spatial average of the variance of the Gaussian random field. The eigenpairs are

estimated with the Nyström method based on 100 Gauss-Legendre points in each direction,

disregarding points inside the hole.

Additionally, we model the applied external load as a normally distributed random vari-

able with mean µq = 60 MPa and standard deviation σq = 12 MPa such that q ∼ N (µq, σq).

Assuming further independence between the standard normal vector θ and q, the probabilis-

tic input vector of this problem is gathered in X = (θ, q).

The quantity of interest is the principal stress at a control point marked by a red star in

Figure 11 defined as

σ∗
def
= (σ11 + σ22)/2 +

√
((σ11 − σ22)/2)2 + τ2

12. (30)

It depends on the stress field σ(ξ) at the control point that is obtained from the elastic

constitutive equations after solving Eq. (28) with the finite element method for the dis-

placement field u(ξ). Failure in this problem is defined as this principle stress exceeding

σth = 320 MPa, which can be formalized in the following limit-state function:

g(X) = σth − σ∗(X). (31)

Due to the complexity of this problem, it is not possible to obtain a reference solution with

Monte Carlo simulation in a reasonable time. We use instead directly the reference solution

from Uribe et al. (2020) that was computed with 100 independent subset simulation (Au
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(a) Single run (b) 10 independent runs

Figure 12: Plate with a hole: Convergence to the reference reliability index β as a function of

limit-state evaluations and algorithm steps. The 95% confidence intervals in Figure (a) are based

on the bootstrap replications. This figure shows the convergence until the stopping criterion

in Eq. (23) is met at Step 7 of SSER. The bounds in Figure (b) are the 90%, 75% and 50%

confidence intervals from the mean predictions of the independent SSER runs.

and Beck, 2001) runs with N = 3,000 samples per level and 6 levels, leading to a reference

failure probability of Pf = 3.75 · 10−6 (β = 4.48).

On this problem, we perform 10 independent runs of SSER with different random seeds.

The number of refinement samples was set to Nref = 100 and the maximum polynomial

degree for the residual expansions to pmax = 4. To allow PCEs to be constructed efficiently

in such high dimensions, it was necessary to restrict the maximum interactions of polynomial

basis functions to 1 (Marelli et al., 2021). The domain-wise accuracy was estimated with

B = 100 bootstrap replications.

The convergence of SSER to the reference reliability index is shown in Figure 12. The

median number of steps required to reach the stopping criterion is 6, corresponding to

2Nref︸ ︷︷ ︸
initial

+(5 · 2)Nref = 1,200 limit-state evaluations.

4 Conclusions

Leveraging the flexibility of the recently proposed stochastic spectral embedding formalism

(Marelli et al., 2021), we show that the adaptive sequential partitioning approach introduced

in (Wagner et al., 2021) can be efficiently modified to an active learning reliability method.

The introduced modifications pertain to the refinement domain selection, partitioning and

sample enrichment strategies.

The proposed algorithm is shown to accurately estimate failure probabilities spanning
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multiple orders of magnitude at a fraction of the cost of plain Monte Carlo simulation. The

method is suitable for identifying multiple failure regions (four-branch function, Section 3.1)

and is able to deal with problems that involve non-smooth limit-state functions (piecewise

linear function, Section 3.2). It also performs reasonably well in moderate-dimensions with

dependent input vectors (five-story frame, Section 3.3 and is competitive to a state-of-the-art

reliability method iCEred (Uribe et al., 2020) on a high-dimensional example (plate with a

hole, Section 3.4).

In some examples (most notably in Section 3.4) there persists a small bias towards a

higher reliability index compared to the reference solution. This means that the method

systematically misses small parts of failure regions. A possible explanation for this is the

partitioning strategy that ‘unknowingly’ cuts away undiscovered parts of failure regions and

incorrectly classifies them as safe. This process is facilitated by the boundary discontinuities

and will be explored in future works.

An interesting side result of the proposed method is the domain partition that hints at the

location of failure domains. This information, in conjunction with the available domain-wise

failure probabilities, could be directly used for design purposes.

The modularity of the sequential partitioning algorithm for constructing SSEs makes it

well suited to for future modifications. Possible improvements could focus on different spec-

tral expansion or even surrogate modelling techniques, as well as simultaneous partitioning

in multiple dimensions. A particularly interesting idea is the introduction of rotated domain

partitions by means of partial least squares Papaioannou et al. (2019). These partitions

could be more flexibly tuned to fit the limit-state surface and thereby increase the efficiency

of SSER.
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