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Abstract1

Large urban areas are vital for the economic and social development of modern cities. The2

mobility in these areas strongly depends on a seamless and available multi-modal transport3

infrastructure network. Since many of these networks operates at capacity limits, any disruptions4

of a single edge can have negative effects on the mobility. Hence, modeling and quantifying the5

resilience of large-scale urban transport networks will allow cities guaranteeing higher quality of6

service, even in the presence of unpredictable disruptive events.7

This paper aims to develop a new methodology linking together topological data with traffic8

dynamics for resilience analysis. To do so, we adopt a dynamic weighted graph approach where9

weights are generated according to prevailing traffic conditions. Weight-extended centrality10

measures are leveraged in order to capture the evolution of vulnerabilities. The paper also aims11

at studying the impact of area-wide disruptions, such as snow storms or floods, insufficiently12

explored in the literature. This is based on a stress testing approach. Our graph-based approach13

is also supported by other analyses performed in the paper by leveraging more traditional traffic14

indicators.15

Results demonstrate the importance of both the spatial and temporal dimension in the16

assessment of transport network criticality, thus stressing the importance of jointly considering17

the topological properties and traffic dynamics in the study of transport resilience. Consequences18

of area-wide disruptions are also proved to be different with respect to single-link failures,19

therefore deserving a deeper characterization in the study of transport resilience.20

Keywords: Smart Transportation, Resilience, Stress Tests, Dynamic Graph21
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1. INTRODUCTION1

Infrastructural vulnerabilities and extreme events negatively affect the performance of transport2

networks. They have to be taken into account to improve transport resilience which is defined as3

“the ability of a system to operate under variable and unexpected conditions without substantially4

compromising its planned performances” [1]. Thanks to resilience, network performances could be5

quantified under normal conditions and when a disruptive event occurs.6

Research in this field is fundamental from the perspectives of both transport authorities and7

travelers, since it can help the smooth operation of mobility services and support rescue operations8

as well. Nowadays, resilience is modeled and assessed either in a static way - mainly based on9

traffic network topological insights achieved by means of graph theory - or dynamically by means10

of simulations taking into account fairly realistic and time-varying traffic conditions. Structural and11

dynamical resilience analysis, often lead separately despite their complementary, are essential to a12

better understanding of network vulnerabilities. In addition, disturbances analysis has traditionally13

been focused on link disruptions whereas some events can impact entire areas [2].14

For these reasons, the aim of this paper is to investigate novel solutions for resilience modeling15

and analyses, by trying to answer the following questions: how can we improve network resilience16

assessment by joining static, purely topological approaches to those based on traffic dynamics?17

How can we characterize and quantify, from the perspective of network resilience, the consequences18

stemming from disruptive events that affect entire areas of a city?19

This work seeks therefore to advance state-of-the-art research in the field of resilience engineering20

by means of the following contributions: (1) we develop a methodology to integrate dynamic char-21

acteristics of the analyzed transport network into topological metrics that are traditionally static by22

means of an evolving, transport-appropriate, weighing. The obtained dynamically-weighted graph23

shall be able of grasping realistic and time-varying traffic-properties of the considered road network;24

(2) we assess the impact of area-wide disruptions by modeling, via stress tests and simulation tools,25

events that reduce network capacity on entire areas of the transport network, rather than con-26

sidering single-link failures as done in most of the traditional approaches in resilience engineering27

[2]. Such an analysis aims to clearly highlight the importance of assessing area-wide disruptions in28

transport resilience studies; (3) we compare resilience metrics to a classical traffic-specific indicator,29

the macroscopic fundamental diagram (MFD) [3], which allows to characterize the performance of30

an entire area in terms of flow, speed and concentration.31

The paper is organized as follow. Section 2 briefly surveys related work dealing with network32

resilience. Section 3 outlines the proposed methodology to construct a transport relevant weighing33

graph and the implementation of area-wide disturbances. Comparison between resilience metrics34

and traffic indicator is also presented at the end of the section. In Section 4, we present our case35

study and discuss the application of the proposed methodology to it. In Section 5, we discuss36

the main insights deriving from our case study and conclude our paper by also highlighting some37

research direction for future work.38

2. LITERATURE REVIEW39

2.1. Definition of resilience40

Many definitions of resilience exist in the literature highlighting the lack of a universally accepted41

definition [4]. Since the introduction of this concept in the field of ecology [5], resilience has been42

studied in different domains. In communication networks, it is defined as “the ability of the network43

to provide and maintain an acceptable level of service in the face of various faults and challenges44

to normal operation” [6].45

The most quoted definition is the one of Bruneau et al., [7] who breaks down the notion of re-46

silience in three temporal phases: (1) before perturbation, corresponding to the notion of robustness,47
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(2) during perturbation, corresponding to the notion of reactivity, and (3) after perturbation, corre-1

sponding to the notion of recovery. Berckley et al. [8] extended the definition above by including a2

feedback phase corresponding to the notion of adaptability. In the field of transportation, Mattsson3

et al. [9] recently advocated the lack of adequate research on the topic, particularly with respect to4

the post-disaster phase. Since then, resilience has emerged as a vast domain of investigation, with a5

growing and active community. In this context, definitions, metrics and approaches stemming from6

other research fields and domains, such as telecommunications or computer systems and networks,7

are proving to be crucial in the transport domain as well [6, 10].8

2.2. Approaches and metrics9

Currently, the assessment of transport network resilience is led via two different major approaches:10

topological and dynamic. Combinations of both methods are rare but promising, based on the11

idea of joining graph theory with simulated or data-inferred traffic conditions. Shalaby et al. [11]12

and Gauthier et al. [12] compare public transport and road networks resilience quantified with13

both approaches. Preliminary results of [12] demonstrate the importance of this combination as14

topological approaches are traditionally unable to grasp the time-dependent aspects of resilience.15

2.2.1. Topological Approaches16

Topological approaches aim to quantify network resilience (especially according to the perspective17

of robustness) by looking at the connectivity properties of the network, by using graph theory.18

Transport networks are represented by an undirected or directed graph G = (V,E), where edges19

(E) correspond to roads, and nodes (N) to intersections. Centrality measures are traditionally used20

to retrieve insights about in terms of network connectivity and accessibility. By studying various21

networks, with different topology, Derrible et al. [13] (28 different subway networks), Zhang et al.22

[14] (17 different networks from various fields) and Zhang et al. [15] (5 different kinds of network23

topologies) prove the importance of topological analysis to assess transport network resilience.24

Although various centrality measures (closeness centrality, degree centrality, information cen-25

trality, etc.) exist, Betweenness Centrality (BC) [16] (Eq. 1) is among the preferred ones [15, 13,26

12, 17, 18] to identify vulnerable links (i.e., those with highest BC values) in transport networks.27

To have a global view of network performances and characterize the impact of disturbed scenarios,28

Global Efficiency (GE) [19] (Eq. 2) has also been frequently employed [20, 21, 22, 23]. It quan-29

tifies how efficiently information (or any other kind of flow) is exchanged over the network. Via30

this metric, the effect of a disturbance can be quantified by comparing the variation of GE under31

normal and disrupted conditions. The formal definitions of BC and GE follow:32

BC(e) =
∑
j 6=i

σij(e)

σij
,(1)33

GE(G) =
1

N(N − 1)

∑
i 6=j

1

lij
,(2)34

where σij(e) is the number of shortest paths from node i to node j crossing edge e, σij is the total35

number of shortest paths from node i to node j, N is the number of graph nodes and lij is the36

length of the shortest path(s) from node i to node j.37

Based on shortest paths computations, the weighting of edges allows to consider road charac-38

teristics information like the travel time, important in path choice, ensures that traffic dynamics39

are taken into account in centrality measures. Shortest paths correspond to the sequence of edges40

with minimal weights connecting the path origin to its destination.41
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Topological approaches are simplistic in the sense that they do not incorporate dynamic infor-1

mation about traffic nor time-varying characteristics of the network. Some recent attempts have2

been made to consider link time-dependent costs in the graph representation of the road network:3

links are weighted by free flow time in [12, 24, 25], temporal metrics for time-varying graphs have4

been also developed in [26]. In line with our work, Cheng et al. [27, 28] and Yoo et al. [29] propose5

extended definitions of the centrality indicators, proving the importance of including commuter6

flows and temporal delays (e.g., travel times) in the computation of the centrality measures.7

2.2.2. Dynamic approaches8

In this category fall all the approaches and metrics for resilience assessment that take into account9

the dynamics of the transport systems (traffic conditions) based on simulation or machine learning10

solutions for estimating future dynamics from historical data.11

These approaches characterize resilience by taking into account actual or simulated traffic dy-12

namics, using demand-sensitive indicators like links speed, queue length, road capacity or recovery13

time, as discussed in [30, 31].14

Some metrics are based on comparisons of traffic conditions under normal and disturbed sce-15

narios. In [32], the authors propose two metrics, importance (I), computing the importance of a16

link by disrupting it, and exposure (E), computing the expected increase in travel cost for a random17

link failure somewhere. Based on the increase of travel cost when a disruption occurs, they are18

among the most popular metrics that belong to the category of dynamic approaches [12, 11, 2].19

Even though traditionally more accurate than topological solutions, dynamic approaches are20

limited in turns [12]. They tend to use heavy simulations which demand large execution time, by21

providing sometimes unreliable indications about resilience due to the hardness to model unpre-22

dictable situations, while real-time data based solutions are expected to be much more realistic.23

Therefore, real-time traffic data should be included and exploited in graph-based models for24

resilience analysis. That will demand for novel solutions based on big data processing aiming at25

efficiently mining the traffic data for resilience analysis. In this paper, based on previous work26

[24, 12], we dynamically and efficiently compute centrality measures on weighted graphs, allowing27

to take traffic dynamics into account. To do so, we use data issued from simple simulation to feed28

our dynamic graphs with links travel time, because we do not have access to real-time data.29

2.3. Stress testing30

To model and quantify disruptions and their impact on a complex system, stress test methodology,31

which is a common practice in bank and nuclear industries, can be effectively considered and32

leveraged in the transport field, with relevant applications for resilience assessment [21, 12, 33]. A33

stress test is a “quantitative assessment designed to evaluate the ability of a network to perform34

adequately during and after the occurrence of hazard events” [33]. This allows to quantifying adverse35

impacts caused by disruptive scenarios. Comparing these cases to initial one give information about36

how the network is resilient, by regarding changes in metrics. To quantify resilience, road networks37

can be stressed by inducing a reduction in capacity over single links or multiple links contained in38

a given area of the network. A large majority of existing works have mainly quantified network39

resilience by assessing the impact of targeted or random removal of single or very few edges or nodes40

[11, 34, 35, 36, 37]. Recently, in our previous work [12], we have studied link capacity reduction41

rather than abrupt and complete link removal. Such an approach allows to better quantifying minor42

daily disruptive events that result in a reduction of road capacity (e.g., a decrease in the number of43

road lanes). Nonetheless, various disruptive events, like floods, snow-storms, fires, etc. may easily44

affect entire areas and cannot be modeled by the previous approach. Jenelius et al. [2] extended45

the importance and exposure metrics to take into account area-wide disruptions. In their study,46
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they completely prohibit the access to the links contained in the disturbed area, representing by1

grid-cells. They conclude that “consequences are quite different from those of single link failures”.2

In the evaluation section, we compare the impacts of link-failures and area-wide disruptions, with3

weighted centrality measures, by gradually reducing the capacity.4

2.4. Macroscopic fundamental diagram5

In this paper, we propose to use traffic indicators based on the fundamental diagram (FD) to6

characterize resilience. A FD characterizes road by relating three traffic variables whose formula7

stems from mechanic of fluid:8

Q = V ·Kc = W · (Kx −Kc)(3)9

where Q is the maximal capacity, V is the free flow speed, W the shock wave one, Kc represents10

the critical density and Kx the maximal one.11

Introduced in late 2000s [3], the area-based FD, called Macroscopic Fundamental Diagram12

(MFD) relates the output flow and the number of vehicles in a large network, giving insights about13

the state of a zone over a road network. Already used in traffic control [38], could offer good14

opportunities in resilience analysis. Kim et al. [36] assess the resilience of a part of the transport15

network in the city of Seoul, South Korea, by using information issued from this traffic tool and by16

assessing some area properties as the outflow or the traffic density.17

3. METHODOLOGY18

3.1. Construction of a dynamic graph19

By building on our previous work [12], we propose to adopt dynamic graphs modeling leveraging20

traffic conditions as time-varying weights associated to the links.21

Road users tend to select their paths according to multiple variables, including travel time.22

However, we can reasonably state that paths are equally chosen by a user if they are perceived as23

“approximately” having the same total length, e.g., total travel time. The “bounded rationality is24

neither the optimization nor the irrationality” [39]. Bounded rationality corresponds to a choice25

done with flexible criterion with limited information processing resources and limited consideration26

of alternatives paths [40]. In order to improve the significance of the edge weights, we adopt a27

discretization process. This method provides the group of shortest paths, which represent the28

potential used roads, rather than the shortest one.29

3.2. Weighting of the centrality measures30

By leveraging the previously described dynamic, weighted, graph-based modeling of a road network,31

the BC of each edge, whose computation is based on the identification of the weighted shortest paths32

between each possible pairs of origin/destination via Dijkstra’s algorithm [41], becomes a function33

of the time. In other words, the time-dependency of the BC metric permits better capturing the34

actual functioning of the transport network by taking into account additional key and dynamic35

features of the roads, like for instance the actual or simulated travel times, neglected in the basic36

unweighted definition of the BC metric. We therefore observe and analyze the evolution of BC over37

time as a consequence of the changes taking place in the weighted graph, whose edge weights evolve38

both because of regular traffic dynamics (i.e., travel time variations due to congestion phenomena39

or travel demand changes) and, possibly, as a consequence of unpredictable events (i.e., accidents,40

or even the stress tests we induce to model area-wide disruptions).41
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3.3. Area-wide disruption analysis via stress testing1

To analyze the impact of area-wide disruptions with respect to single-link failures, we simulate2

disturbance over the links contained in the area, in two different ways. While, in the former3

case, disruption is applied simultaneously over all links, in the latter it is allocated successively to4

each link. Consecutive results are averaged. The methodology is based on stress testing, allowing5

to observe system functioning when it operates beyond its normal characteristics. Capacity is6

progressively reduced from 20% to 80% of the initial one.7

3.4. Implementation of the methodology8

3.4.1. Elaboration of a dynamic graph9

To weight our graph and model traffic dynamics, we leverage a microscopic traffic simulator called10

SymuVia1, developed by our research group. The simulator represents individual vehicles by com-11

puting transit times at each second, based on LWR (Lighthill-Whitham-Richards) model [42, 43].12

The vehicles are distributed over the network, according to the traffic conditions at the moment13

the vehicle is generated. Before running a simulation, duration, origin-destination demands and14

limit speed per link have to be defined. The simulator allows for extracting speeds averaged by15

ten-minutes time stamps. Thus, by dividing link length by its simulated speed, we are able to16

weight edges by their travel time.17

3.4.2. Weighting of the centrality measures18

To discretize weights, we choose to group them according to their travel time. For the first interval,19

we consider the shortest link travel time t. All links whose length is in the range [t, t + α · t] are20

considered equal and received the mean value as weight. The minimal value of the second interval21

is equal to t+α · t and the maximal one is equal to (t+α · t) +α · (t+α · t). Included links weight22

become the mean value of this second range. The process is iterated while the longest link travel23

time is not include in an interval. Then, we observe the effect of choosing α in the range [0.1, 0.3].24

On the resulting graph, we apply betweenness centrality and global efficiency.25

3.4.3. Stress testing26

To simulate the capacity drop, we reduce progressively the speed limit according to the FD formula27

(Eq. 3). We use geographical zones defined by the French national institute of statistic and28

economic studies (INSEE) to analyze area-wide disruptions. The risk maps are in accordance29

with these areas and allows to allocate likely perturbations. Each area groups similar populations,30

implying that the size of the zone is relatively smaller especially in largely populated areas.31

3.4.4. Traffic-specific indicator results32

We choose to compare resilience metrics with macroscopic fundamental diagram. In our case,33

simulation set up are the following ones: maximal density is equal to 0.17 vehicles per meter and34

shock wave speed is about 5.88 meter per second. These characteristics do not change because35

there are defined per vehicle types (e.g. car, bus, trolley bus). The link speeds could be extracted36

from simulations. By summing the maximal density, kx, of all links and their speeds, v and w, we37

obtain the maximal flow, q, and the critical density, kc, with the same formula of the one used for38

the FD (Eq. 3). Therefore, we obtain information about a part or the entire network, according39

to the links taken into account.40

1http://www.licit-lyon.eu/themes/realisations/plateformes/symuvia/
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Figure 1: Case study - 3rd and 6th districts of Lyon and a part of Villeurbanne in France. (a) is
the interchange, (b) the disturbed area “Charpennes” in section 4.4, (c) is the ring road and (d)
the “Cours Emile Zola”.

4. RESULTS1

4.1. Case study2

Our methodology has been evaluated on a real road network including the 3rd and 6th districts of3

Lyon and a part of the city of Villeurbanne in France. Such area allows to run simulation with an4

acceptable computation time and its size allows to observe vehicles movements. Moreover needed5

data, as the origin-destination matrix, are provided over this area. These three places have different6

social and economical characteristics. The 3rd borough is the central business district of Lyon. It7

is also the most populated area of the city. The 6th district has instead a dominant commercial8

function and a large population. These two parts of Lyon are the major tertiary centers of the9

city. Finally, Villeurbanne is a working-class city hosting one of the largest university of the region.10

The studied area comprises 1,774 nodes, 3,342 links and 68 sectors, represented as a directed graph11

coded in Python 3.6 by using the NetworkX library [44].12
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Figure 2: Comparison of unweighted, link length weighted and link travel time weighted edge BC
over the studied area.

4.2. Weighting importance for BC1

Weighting BC by free flow travel time is a first step towards merging static and dynamic approaches:2

in unweighted graphs, the length of the shortest paths is equal to the number of crossed hops.3

However, in realistic scenarios, the actual travel time of each road segment significantly impacts4

the path choice.5

For the sake of simplicity, we present results per area. The zonal BC is equal to the average of6

the BC value associated to each link comprised within the given zone.7

In Fig. 2a, we present the values of unweighted edge BC. The ring road, represented in green8

(Fig. 1c), possesses the highest BC due to the long length of the corresponding road segments.9

For instance, this is the shortest path because of the low number of crossed hops, to go from the10

interchange (Fig. 1a) to the red sector (Fig. 1b).11

Taking length into account (Fig. 2b), the shortest path for same origin destination becomes12

“Cours Emile Zola” (Fig. 1d), with a distance of about 3km while the ring road one is approximately13

6km. Due to the long length of the corresponding road segments, the ring road BC value approaches14

zero, which is not consistent with real world situation. Indeed, the ring road, even if longer in term15

of length, possesses a high limit speed, which has to be take into account in the shortest path16

research.17

By weighting edges by their travel time, the ring road travel time benefit is considered. Fig. 2c18

shows an increase of ring road BC, due to its presence across some shortest paths.19
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Figure 3: Evolution of the graph-based weighted metrics between 6:30am and 1:30pm.

4.3. Dynamic topological metrics1

4.3.1. Evolution of network performances with “real” weights2

In dynamic settings, weighted centrality measures evolve over time with traffic conditions. In our3

paper, the average travel times per ten minutes are derived from simulated scenario, performed4

from 6:30am to 1:30pm under normal conditions.5

The results, graphically presented in Fig. 3, highlight a change in global performance over time,6

related to the evolution of vehicle number in response to the input demand, both reported in Fig.7

3d. With the increase of vehicles present over the network, the GE (Fig. 3a) drops whereas the8

sum of the BC computed over all links, named in the following global betweenness centrality (GBC)9

rises. The change in performance means that the network is unbalanced, i.e. there are certain links10

traversed by more shortest paths (and therefore typically attracting more traffic) than other ones.11

The appearance of traffic slowdowns increases the travel time of the traversed links. Thus, the12

value of travel time associated to the shortest paths at the successive time slots rises. The two13

following situations can occur: either vehicles continue traversing the same path, which will show,14

in the following time slots, a larger travel time because of congestion, or vehicles switch to a new15

path, which has a certain travel time, very likely larger than the one traversed during the previous16

time slot. The global increase of travel time associated to the different paths leads therefore to a17

decrease of GE (Fig. 3a), inversely proportional to the length (i.e., total travel time) of the shortest18

paths (Fig. 3c). This aspect is underscored at 8:40am, 10:10am and 11:20am. Interestingly, an19

opposite trend can be observed in relation to GBC: the spikes for GBC (Fig. 3b) can be explained20
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(d) Evolution of travel-time-weighted (TTW) GBC

Figure 4: Evolution of the graph-based weighted metrics between 6:30am and 1:30pm for discretized
weights [t, α · t] and different values of α under normal conditions.

by considering the relatively higher number of links traversed by a large number of shortest paths,1

meaning that the network becomes strongly unbalanced at demand peaks. In other words, more2

and more links become critical, raising the global GBC indicator.3

4.3.2. Evolution of network performances with discretized weights4

According to the users bounded rationality principle, the path choice has to be less demanding to5

obtain a resilience analysis relating to network usage rather than the use of the shortest path only.6

For that, we discretize edges weights in order to obtain a group of paths approximately equal (from7

the user’s perspective) to the shortest one and take them into account while computing centrality8

measures. The applied discretization, detailed in Section 3.4., consists in grouping similar weights9

with intervals defined as follow: [t, t + α · t]. The weight discretization is analyzed for α varying10

from 0.1 to 0.3. Higher values are not realistic because they assume that a path whose travel time11

increased by almost half of the shortest one is perceived as equivalent by the driver. With the12

increase of shortest paths number (Fig. 4b), observed for α equal to 0.1 to 0.3, more possibilities13

exist to join two nodes regarding the BC definition. In traffic perspective, this implies that BC will14

capture the criticality of the possible taken paths by drivers rather than the topologically shortest15

one. We chose to allocate the mean values of corresponding interval to edges but it could also be16

done with the maximal one, which would only impact GE. The global metric would be lower with17

the same trend, because of the increase of travel time. Used paths are distributed over different18

roads for the same origin destination, reproducing the actual users behaviors.19
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(d) Area criticality rank with discretized weights

Figure 5: Link distribution of BC over the network at 8:30am and rank of five originally most
critical areas and two less ones according to their BC under normal conditions.

About centrality measures, at the global level, only slightly changes are visible, in case of1

discretized weights. Indeed, Fig. 4d and 4c present almost superimposed curves like the average2

paths travel time for all origins destinations (Fig. 4a). Nevertheless, we can observe that a small3

change in average shortest path travel time could have huge impact on GE (a peak is present at4

10:40am for an α value equal to 0.1 and at the same time the average shortest path travel time5

is a bit reduced). The evolution of the weighted topological global metrics mostly depends of the6

vehicles number and not to their road usage.7

At local scale (Fig. 5), the change in edges BC distribution at 8:30am is not really impacted8

(Fig. 5a and Fig. 5b). By ranking the five most critical areas and the two less critical ones in both9

weighting cases (Fig. 5c and Fig. 5d), we capture the discretization effect due to the new shortest10

path distribution. Some areas are thus crossed by these new paths, captured in the centrality11

measures, using the discretization. Nonetheless, in free flow conditions, the discretization does not12

have a big influence over the results.13

4.3.3. Evolution of network performances with discretized weights in congested situation14

To observe the impact of discretization in presence of congestion, we run a simulation from 6:30am15

to 1:30pm in presence of a blockage. At global level, we notice a continuously increase in the16

number of vehicles over the network (Fig. 6c. This implies a global decrease of performances (Fig.17
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(g) Area criticality rank with discretized weights

Figure 6: Evolution of the graph-based weighted metrics between 6:30am and 1:30pm for dis-
cretized weights [t, α · t] and different values of α in presence of congestion at global and edges BC
distributions at 8:30am and area rankig at local levels.

6a and Fig. 6b) with the reduction of GE and the increased peaks of BC. Global results still does1

not change significantly with the discretization.2

Nevertheless, at local scale, the distribution of edge BC is completely different at 8:30am. The3

various distributions of criticality are related to the different paths used without and with discretized4

weights. In the non-discretized weights case (Fig. 6d) some roads are distinguished by their BC5

value as the ring road. When weights are discretized (Fig. 6e) BC is slightly better distributed over6

the network, although we see a group of critical links close to the center of the network. The ranking7

of the five originally most critical areas and the two less ones over time, are realized with (Fig. 6g)8
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and without (Fig. 6f) discretized weights. With the second weighting option, positions of areas in1

ranking are more stable. This is the result of the better distribution in road usages. The increase2

of travel over a link is mostly absorbed by its equivalent paths. It does not always imply a change3

in path, like for the non-discretized scenario. In both cases, the rank of “Charpennes”, represented4

in green, declines. At 10:30am, contained links begin to clog up. The shortest paths change and5

pass through new areas. Its BC decreases, causing an important rank fall from 10:30am to the end6

of the simulation. As it corresponds to the appearance of a strong and sustained congestion, this7

area requires a particular attention. On the contrary, lowest-ranked areas, which conserve their8

positions in the rank from 6:30am to 1:30pm. Because they are constitute of links with long travel9

time or because they are outermost than other areas, they are less crossed and thus less critical.10

4.4. Impact of the discretization of weights11

At global scale (GBC and GE),the discretization of weights does not impact results a lot. The12

evolution of both metrics follow the same trend in both weighting methods. As the BC is dependent13

on the shortest paths number and composition, by increasing them via our discretization method,14

redundant shortest paths exist for a same itinerary and therefore more links are crossed. The15

criticality is thus spread over travel-time-equivalent redundant paths, modifying results. The major16

impact of this step is underlined by results issued from congested simulation where edges and ares17

BC distributions are completely modified (Fig. 6). From the rank analysis (Fig. 5d and Fig. 6g)18

we can extract some lines to manage transport network. An area with a rank almost constant19

proves that they are “insensitive” to traffic conditions and thus have not to be monitored as a20

priority, whereas a fall in ranking for a part of the network is due to its congestion, therefore it21

is a critical part. It is related to an increase of another part which becomes crossed by shortest22

paths. By reproducing the use of road network by adapting edge weights, we are able to quantify23

network resilience in relation to both its topology and its traffic conditions. It is essential to reliably24

reproduce network usages for an accurate resilience analysis regarding the significant change in BC25

distribution.26

4.5. Comparison between area disruptions and link failure27

In this part, we compare the consequences of area-wide disruption with the average impact caused28

by the successive links disturbances. We use a graph with free flow travel time discretized weights29

with an α value of 0.2. Our stress tests here consist in a reduction of capacity from 20% to 80%30

of initial conditions. In the first case, (Fig. 7a and Fig. 7c), all links contained in the central area31

(Fig.1) are disturbed simultaneously by a speed reduction and thus a diminished capacity. In the32

second case (Fig. 7b and Fig. 7d), same links are disturbed successively. The results are averaged.33

Regarding GE (Fig. 7f), the decreasing shape of network performances with respect of the34

capacity reduction is similar for both scenarios. When the capacity is disrupted and thus the35

speed is reduced, shortest paths travel time becomes longer by using bypass roads. By averaging36

the impacts of disturbance over successive links, global network performances are lower reduced37

than the area-wide disruption case. In the first case, the bypass consists in avoiding a unique link38

whereas in the second case, it has to circumvent an entire area. The new used path is longer in39

case of area-wide disruption, hence the greater loss of performances in term of GE.40

To analyze the impact with BC, we focus on a capacity reduction of 60%. The results, by area,41

show different impacts (Fig. 7e) according to area-wide disruption (Fig. 7c) and successive link42

ones (Fig. 7d). Nearby sectors are greatly impacted by the used simulation of disruption contrary43

to the surrounding ones. Indeed, these zones are too far to be crossed by the new shortest paths.44

Conversely to southern areas, BC is higher in case of area-wide disruption than for link failures45

in the north. This is due to the existence of a bypass road for the impacted portion of “Cours46
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Figure 7: Results for simulation of disruption over an area by diminishing all capacity link (a) (c) or
averaged results of one link capacity reduction for all contained in the area (b) (d). Differences are
presented in (e) by subtracting the mean successive link disruption impacts of area-wide disruption
one. Impact of these different disruptions is computed by GE on (f). In both cases, capacity during
the perturbation is equal to 40% of the one under normal conditions.
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Figure 8: Macroscopic Fundamental Diagrams (MFD)

Emile Zola” when the whole sector is disturbed (Fig. 7a). In that situation, there is no shortest1

path passing through this sector, reducing its BC to almost zero. All links capacity is reduced2

simultaneously, deleting possible redundant paths inside the disturbed area. With successive link3

failures, some edges located in the disturbed area, still present a travel time benefit and therefore4

crossed by shortest paths (Fig. 7b). These results prove the importance to focus also on area-wide5

disruption in resilience analysis.6

4.6. Traffic indicators7

4.6.1. Evolution in time8

To observe the evolution of global networks characteristics at different time, we plot the MFD of9

the whole studied network in congested situation (Fig. 8a).10

The network capacity is the highest at 7:30am. At this time, only few vehicles are presented over11

the network (Fig. 3d) which operates under normal and optimal conditions. The major decrease of12

global capacity is observed at 10:30am. The drop of capacity is about 4000veh/s. This is related13

to the increase of the GBC (Fig.3b) and the decrease of GE (Fig.3a). By increasing the number14

of vehicles over the network, several roads become congested, reducing their speed. The maximal15

capacity is reduced, impacted the MFD shape and used paths are distributed over longer ones,16

transiting over more links.17

Finally, at the end of the simulation time, at 1:30pm, maximal capacity is slightly improved.18

Network regains a part of these initial conditions. This is also the case for centrality measures.19

4.6.2. Comparison of disruption methods20

To compare results of disruptions methods we plot the MFD of the disturbed area (Fig. 1b).21

The results (Fig. 8b) are obtained under normal conditions (blue curve), with the average im-22

pact of successive reduction of link capacity (orange curve) and when their capacity are reduced23

simultaneously (green curve). The disruption consists in a reduction of 60% of the initial capacity.24

Area-wide disruption impact is more important than for the average of the successive links25

failures impacts. The maximal capacity is reduced about 400veh/s. Although the consequences26

were greater with the resilience metrics, the trend is identical. The successive link failure method27

gives a MFD close to the one obtained under normal conditions (Fig. 8b). This was already the28

case for BC (Fig. 2f and Fig.7d).29
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4.6.3. Assessment1

The centrality measures and the MFD are related. Indeed, a reduction of capacity implies a rise of2

travel time causing a change to longer shortest paths with a longer sequence of crossed links.3

5. CONCLUSION AND PERSPECTIVES4

In this work we propose contributions to network resilience modeling and analysis by improving5

classical topological metrics through the integration of traffic dynamics via a simulation-based6

approach. In addition, comparisons between those metrics and the MFD are performed.7

By means of a dynamic weighted graph, we relate static and dynamic approaches. Outcomes8

present the heavy dependence of weights in topological metrics results. The choice of travel time9

weighting is motivated by the analysis lead in Section 4.2. By grouping similar travel time edges,10

reproducing accurately the users path choice, we obtain a new distribution of topological criticality,11

consistent with traffic conditions.12

Regarding simulation of disruptions, area-wide ones have to be chosen to reproduce effect of13

some events like floods, social movement or power outage which impact several links over sectors.14

Reproduction of these impacts are not possible by link failures as shown in Fig. 7. This type of15

disruptions allows to study resilience of specific events. It could also be used to rank areas regarding16

their criticality.17

Finally, relations between the traffic indicator and the metrics of resilience is demonstrated. An18

increase of BC is related to a decrease of the maximum flow in the MFD this is the ultimate goal19

as we expect that our newly developed resilience metrics to incorporate, in an accurate manner,20

traffic dynamics.21

For future works, objective will be to characterize resilience of multimodal network. Thus,22

socio-economic information for studied area will highlight about favored transport mode and num-23

ber of trip going from or arriving in a given area.24
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