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This paper is devoted to propose a new efficient reduction method for predicting the stability analysis of a brake system subjected to friction-induced vibration. The finite element brake system under study is composed of a disc and a pad. The contact is modeled by introducing contact elements at the friction interface with the classical Coulomb law and a constant friction coefficient. It will be demonstrated that it is possible to build efficient reduced finite element models by developing a reduced model based on a Double Modal Synthesis (i.e. a classical modal reduction via Craig & Bampton plus a condensation at the frictional interface). Special attention is being conducted to validate the convergence of the reduced model especially on the approximation of the unstable modes with respect to real and imaginary parts. This complete numerical strategy based on Double Modal Synthesis allows us to perform relevance squeal prediction of unstable vibration modes. It is demonstrated that the numerical results via the Double Modal Synthesis are in good agreement with those of the classical Craig & Bampton method.

Introduction

Research for predicting squeal noise has been regularly performed for many years [START_REF] Kinkaid | Automotive disc brake squeal[END_REF][START_REF] Ibrahim | Friction-induced vibration, chatter, squeal, and chaos part 1: mechanics of contact and friction[END_REF][START_REF] Ouyang | Numerical analysis of automotive disc brake squeal: a review[END_REF]. Despite great progress in the understanding and numerical simulation of brake squeal (i.e. methodology for the modeling of the variability [START_REF] Heussaff | A methodology for the modelling of the variability of brake lining surfaces[END_REF][START_REF] Sarrouy | Piecewise polynomial chaos expansion with an application to brake squeal of linear brake system[END_REF], damping effects on squeal [START_REF] Hoffmann | A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations[END_REF][START_REF] Fritz | Investigation of the relationship between damping and mode-coupling patterns in case of brake squeal[END_REF], statistical analysis of brake squeal noise [START_REF] Oberst | Statistical analysis of brake squeal noise[END_REF], non-linear formulations and behaviors at the frictional interfaces [START_REF] Massi | Brake squeal: linear and nonlinear numerical approaches[END_REF][START_REF] Massi | Contact surface topography and system dynamics of brake squeal[END_REF][START_REF] Sinou | Transient non-linear dynamic analysis of automotive disc brake squeal -on the need to consider both stability and non-linear analysis[END_REF][START_REF] Coudeyras | Periodic and quasi-periodic solutions for multiinstabilities involved in brake squeal[END_REF], chaotic phenomenon [START_REF] Oberst | Chaos in brake squeal noise[END_REF] or acoustic emissions [START_REF] Oberst | Guidelines for numerical vibration and acoustic analysis of disc brake squeal using simple models of brake systems[END_REF][START_REF] Soobbarayen | Noise and vibration for a self-excited mechanical system with friction[END_REF][START_REF] Soobbarayen | A simplified approach for the calculation of acoustic emission in the case of friction-induced noise and vibration[END_REF]), there is still considerable progress to provide in order to achieve efficient numerical approaches for squeal prediction. One of the most important drawbacks that needs to be investigated is the capability to reduce computational time and data storage.

One of the possible ways is to propose minimal or reduced finite element models that can reproduce the propensity of squeal noise. In this work, the focus is on an original numerical modal reduction in order to predict the stability analysis of large finite element models for brake systems. Indeed, it appears that one of the major limitations of classical reductions for squeal noise is associated with the size of interface matrices due to the explicit use of the interface degrees of freedom (i.e. the size of the reduced finite element model is strongly dependent on the number of the degrees of freedom at the frictional interface). So an interesting concept should be to develop an implicit reduction at the frictional interface in order to return accurate results on stability analysis by keeping a minimal number of generalized degrees of freedom at the interface. This reduction (at the frictional interface) in connection with conventional reductions (for each of the substructures) must be able to reproduce the overall behavior of the system for the prediction of the squeal propensity. In this work, we propose a new original strategy based on the Double Modal Synthesis [START_REF] Besset | Dynamic substructuring based on a double modal analysis[END_REF][START_REF] Brizard | Determinantal method for locally modified structures. Application to the vibration damping of a space launcher[END_REF]: the reduced finite element model is performed by using the combination of the Craig & Bampton reduction procedure [START_REF] Craig | Coupling of substructures for dynamic analyses[END_REF] with an interface reduction that allows to reduce the size of the internal interface between substructures. This paper is divided into four parts: firstly, the finite element model under study for brake squeal is presented with the modeling hypotheses. Secondly, the classical Craig & Bampton reduction is briefly discussed and the the relevance of this reduction method for the stability analysis of the proposed finite element model is studied in details. The last part is devoted to the presentation of the original proposed strategy based on the Double Modal Synthesis. Finally, discussion of numerical results is proposed. A comparison with the classical Craig & Bampton method (without reduction at the frictional interface) is carried out with an evaluation of the computational performances.

The model of the simplified brake system

This section is firstly devoted to present the finite element model of the simplified brake system under study. Secondly, the classical stability analysis for the complete system that will served as a reference for the following parts of the paper is discussed.

Finite element model

The finite element model under study corresponds to a simplified brake system that is composed of two isotropic elastic structures: a circular disc and a pad [START_REF] Coudeyras | Periodic and quasi-periodic solutions for multiinstabilities involved in brake squeal[END_REF][START_REF] Sinou | Study of the nonlinear stationary dynamic of single and multi instabilities for disc brake squeal[END_REF]. The Structural Dynamics Toolbox (SdTools -Matlab Software) is used to build the finite element model of the two substructures as shown in Figure 1. Concerning the boundary conditions, the pad is in-plane fixed and the inner surface of the disc is clamped. Details on the finite element model and material properties, inspired from [START_REF] Soobbarayen | Noise and vibration for a self-excited mechanical system with friction[END_REF], are listed in Table 1 and 2, respectively.

[Figure 1 The equations of motion of the brake system can be written as

M Ẍ + C Ẋ + KX = F + F p , (1) 
where M, C, K are the mass, damping and stiffness matrices, respectively. Ẍ, Ẋ, X are acceleration, velocity and displacement vectors. F p defines the vector of the pressure force. F is related to the vector of forces due to contact and friction occurring at the disc/ pad interface especially at the contact nodes. The contact force is described by the following mathematical function

F i c = k L (z p -z d ), (2) 
where z p and z d define, respectively, the displacements of contact nodes for the pad and the disc at the i th contact element. k L is the contact stiffness coefficient fixed at 3.1 × 10 7 N.m -1 . This value has been chosen to fit the first order of pad compression f curves obtained from experimental tests given in [START_REF] Sinou | Study of the nonlinear stationary dynamic of single and multi instabilities for disc brake squeal[END_REF]. This value is only valuable over a predefined pressure range. Moreover, a simplified Coulomb law is considered with a constant friction coefficient without any stick-slip motion. Then, the friction force F i , located at the i th node is derived from the contact force F i c at the friction interface in the tangential plan with

F i f = µF i c , (3) 
where µ is the friction coefficient.

Thus, the vector of friction force is given by

F f = µF c,z e θ .x µF c,z e θ .y , (4) 
where x and y are the tangential directions of the friction interface, e θ is the orthoradial direction of the disc. The vector of the non-linear force is composed of the contact and contact components (F c ) and (F f ), respectively (i.e. F = F c + F f ). Finally, modal damping associated with each eigenfrequency is applied to the system as c k = 2ξ k ω k , where ξ k is the damping coefficient. The value of the damping coefficient ξ k is fixed at 2%. Even if the effects of damping is out the scope of the present study, we recall that damping proves to have two different effects: a lowering effect and a smoothing effect. The lowering effect tends to stabilize the system. If the smoothing effect prevails, added damping may destabilize the system see the following paper for more details [START_REF] Fritz | Investigation of the relationship between damping and mode-coupling patterns in case of brake squeal[END_REF][START_REF] Kirillov | The effect of small internal and external damping on the stability of distributed non-conservative systems[END_REF][START_REF] Hoffmann | Effects of damping on mode-coupling instability in friction induced oscillations[END_REF][START_REF] Sinou | Jezequel The role of damping and definition of the robust damping factor (rdfactor) for a self-exciting mechanism with constant friction[END_REF][START_REF] Friz | Effects of damping on brake squeal coalescence patterns -application on a finite element model[END_REF]. The damping matrix C is built expanding the modal damping matrix onto the undamped, non-frictional inverse modal basis Φ -1 of the reduced model as

C = Φ -1T diag [c 1 • • • c k • • • c N ] Φ -1 . (5) 
Note that the assembled finite element model is composed of 44950 degrees of freedom.

Stability analysis 50

The stability analysis is a classic process in order to study mechanical system subjected to friction-induced vibration. The first step called the static problem consists of estimating the steady-state operating point X 0 for the full set of static equations. Then, stability is performed on the linearized equations for small perturbations at the operating point (X = X 0 + X). So, the system around the operating point is given by

M Ẍ + C Ẋ + (K -J) K X = 0, ( 6 
)
where J is the frictional contact Jacobian matrix derived from the expressions of the contact and friction forces.

The associated eigenvalue problem can be written as

λ 2 M + λC + K Φ = 0, (7) 
where λ k and Φ k are the eigenvalue and eigenvector related to the k th eigenmode. As the stiffness matrix K is asymmetrical, due to the contribution of friction forces, the computed eigenvalues are complex and ca be written as

λ k = a k + iω k (8)
where a k is the real part and ω k is the imaginary part of the eigenvalue λ k . ω k corresponds to the pulsation of the k th mode. As long as the real part of all the eigenvalues remains negative, the system is stable. When at least one of the eigenvalues has a positive real part, the system becomes unstable. The unstable mode can generate vibrations at its natural frequency with coalescence phenomenon, resulting in squeal noise emission. The frequency of the unstable mode is given by the imaginary part of this eigenvalue.

Craig & Bampton reduction

The main objective of this section is to discuss the relevance of the C&B reduction method for the stability analysis of the proposed disc/pad system. More specifically, the analysis will focus on the possibility to reduce the size of the full finite element model while maintaining an accurate estimation of the evolution of the imaginary and real parts of the system with a low order model. First of all, the C&B reduction method is briefly presented. Then, performances of the C&B reduction methods are discussed on the frictionless problem and the problem with friction at the pad/disc interface.

C&B condensation method

The C&B reduction method consists in building a projection base combining constraint modes and a truncated basis of normal modes computed with a fixed interface.

The truncation is realized on each substructure of the brake system (i.e. the pad and the disc). All the degrees of freedom (denoted by u) are divided in two types: the subsystem internal degrees of freedom (denoted by u i ) and the boundary degrees of freedom (denoted by u j ). So the degrees of freedom at the frictional interface are directly associated with the boundary degrees of freedom.

In this section, we consider a single substructure (either the pad or the disc). Mass and stiffness matrices related to the considered substructure are denoted using the superscripts D (disc) or P (pad), as well as the degrees of freedom. Hence the following formulation:

u =                u j P u i P u j D u i D                (9) 
K =         K jj P K ji P 0 0 K ji P K ii P 0 0 0 0 K jj D K ji D 0 0 K ji D K ii D         (10) 
M =         M jj P M ji P 0 0 M ji P M ii P 0 0 0 0 M jj D M ji D 0 0 M ji D M ii D         (11) 
The C&B reduction aims at expressing the internal degrees of freedom u i q , where q = P or D, as a function of generalized degrees of freedom η q and boundary degrees of freedom u j q :

u i q = Φ q η q + Ψ q u j q ( 12 
)
The columns of matrix Φ q are the eigenvectors Φ n q obtained by solving the following equation:

K ii q -ω 2 n M ii q Φ n q = 0 ( 13 
)
Matrix Ψ is obtained by solving the following static problem:

K ii q u i q + K ij q u j q = 0 ⇒ u i q = -(K ii q ) -1 K ij q Ψ u j q (14)
Matrices Ψ and Φ allow to express the degrees of freedom as follows:

u =                u j P u i P u j D u i D                =         I 0 0 0 Ψ P Φ P 0 0 0 0 I 0 0 0 Ψ D Φ D         T                u j P η P u j D η D                (15) 
The reduced mass and stiffness matrices can then be written: 

M = T T MT (16) 
K = T T KT (17) 

Performances of the Craig & Bampton reduction

Before using reduced bases for the stability study, performances of the C&B reduction method has to be tested on the problem without friction. So in this following part of this section, C&B reduction is applied to the mechanical system under study for two specific problems. The first case concerns the system without friction at the disc/pad interface (i.e.

the disc and the pad are coupled only through normal degrees of freedom on the contact surface). The second case introduces the problem with friction and the 100 associated stability analysis. The system without friction at the disc/pad interface (i.e.

the disc and the pad are coupled only through normal degrees of freedom on the contact surface).

For each case (i.e. the frictionless problem and the problem with friction), the objective consists in searching for the best approximated solution in a reduced subspace for the brake system:

( λ2 M + λ C + K) Φ = 0. ( 18 
)
where ˜M, ˜C and K ˜ correspond to the mass, damping and stiffness matrices in the reduced subspace. For the reader comprehension, the change between the two cases comes exclusively from the expression of the stiffness matrix which includes or not the friction terms.

By solving the previous reduced eigenvalue problem (equation ( 18)), a set of approximate complex eigenvalues λ ˜k = ãk + iω ˜k can be estimated in the frequency range of interest.

Due to the fact that the aim of this section is to study the convergence of the reduced model in regard to the number of modes used in the C&B reduction, two criteria employed to evaluate the quality of the C&B reduction method are proposed. For the frictionless problem, these criteria are based on the relative error criterion between imaginary and real parts for each mode in the frequency range of interest [0; 6000]Hz. Error on the frequencies is defined by the following relation

ε ω,k = 100 ω k -ωk ω k , (19) 
where ω k is the exact pulsation of the k th mode (i.e. pulsation of the original full brake model) and ω ˜k is the approximate pulsation of the k th mode calculated via the C&B reduction.

The calculation of error on the real parts is given by

ε a,k = 100 a k -ãk a k , (20) 
where a k and ãk are the exact and approximate real parts of the k th mode, respectively.

For the problem with friction, the criteria are only based on the relative error criterion between imaginary and real parts for the unstable modes in the frequency range of interest [0; 6000]Hz. Error on the frequencies for the k th unstable mode is defined by the following relation

ε u ω,k = 100 ω u k -ωu k ω u k , (21) 
where ω u k is the exact pulsation of the k th unstable mode (i.e. pulsation of the original full k brake model) and ω ˜u is the approximate pulsation of the k th unstable mode calculated via the C&B reduction.

The calculation of error on the real parts (i.e. divergence rate) of the k th unstable mode is given by

ε u a,k = 100 a u k -ãu k a u k , (22) 
where a k u and a ˜k u are the exact and approximate real parts of the k th unstable mode, respectively.

First of all, results for the frictionless problem are presented. This analysis is a classical problem in the field of mechanical engineering. However it is presented here as a preliminary study to the specific formalism used further in the stability study. Figure 2 shows the errors ε ω,k and ε a,k on the frequencies and real parts in the frequency range of interest [0; 6000] Hz for different sizes of the reduced subspace. It clearly appears that a reduced subspace composed of 40 internal modes is enough to stay under an error of 0.4% for eigenfrequencies.

Secondly, Figures 3 and4 show the convergence results on both real and imaginary parts of the three unstable modes in the frequency range of interest in the case of µ = 0.5 and µ = 1 (for the problem with friction at the disc/pad interface). As previously explained, we focus our interest only on the unstable modes in the frequency range of interest. This choice results in the fact that for a stability analysis, it is particularly interesting to correctly predict the squeal occurrence and frequencies and the real parts of the associated unstable modes. The results of convergence for the stable modes (not presented here) are similar.

Even if it is shown that the errors ε ω,k and ε a,k remain under 1% for a sufficient size of the reduced space, it is observed that the real parts of the three unstable modes converge slower than the associated imaginary parts for both µ = 0.5 and µ = 1. We 125 can also note that the size of the reduced base required to achieve a given level of error is smaller for the the imaginary parts than for the real parts (for both cases µ = 0.5 and µ = 1).
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Double Modal Synthesis

Even if the C&B reduction procedure allows to reduce the size of the system, it can be noted that one of the major limitations of this reduction is associated with the size of interface matrices due to the explicit use of the degrees of freedom at the interface (in the case under study the 220 contact nodes lead to 1320 degrees of freedom). As a consequence, the size of the reduced system is strongly dependent on the number of degrees of freedom at the frictional interface. So it should be interesting to propose a global strategy that generates an implicit reduction at the frictional interface in order to return accurate results for a drastically reduced finite element system in a lesser time while keeping the global physical behaviour at the frictional interface. Therefore, this section is devoted to present the combination of the C&B reduction procedure with an interface reduction strategy that allows to reduce the size of the internal interface between substructures. Firstly, the reduction method at the frictional interface is presented and discussed. Then, efficiency and advantages of the global reduction are analyzed.

The interface reduction strategy

The Craig & Bampton reduction explained in section 3.1 leads to reduced mass and stiffness matrices M and K, as well as a reduced dof's vector ũ:

M =         MP jj MP jη 0 0 MP ηj MP ηη 0 0 0 0 MD jj MD jη 0 0 MD ηj MD ηη         (23) 
K =         KP jj KP jη 0 0 KP ηj KP ηη 0 0 0 0 KD jj KD jη 0 0 KD ηj KD ηη         (24) 
K =         Kjj P Kjη P Kjj P D 0 Kηj P Kηη P 0 0 Kjj DP 0 Kjj D Kjη D 0 0 Kηj D Kηη D         (25) 
ũ =                u j P η P u j D η D                (26) 
The aim of the DMS method is to express the remaining degrees of freedom u j P and u j D in function of generalized degrees of freedom ζ:

   u j P u j D    = Φ b ζ =   Φ b P Φ b D   ζ (27) 
where the columns Φ b q of matrix Φ b are obtained by solving the following eigenmodes 150 problem:

    Kjj P Kjj P D Kjj DP Kjj D   -ω 2 k   MP jj 0 0 MD jj     Φ b q = 0 (28) 
Vector ũ can now be expressed as follows:

ũ =                u j P η P u j D η D                =         Φ b P 0 0 0 I 0 Φ b D 0 0 0 0 I         T b          ζ η P η D          (29) 
The transfer matrix T b allows to obtain the reduced mass, damping and stiffness matrices:

M = T b T MT b (30) Ĉ = T b T CT b (31) K = T b T KT b and K = T b T KT b (32) 
Therefor, the stability of the DMS-reduced model can be computed using the following equation: This reflects the convergence of the DMS. Moreover, it can be noted that the errors made on the imaginary parts are smaller than the errors on the real parts regardless of the size of the DMS-reduced model.

K + λ Ĉ + λ2 M Φ = 0 (33) 4.2. 
On the other hand, the truncation order needed to achieve convergence (in terms of permissible error) is strongly dependent on the value of the friction coefficient. In order to achieve an effective reduction for the entire frequency range of interest, the DMS must be initially validated for various coefficients of friction. So considering only a validation for µ = 0 (i.e. without contribution of the frictional elements) will not be sufficient in order to ensure a reduced-model validated for µ = 0.

[Figure 5 In this present study, we consider the friction coefficient to be a parameter and the modes are computed for specific values of the friction coefficient µ, which could lead to high computational costs. In future work, improvements of the proposed second condensation should be based on complex modes computed for different values of the friction coefficient. This could lead to a generalization of the reduction over a variation range of the friction coefficient. 

  [η D ] and [η P ] become the two control parameters of the C&B condensation. As the 85 number of junction dof's is the same for each substructure, consequently the expression [u j P ] = [u j D ] is verified. Finally it can be concluded that the C&B reduction leads to a low order system depending on the number of contact nodes and the number of modes kept in the truncation of the two subsystems independently. More precisely, as we can find three dof's per contact node (because of the three directions) [u j P ] = [u j D ] = 3 × n c where n c defines the number of contact nodes (n c = 200 in the case under study). So 90 that the size of the C&B reduced model is finally obtained by the following relationship 2 × 3 × n c + [η P ] + [η D ].

  Stability analysis forµ = [0; 1]The stability of the DMS reduced model is now computed for a coefficient of friction ranging from µ = 0 to µ = 1. Several orders of truncation of the DMS are tested in order to validate the efficiency of the proposed methodology.
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 5 Figure5shows the evolution of the real parts of the three unstable modes versus the friction coefficient for different orders of truncation (50, 100, 150 and 200 generalized degrees of freedom). Then, Figures 6, 7 and 8 give the evolution of both the real and imaginary parts in the complex plane for the first, second and third unstable modes respectively (in these cases, the friction coefficient varies in the range µ = [0; 1]). It is observed that increasing the order of truncation for the DMS leads to a better estimation of the real and imaginary parts of the three complex eigenvalues for all the values of the friction coefficient in the range of interest (i.e. µ = [0; 1]). These results clearly indicate the efficiency of the proposed DMS. n order to undertake more precisely the convergence of the DMS-reduced model, convergence on the real and imaginary parts is given in Figures9, and 10 for two coefficients of friction µ = 0.5 and µ = 1, respectively. More specifically, errors between the DMS-reduced model and the reference model are shown versus the orders of truncation of the DMS. First of all, it is illustrated that increasing the size of the generalized degree of 12
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Figure 9 :
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