
HAL Id: hal-03257946
https://hal.science/hal-03257946

Submitted on 11 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modal Amplitude Stability Analysis and its application
to brake squeal

S Nacivet, Jean-Jacques Sinou

To cite this version:
S Nacivet, Jean-Jacques Sinou. Modal Amplitude Stability Analysis and its application to brake
squeal. Applied Acoustics, 2017, 116, pp.127 - 138. �10.1016/j.apacoust.2016.09.010�. �hal-03257946�

https://hal.science/hal-03257946
https://hal.archives-ouvertes.fr


Modal Amplitude Stability Analysis and its

application to brake squeal

S. Nacivet1,a and J-.J. Sinou2,3,b
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Ecole Centrale de Lyon, 36 avenue Guy de Collongue 69134 Ecully Cedex, France

3 Institut Universitaire de France, 75005 Paris, France

asamuel.nacivet@mpsa.com, bjean-jacques.sinou@ec-lyon.fr

Abstract

In the present study, a new approach is proposed to predict the occurrence of squeal in

brake systems. This strategy, called Modal Amplitude Stability Analysis (MASA), is based

on the calculation of the first harmonic state-space system of nonlinear original equations

using a specific linearization of the nonlinear contact forces at the frictional interfaces. An

estimation of the occurrence and generation of increasing self-excited vibration is proposed on

the basis of monitoring and the evolution of the real parts of the dynamic system considered

as a function of modal amplitudes.

The application of the proposed MASA methodology to a real industrial brake system is

presented. The occurrence of unstable modes and the generation of increasing self-excited

vibrations strongly depends on the initial predefined modal amplitudes. The occurrence of

new unstable modes (not predicted by classical stability analysis) can be detected. Therefore

the MASA methodology appears to be a good compromise in terms of computing time and

ease of implementation between the classical Complex Eigenvalue Analysis (CEA) and more

complex nonlinear methods (such as the Generalized Constrained Harmonic Balance Method

used to predict periodic and quasi-periodic motion).
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1 Introduction

The problem of friction-induced vibration has been the subject of many investigations over

recent decades. Overviews on friction-induced vibration can be found in [1–4]. Several experi-

mental and numerical investigations have been carried out for studying the significant impact

of contact surface topography, the local contact pressure distribution or the frictional contact

model [5–7]. Some researchers applied uncertainty analyses by conducting Monte Carlo simu-

lations [8] or polynomial chaos expansions [9] for brake squeal propensity estimations. Butlin

and Woodhouse [10] applied the 1st-order perturbation method to study the sensibility and

uncertainty of friction-induced vibrations. Uncertainty quantification of squeal instability via

kriging surrogate model of brake systems was also investigated to estimate the probability of

brake squeal [11–13]. The modelling of the variability of brake lining surfaces was carried out

by Renaud et al. [14]. Numerical simulations in the past decade have been also focused on the

prediction of unstable vibration modes by investigating the effects of damping [15–17] or mul-

tilayer viscoelastic insulators [18] on coalescences patterns. Recently, more research has been

aimed at calculating the acoustic radiation of brake squeal using models of simplified brake

systems with friction contact [19,20]. Despite all these studies, it is still difficult to predict the

occurrence of squeal noise early enough to reduce development costs in the manufacturing pro-

cess of brake systems. As a result, squeal is still responsible for a large number of nuisances in

the field of automotive engineering. The problem of predicting squeal noise and understanding

the mechanisms at the origin of squeal are a current challenge for the scientific community and

the automotive industry.

In general, the numerical strategy for predicting squeal noise can be decomposed into two

main parts: the complex eigenvalue analysis (CEA) and the transient and nonlinear analysis.

The first concerns the stability analysis around nonlinear static sliding equilibrium points. The

classical Complex Eigenvalue Analysis (CEA) is performed on the linearized system to predict

the squeal propensity of the brake in a given frequency range. Although this first step is

commonly used in industry, it only allows predicting the onset of instability around a given

equilibrium point for a nonlinear system. Calculations of the transient and nonlinear vibrations

are mostly performed by numerical integrations [21–23]. Recently, Iroz et al. [24] emphasized

the potential of an elastic multibody approach to predict the amplitudes of the friction-induced

vibrations and the contact forces at the disc-pad interfaces.

As previously explained in [25], more realistic results can be achieved via the nonlinear anal-
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ysis if the brake system model is sufficient. Sinou et al. [21,26] pointed out that CEA may lead to

under- or over-estimation of unstable modes due to the contributions of the nonlinearities (such

as nonlinear contact) and suggested both CEA and time domain analysis need to be considered

in brake squeal analysis. Oberst and Lai [23] applied transient analysis to a finite element pad-

on-disc brake model. They showed the CEA both over- and under-predicts instability. In [27],

they also pointed out the nonlinear character of brake squeal and the potential of using non-

linear statistical analysis tools to analyse brake squeal. They also indicated that brake squeal

can be treated as a chaotic phenomenon [28]. While it is standard practice to use the complex

eigenvalue analysis to predict unstable vibration modes in an industrial context, the transient

nonlinear time domain analysis can become computationally so expensive that it is now consid-

ered impractical. Consequently, other methods for estimating approximated nonlinear dynamic

steady-state solutions for autonomous systems subjected to single and multi-instabilities have

been proposed and developed by Coudeyras et al. [29] to reduce automotive squeal noise. This

strategy, known as the Generalized Constrained Harmonic Balance Method (GCHBM), allows

predicting both periodic and quasi-periodic solutions and the associated unstable frequencies.

Although this method has many advantages and, more specifically, predicts nonlinear signature

squeal, we are obliged to admit that this approach requires many computational developments

and its use in finite element models remains rare.

In this paper, we propose an approach to provide a simplified estimation of the occurrence of

squeal for brake systems, by estimating not only the stability of the equilibrium point but also

the emergence of unstable frequencies at the initial increase of divergence. This new strategy

is based on an approximation of the evolution of an eigenvalue real part when the amplitudes

of the initial nonlinear vibrations increase. The objective here is not to find and estimate the

non-linear dynamic behavior but to provide additional analysis for the Complex Eigenvalue

Analysis.

The paper is organized as follows. Firstly, the brake system under study, the general nonlin-

ear equations of the numerical model and the classical stability analysis (based on a Complex

Eigenvalue Analysis) of the complete brake system are presented. Next, the Modal Amplitude

Stability Analysis (MASA) is defined using the first harmonic equations of the Harmonic Bal-

ance Method (HBM) and a new linearization for nonlinear forces. Finally, the results obtained

by MASA are presented.
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2 Automotive braking system and the formulation of the prob-

lem

2.1 The finite element model under study

In this study, we consider a finite element model of an industrial automotive brake system (see

figure 1). The numerical model used in this paper was explained previously in detail in [36].

The latter study presented a numerical process based on modal reduction to minimize the size

of a model through specific nonlinear modeling at the frictional interface to correctly predict

both the nonlinear static equilibrium and the stability analysis of large finite element models.

In the present work, the nonlinear equation of the brake system can be written in the

following form:

MÜ + CU̇ + KnlU + Fnl (U) = Fext (1)

where M and C are the classical mass and damping matrices, respectively. Fnl is related to the

nonlinear forces occurring at the disc/pad interfaces. These nonlinear forces contain contribu-

tions from both the contact nonlinear forces and frictional forces at the pad/disc interface. A

more detailed description of these nonlinear contributions will be given later. Fext defines the

piston pressure force (i.e. the vector of external forces) which acts on the pads entering into

contact with the disc. Knl is the stiffness matrix due not only to the structural components of

each component of the automotive brake system but also the three contact interfaces between

the piston and the pad, the bracket and the pad and the caliper and the pad. This contribution

is described by the following mathematical function:

KnlU = KU + Fpiston/pad (U) + Fbracket/pad (U) + Fcaliper/pad (U) (2)

where K is the classical stiffness matrix and vectors Fpiston/pad (U), Fbracket/pad (U) and Fcaliper/pad (U)

define the equivalent stiffness contributions for the interfaces of the two sub-systems in question.

Two states are feasible for each of the three interfaces described previously: the possibility of

linear contact or loss of contact for each interface. On the assumption of a contact state, not

only normal forces but also friction forces due to the presence of friction at the interfaces are

generated (i.e. the friction forces are deduced from the normal contact forces using the classical

Coulomb law).

We recall that the role of damping remains an extremely important issue in the squeal

problem. Recently, several new studies on the effect of damping on stability and on self-excited

vibrations have been proposed. However, considering that investigating the role of damping
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is out of the scope of the present study, we refer to the following studies for those researchers

interested [15, 17, 30]. More specifically, the contribution of gyroscopic terms are neglected

in the present work (see the following papers for more comments on the effects of gyroscopic

terms [16,30,31]). Readers interested in the influence of velocity-dependent forces on the stability

of non-conservative systems and the effects of nonlinearities or ”‘following forces”’ can refer to

O’Reilly et al. [32] and Kirillov and Seyranian [33] and Hermann and his colleagues [34,35].

As previously explained in [36], an implicit reduction at the frictional interface by generating

an assembly of Super-Elements (SE) is proposed. This strategy was developed previously to

define an original reduced contact interface at the disc/pad interface with a reduced number

of nodes on both sides of the pad and disc that can be used later for condensation and node

to node contact (for more details and a complete description of the Super-Element creation

and Super-Element assembly, please refer to [36]). Furthermore, a classical Craig and Bampton

reduction [29] is computed while the reduced number of nodes used in the disc/pad contact

interface are kept as reduction nodes. Therefore the generation of nonlinear contact forces at

the disc/pad interface contacts can be considered in our finite element model.

Considering the experimental data [29], we assume that the nonlinearities at the friction

interface between the pad and the disc are both the cubic nonlinear terms and the possible loss

of contact between the disc and the pad. The formulation can be summarized as follows for

each reduced contact node:

Fcontact,disc/pad =

 kl (Ui −Uj) + knl (Ui −Uj)
3 if Ui −Uj > 0

0 otherwise
(3)

where Ui and Uj are, respectively, the displacements of the coincident nodes i and j from the

master and slave sides of the contact, respectively. kl and knl are the linear and the non-linear

stiffnesses, respectively. As explained previously in [29, 36], a velocity field corresponding to

the disc rotation is imposed on the disc surface. Therefore the friction forces at the pad/disc

interface are deduced from the normal contact forces (previously defined in Equation 3) using

a simplified Coulomb law with a constant friction coefficient.

[Fig. 1 about here.]
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2.2 Stability analysis at nonlinear static equilibrium

Firstly, the nonlinear static equilibrium point Us of the nonlinear equation of the brake system

1 has to be calculated. Us is obtained by solving the following relation:

Knl,UsUs + Fnl (Us) = Fext (4)

where Knl,Us corresponds to the linearized stiffness matrix at the vicinity of the nonlinear

static equilibrium. It can be noted that this contribution contains both the classical stiffness of

the structural components of each component of the brake system and the linearized stiffness

contributions with respect to the possibility of contact or no-contact for the three contact

interfaces between the piston and the pad, the bracket and the pad and the caliper and the pad.

Therefore, as previously explained in [36], all these contacts (except for the disc/pads interfaces)

are linearized as a constant value in the stiffness matrix Knl,Us . Then, Fnl (Us) corresponds to

the generation of the nonlinear contact and friction forces at the disc/pad interfaces around the

static equilibrium.

By substituting a small perturbation ∆U around the static equilibrium Us in Equation 1

and by considering the previous relation of Equation 4, we obtain:

M∆Ü + C∆U̇ + Knl,Us∆U + Fnl(Us + ∆U)− Fnl(Us) = 0 (5)

where Knl,Us defines the linearized stiffness matrix in the vicinity of the static equilibrium Us.

As proposed by Fazio et al. [36], the nonlinear law used in Matlab is tuned according to

the Abaqus results (contact forces and gaps) for each contact element (see Equation 3). It

is important to note that this tuning procedure is dependent on the friction coefficient µ and

external loads as they affect the static equilibrium state.

Then, the system is linearized around the nonlinear static equilibrium and the associated

eigenvalue problem is solved by resolving the following equation:

(λ2M + λC + (Knl,Us + Jnl))φ = 0 (6)

where Jnl corresponds to the nonlinear force linearization of Fnl around the nonlinear static

equilibrium point Us. The complex eigenvalues can then be written as follows: λi = ai +

jωi where j defines the imaginary unit. ωi represents the angular frequency of the associated

eigenmode φi. If the real part ai of an eigenvalue is positive, the corresponding eigenmode is

considered unstable and can thus generate brake squeal. The results on the stability analysis

for the undamped industrial representative brake system under study are given in Figure 2:
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the evolutions for the six main instabilities (for both real parts and frequencies) at 1.98kHz,

3.69kHz, 3.85kHz, 4.72kHz, 4.94kHz and 5.34kHz on the 0−6kHz range are shown by increasing

the friction coefficient µ of the disc/pad interfaces. For the sake of clarity, these results indicate

one of the main contributions of the previous study [36]: it illustrates that it is possible to

drastically reduce the number of contact nodes at the frictional disc/pad interfaces while being

able to estimate the stability of the brake system. In the present study, the reduced models with

104 and 212 contact elements at the disc/pad frictional interface (called RM104 and RM212

respectively) are in good agreement with the Abaqus reference for which all the contact nodes

are preserved (see Figures 2). Moreover, the results of the damped reduced finite element model

(called RM212-damping) that will be used in the next sections are shown in Figures 2).

[Fig. 2 about here.]

3 Modal Amplitude Stability Analysis (MASA) methodology

In this section, the approach proposed to estimate the occurrence and triggering of the initial

increase of self-excited vibration under predefined amplitudes of one unstable mode is presented.

First, a new linearization for the first harmonic approximation of the contact forces using the

relative displacements in the contact elements will be introduced. Then, the complex modal

shape will be defined using the first harmonic displacements. Finally, the Modal Amplitude

Stability Analysis (MASA) methodology will be developed. We recall that the objective of the

methodology proposed here is not to predict the self-excited vibration of the brake system but to

provide an additional analysis for the Complex Eigenvalues Analysis. These additional results

are based on the prediction of the onset of unstable modes generated at the initiation of squeal

instability.

3.1 First harmonic state-space system using a new linearization of contact

forces

Considering the previous expression 6, Equation 5 can be rewritten in the following form:

M∆Ü + C∆U̇ + (Knl,Us + Jnl) ∆U + Ω = 0 (7)

where

Ω = Fnl(Us + ∆U)− Fnl(Us)− Jnl∆U (8)

Then, if Ω = 0, the associated eigenvalue problem corresponds to Equation 6.
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For the sake of clarity, the reason for separating the terms of the previous equation of motion

7 in this way is to ensure continuity during the numerical calculation of the MASA methodology

for ∆U = 0 (which implies Ω = 0 for Equation 8). Regarding the formulation proposed and the

separation of the terms for the equation of motion 7, the stability analysis for ∆U = 0 refers

to Equation 6.

The nonlinear solution of Equation 7 can be assumed to be a truncated Fourier series leading

to an approximation of the nonlinear solution ∆U (t):

∆U (t) =

Nh∑
k=0

∆Uk (t) =

Nh∑
k=0

∆UC
k cos (kωt) +

Nh∑
k=1

∆US
k sin (kωt) (9)

∆Uk (t) is the kth harmonic in the time domain with ∆UC
k and ∆US

k the associated vectors of

Fourier coefficients. ω the final angular frequency of the nonlinear limit cycles.

Then, the nonlinear forces Ω (t) can also be assumed to be a truncated Fourier series:

Ω (t) =

Nh∑
k=0

Ωk (t) =

Nh∑
k=0

ΩC
k cos (kωt) +

Nh∑
k=1

ΩS
k sin (kωt) (10)

It is noteworthy that the vectors of Fourier coefficients ΩC
k and ΩS

k can be calculated by

applying an Alternate Frequency/Time domain method (AFT-method) via the evaluation of

Ω (t) in the time domain (see [29] for more details).

By carrying over Equations 9 and 10 in Equation 7 and extracting the first harmonic com-

ponent, we obtain:

M∆Ü1 + C∆U̇1 + (Knl,Us + Jnl) ∆U1 + Ω1 = 0 (11)

where

∆U1 = ∆UC
1 cos (ωt) + ∆US

1 sin (ωt) (12)

Ω1 = ΩC
1 cos (ωt) + ΩS

1 sin (ωt) (13)

Then, we propose to linearize Ω1 such that:

Ω1 = K1∆U1 + C1∆U̇1 (14)

This previous form and more specifically the associated hysteretic damping allows taking

into account the phase between the load component Ω1 and the displacement component U1.

Moreover, it can be observed that the coefficients of K1 and C1 can be evaluated for each

contact element independently. For a given contact element, we can define the normal relative

displacement as:

δn(t) = δccos(ωt) + δssin(ωt) (15)

8



and, the effort between two degree-of-freedom according to a direction d which can be tangential

or normal as in:

Ωd
1(t) = τccos(ωt) + τssin(ωt) (16)

Then, for each direction d, to check the following equation:

Ωd
1(t) = kd,nδn(t) + cd,nδ̇n(t) (17)

we can define kd,n and cd,n such as:
kd,n =

δcτc + δsτs
δ2c + δ2s

cd,n =
δsτc − δcτs
ω (δ2c + δ2s )

if δc 6= 0 or δs 6= 0

kd,n = 0 cd,n = 0 otherwise

(18)

Using Equation 14 in Equation 11, the system can easily be rewritten in a state-space (i.e.

Y1 = (∆U1 ∆U̇1)
T ) such as:

Ẏ1 = AY1 (19)

where

A =

 0 I

−M−1 (Knl,Us + Jnl + K1) −M−1 (C + C1)

 (20)

Matrix A can be used for a stability analysis including modal dynamics by retaining only

the first harmonic component, which makes sense since the first harmonic is directly linked to

the unstable mode (i.e. the instability frequency).

3.2 Complex modal shape using first harmonic displacements and MASA

methodology

Equation 12 can be rewritten for the ith eigenvalue such as: ∆U1 = X1e
λi t + X̄1e

λ̄i t

<(λi) = 0
(21)

where X1 = (∆Uc
1 − j∆Us

1)/2. Here, we note that this first harmonic solution naturally intro-

duces the stability condition given by <(λi) = 0 (see [29] for more details). If we have ∆U1 6= 0

(∆U1 being a known quantity) for an unstable mode (i.e. with the associated eigenvalue λi),

λi can be extracted directly from the matrix Ai by considering the following form:

λi = ψT
i Aiψi (22)

where

ψi =
1

η

 X1

jωiX1

 (23)
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and

η =

∥∥∥∥∥∥ X1

jωiX1

∥∥∥∥∥∥ (24)

Finally, the global strategy of the Modal Amplitude Stability Analysis method is based

on a sweep according to the modal amplitude pm
i , assuming that ψm

i = ψ0
i and ωm

i = ω0
i are

independent of the modal amplitude. m refers to the sweep index. These assumptions are valid

at very low amplitudes (i.e. we try to assess the evolution of instabilities in the first micro-

impacts by assuming that mode shapes do not change too much). For each value of pm
i , Xm

1

can be approximated using Equation 23 such as: Xm
1

jω0
i Xm

1

 = pm
i ψ

0
i (25)

Since ψm
i is not updated according to the modal amplitude, λmi is not deduced from the previous

Equation 22 but extracted from a Complex Eigenvalue Analysis performed on Am
i (see Equation

20).

[Fig. 3 about here.]

4 Results

In this section, we consider the reduced damped model RM212-damped in the 0− 6kHz range

due to the performance of the RM212 model compared to the reference model. As explained

previously in the work of Fazio et al. [36] superelements are generated for each step of the

unfolding parameter µ (i.e. from µ = 0.1 to µ = 0.9 with ∆µ = 0.1) due to the fact that each

reduced model depends on the value of the friction coefficient µ.

The numerical approach is defined as follows: for each value of the unfolding parameter µ,

instabilities on the frequency range of interest (i.e. 0−6kHz) are detected by using CEA (see the

previous subsection 2.2 for more details). Then, for each instability, the modal amplitudes of

the nonlinear system are evaluated independently using the MASA methodology by performing

an incremental modal amplitude sweep (with a step ∆p) for a chosen unstable mode. For a

given value of the unfolding parameter µ, all the eigenvalues real parts of the matrix A (see

Equation 20) are calculated. If a real part is higher than zero, it corresponds to the increase of

the unstable modes for a given initial modal amplitude.

In the following, the results will be presented for the sixth instabilities in the 0−6kHz range

as indicated previously in Section 2.2 (at 1.98kHz, 3.69kHz, 3.85kHz, 4.72kHz, 4.94kHz and
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5.34kHz). First, the three main instabilities at 1.98kHz, 3.85kHz and 4.72kHz will be discussed

in detail. Then, the results for the three other instabilities at 3.69kHz, 4.94kHz and 5.34kHz

will be given.

First, Figures 4 show the evolution of the real parts of the dynamic system versus different

initial modal amplitudes of the first instability (around 1.98kHz as seen in the previous section)

and various frictional coefficients (from µ = 0.6 to µ = 0.9 with a step of ∆µ = 0.1). It can be

seen that the occurrence and generation of increasing self-excited vibrations (i.e. evolution of

the real parts) can be different depending on the amplitude of the unstable mode (i.e. modal

amplitude) for a given friction coefficient value. Several unstable modes can occur even if

the initial conditions take into account only the amplitudes for the first unstable mode. For

example, five unstable modes are generated in some configurations: see Figure 4(b) for µ = 0.7

and a modal amplitude between 10 and 210 (with five unstable modes at 2kHz, 3.85kHz, 4.7kHz,

4.9kHz and 5.4kHz) and Figure 4(d) for µ = 0.9 and a modal amplitude between 0 and 300 (with

five unstable modes at 2kHz, 3.7kHz, 3.85kHz, 4.7kHz and 5.4kHz). Also, new unstable modes

which were not predicted with the classical stability analysis for a specific value of the friction

coefficient may appear. For example, in the case of µ = 0.7 (see Figure 4(b)), one unstable

mode at 5.3kHz appears when the modal amplitude is between [10− 200]. Similarly, instability

at 4.9kHz appears for µ = 0.8 and µ = 0.9 while the classical stability analysis indicates that

there is no unstable mode around this frequency for the friction coefficients considered. It

is interesting to note, however, that the unstable modes that emerge at 4.9kHz and 5.3kHz

were predicted by CEA (see Figures 2(e-k) and (f-l)), but not for the same friction coefficient

values. This illustrates the fact that the appearance of new unstable modes can be observed

due to the evolution of the stability of an unstable solution. The evolution of the frequency of

unstable modes as a function of the evolution of the modal amplitude can also be seen. This is

particularly evident for the unstable mode around 4.7− 5kHz.

Figures 5 and 6 show results for the two instabilities at 3.85kHz and 4.72kHz as initial

contributors for the modal amplitudes. Once again, it can be seen that the occurrence and

generation of unstable vibrations depend on the initial modal amplitudes. More or less unstable

modes can appear due to the evolution of both the value of the friction coefficient and the

modal amplitudes. We can also conclude that the choice of the unstable mode used to initiate

unstable amplitudes drastically influences the occurrence and evolution of all the unstable modes

(compare Figures 4, 5 and 6 for a selected friction coefficient value). For this specific case, a

new unstable mode (at 5.7kHz) that has never been predicted by CEA is present (see Figures
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6(b-f). This new contribution appears only for significant modal amplitudes. Some unstable

modes can be seen to disappear when the modal amplitudes of the unstable modes chosen

increase (see, for example, the unstable frequencies at 3.8kHz and 4.7kHz in Figures 5(a-b);

5.2kHz and 5.6kHz in Figures 5(c-d); 4.7kHz in Figures 6(a-b)). Finally, we note that for these

two cases (instability at 3.85kHz or 4.72kHz as an unique initial contributor, respectively),

the unstable modes selected to initiate movement (i.e. the modal amplitudes) may disappear

and therefore no longer be present in the contribution of the increasing vibration, despite the

fact that they triggered the instability. This is clearly shown in Figure 5 (a,b,c,d) (in Figure

6(a,b), respectively) for which the initial unstable mode at 3.85kHz (at 4.72kHz, respectively)

disappears if the modal amplitudes increases. Therefore it is obvious that the initial unstable

mode does not necessarily lead to the vibrational motion and may, in some cases, be only an

initial contributor to instability. This also demonstrates the limitations of CEA. It can be

concluded that the initial increasing unstable vibrations can be more or less complex (with the

contribution of more or less unstable modes) due to the modal amplitudes of the unstable mode

chosen. However, it can be noted that the number of unstable modes that emerge are limited

regardless of the initial conditions imposed. We also found similarities (in terms of frequency

and real parts) according to the different configurations.

Then, Figures 7, 8 and 9 show the results for the three instabilities at 3.69kHz, 4.94kHz

and 5.34kHz. The previous remarks are still valid for each case. The contributions of several

unstable modes are present. These contributions can be more or less significant depending on the

changes in the modal amplitudes of the predefined unstable mode. In every case, the unstable

mode with the largest real part is always the same. This instability can be seen at 4.72kHz

for small modal amplitudes which increase to 4.9kHz when augmenting the modal amplitudes

of a predefined unstable mode. This interesting information (that cannot be obtained through

conventional CEA analysis) informs us which unstable mode governs the initial increase in the

level of vibrations.

Table 1 gives an overview of the computation times involved. As an indication, the disk

space used to store the MASA results exploited in this section was around 1Mb for each reduced

model (matlab binary format .mat was used). If more processors had been used for the MASA

calculations and by performing all the calculations in parallel, it would have been possible to

limit the total time to slightly longer than the Abaqus wall-clock time for RM104, at least.

A compromise could also be defined between the number of contact elements in the reduced

model, the number of steps for the modal amplitude sweep and the number of processors needed
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to run the MASA.

[Fig. 4 about here.]

[Fig. 5 about here.]

[Fig. 6 about here.]

[Fig. 7 about here.]

[Fig. 8 about here.]

[Fig. 9 about here.]

[Table 1 about here.]

Finally, we propose to show the evolution of contacts at the frictional interface. Therefore, for

a specific friction coefficient µ = 0.7, Figures 10(a), (b) and (c) give the status for each contact

element according to the modal amplitude p of one of the three main instabilities (at 1.98kHz,

3.85kHz or 4.7kHz). Three configurations of the contact status at the frictional interface are

considered with the following visual representations: nothing in case of non-contact, a dot in

case of permanent contact and a full red circle in case of impacts.

When the modal amplitude p increases, we can observe the occurrence of impacts for each

configuration. Moreover, the global evolutions of the impacts for the three main instabilities

appear to be generally similar with regard to their locations (see Figures 10(a), (b) and (c)).

When comparing the evolution of the real part versus the modal amplitude p (see Figure 4(b),

5(d) and 6 (d), respectively) and the evolution of contact status (see Figure 10(a), (b) and (c),

respectively), it is easy to see that the occurrences of impacts can tend towards stabilization by

lowering the evolution of the real part or towards destabilization by increasing it.

In some cases, it is important to note that micro-impacts are sufficient to stabilize the modal

response (when the real part reaches zero) and so the vibrational amplitude of the brake system

can be approximated by using the MASA methodology and results. For example, we consider

the configuration with the modal amplitude p of the second unstable mode (at 3.8kHz) for

µ = 0.2. As shown previously in Figure 5(a), stationary responses are obtained for two specific

modal amplitudes (for p = 100 and p = 440). As indicated in Figure 10(d), these two modal

amplitudes correspond to two different contact statuses at the frictional interface. All these

results illustrate the fact that the local status at the frictional interface between the pad and

the disc can also play an important role in the generation of increasing self-excited vibrations.
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[Fig. 10 about here.]

5 Conclusion

This paper proposed a new method called Modal Amplitude Stability Analysis based on the

transformation of the first harmonic approximation of equations of motion (using Harmonic

Balance Method) into a state-space system compatible with a stability analysis.

This approach and the evolution of the real parts of the dynamic system versus modal

amplitudes were used to detect the occurrence and generation of increasing self-excited vibra-

tions. For the global strategy, a new linearization was proposed for nonlinear forces at the

frictional interface in order to linearize each contact element independently. This linearization

introduced terms in both stiffness and damping matrices and should allow reduction on relative

displacements [37] for future developments based on CHBM [29] which could probably be used

to reassess the mode shape and frequency according to modal amplitudes. An application for

an industrial finite element automotive brake system was presented.

The numerical results obtained and the scientific approach proposed demonstrated that

the Modal Amplitude Stability Analysis is very interesting for several reasons, despite the

assumption on the mode shape and the frequency of the unstable modes. Firstly, there was

no convergence problem since no optimization was used. Secondly, the calculation times were

compatible with industrial use, as illustrated in this present work.

In future work, we will investigate the ability of MASA methodology or derived methods to

produce design criteria. We hope to develop an efficient numerical tool validated by experimental

tests to design automotive brake systems, which requires better understanding and predicting

squeal noise phenomena more efficiently. Another important step would be to enhance the

mathematical-mechanical modeling of the automotive brake system. It is very important to

obtain better understanding of squeal phenomena by improving finite element models of brake

squeal in order to reproduce squeal experiments.
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(a) Exploded view (b) Finite element model

Fig. 1. Brake system details
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(l) Real parts at 5.34kHz

Fig. 2. Evolution of eigenvalues, frequencies and real parts according to the friction coefficient
µ for all instabilities. A new superelement is generated at each µ for the complex eigenvalue
analysis on reduced models. A damping coefficient of ξ = 1e− 6 is applied for RM212-damped.
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Fig. 3. Algorithm of the Modal Amplitude Stability Analysis method.
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Fig. 4. Evolution of real parts according to modal amplitude for the instability at 1.98kHz - the
colorbar is associated with the real part of the eigenvalues
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Fig. 5. Evolution of real parts according to modal amplitude for the instability at 3.85kHz - the
colorbar is associated with the real part of the eigenvalues
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Fig. 6. Evolution of real parts according to modal amplitude for the instability at 4.72kHz - the
colorbar is associated with the real part of the eigenvalues
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Fig. 7. Evolution of real parts according to modal amplitude for the instability at 3.69kHz - the
colorbar is associated with the real part of the eigenvalues
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Fig. 8. Evolution of real parts according to modal amplitude for the instability at 4.94kHz - the
colorbar is associated with the real part of the eigenvalues
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Fig. 9. Evolution of real parts according to modal amplitude for the instability at 5.34kHz - the
colorbar is associated with the real part of the eigenvalues
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(a) 1.98kHz at µ = 0.7
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(b) 3.8kHz at µ = 0.7
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(c) 4.7kHz at µ = 0.7
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(d) 3.8kHz at µ = 0.2

Fig. 10. Postprocessing of impacts according to modal amplitude for the three main instabilities

29



List of Tables

1 Overview of computation times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

30



RM104 RM212

Number of superelements to generate by Abaqus 9 9
Number of instabilities to evaluate by MASA 30 28

Total time to generate superelements 1h52′ 1h52′

Total time for MASA evaluations (100 steps on the 0− 700 sweep) 5h24′ 29h07′

Total time for MASA evaluations with sweep break 3h06′ 18h22′

Table 1. Overview of computation times for both reduced models depending on the use or
not of the sweep break condition < (λmi ). The calculations were performed using PSA Peugeot
Citroën servers for Abaqus and a desktop computer equipped with an Intel(R) Xeon(R) CPU
E5-1620 v2 @3.7GHz processor for the MASA solver. The MASA solver was compiled with
Matlab R2013a 64b.
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