
HAL Id: hal-03257800
https://hal.science/hal-03257800

Submitted on 11 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reduction strategy for a brake system with local
frictional non-linearities – Application for the prediction

of unstable vibration modes
O Fazio, S Nacivet, Jean-Jacques Sinou

To cite this version:
O Fazio, S Nacivet, Jean-Jacques Sinou. Reduction strategy for a brake system with local frictional
non-linearities – Application for the prediction of unstable vibration modes. Applied Acoustics, 2015,
91, pp.12 - 24. �10.1016/j.apacoust.2014.11.005�. �hal-03257800�

https://hal.science/hal-03257800
https://hal.archives-ouvertes.fr


Reduction strategy for a brake system with local

frictional non-linearities − Application for the

prediction of unstable vibration modes

O. Fazio1,2,a , S. Nacivet2,b, and J-.J. Sinou1,c

1Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513,
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Abstract

Although the problem of friction-induced vibration has been the subject of many in-

vestigations over recent decades, it is still responsible for a large number of nuisances in

the field of automotive. This study presents a numerical process based on modal reduction

minimizing the size of the model thanks to a specific non-linear modeling at the frictional

interface in order to predict the stability analysis of large finite element models that corre-

spond to real automotive braking systems subjected to friction-induced vibrations. In the

present study, the effect of the number of contact nodes at the frictional interface will be

investigated for various operating conditions. It will be illustrated that an original contact

reduction at the frictional interface coupled to Super-Element use can be developed in order

to well represent squeal instabilities (i.e the frequencies and the associated unstable modes).

It will be demonstrated that the proposed strategy guarantees a high-quality estimation of

the stability analysis for the real brake system subjected to friction-induced vibration.
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1 Introduction

The problem of brake squeal in automotive was a subject of great interest for many researchers.

The problem of squeal modeling has been extensively undertaken in the past years [1–5] and

a lot of numerical and experimental studies including uncertainties [6, 7], statistical analysis of

brake squeal noise [8], non-linear formulations and behaviors at the frictional interfaces [9–14],

chaotic phenomenon [15] or acoustic emissions [16–18] have been formulated and developed in

order to explain squeal phenomena and nuisances in the field of automotive. Some researchers

have also highlighted the predominant role of the brake pads [19] or the significant impact

of the contact surface topography and the frictional contact model [20–22] in squeal noise

phenomena prediction. Other studies illustrated the fact that introducing uncertainty and

robustness concepts during simulations can also improve accuracy of squeal occurrences [7].

However, it is still difficult to predict brake squeal early enough to reduce development costs

in a manufacturing process of brake system. So the problem of modeling squeal noise and

understanding the mechanisms at the origin of noises are nowadays a current challenge for the

scientific community and the automotive industrialists.

In general, there are two main steps toward friction-induced problems: the stability analysis

and the non-linear transient analysis. The stability analysis can also be divided into two parts.

The first part concerns the non-linear static problem: a sliding equilibrium point is calculated

by solving the non-linear static equations for a given brake pressure. Then, the linearized equa-

tions of motion are estimated by introducing small perturbations about the sliding equilibrium

point into the non-linear system. Finally, the classical Complex Eigenvalue is performed on the

linearized system in order to predict the squeal propensity of the brake in a given frequency

range. This typical deterministic approach is of common practice and well appreciated in in-

dustry. The main advantage of the stability analysis is the computational efficiency in order to

estimate the occurrence of self-excited vibrations. However, the main disadvantage and limi-

tation of the stability analysis concerns the underestimation or over-estimation of the unstable

modes that can be observed in the non-linear simulation. In fact, the stability analysis can only

predict the onset of instability around a given equilibrium point for a non-linear system and so

a complete non-linear approach can be more informative [11,23]. Unfortunately, the calculation

of the transient and non-linear vibrations are mostly performed by numerical integrations which

are rather expensive and requires considerable resources both in terms of computation time and

data storage [24, 25]. For a large-scale finite element model, numerical integration can become
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computationally so expensive that it is impractical or irrealistic in an industrial context. Based

on those facts and according on the size of the problem, industrial studies focus only on the

Complex Eigenvalue Analysis (CEA) for linear equivalent brake systems or perform a non-linear

approach in order to assess the non-linear self-induced vibrations.

Therefore, some researchers proposed to develop reduced models when finite element models

are considered in order to reduce the computational times. For brake system and the squeal

prediction, the most widespread reduction method in industry is the Craig-Bampton method

[26]. One of the major limitations is associated with the size of interface matrices due to the

explicit use of the degrees of freedom at interface. Recently, performances of some others reduced

bases built from the component modes or the real coupled modes have been tested by Brizard

et al. [27] for the stability analysis of a disc/pads system in sliding contact. They proposed

some enriched bases to improve the precision on the calculated complex modes and eigenvalues.

Loyer et al. [25] developed also spatial model reduction with different kinds of reduction bases to

approximate the non-linear vibrations of a TGV brake system. In these studies, all the physical

contact degrees of freedom are kept. Vermot des Roches [24] proposed parametrized reduction

called the Component Mode Tuning method (CMT) that use the components free/free modes

as explicit degrees of freedom in order to perform non-linear time simulations.

However, few efforts have been dedicated to discuss the possibility to reduce the size of

the frictional interface that is one of the main drawback of the classical use of the Craig-

Bampton approach (see for example [12]). So the main contribution of the present study is to

propose several improvements in order to reduce the number of contact nodes at the frictional

interface. The generation of the reduced non-linear interface model is performed by creating

Super-Elements (SE) with reduced node to node contact at the disc/pad interface. The global

reduction will then combine the classical Craig-Bampton approach (i.e. a modal reduction

strategy) and an implicit reduction at the frictional interface by applying the interface Super-

Elements (SE) generation. This provides a reduction method that returns accurate results for a

drastically reduced finite element system in a lesser time while keeping the non-linear behavior

at the frictional interface. The proposed method gives then a great advantage in terms of

memory.

The main objective of this study is to propose a strategy based on numerical simulations for

predicting the stability analysis of a real brake system subjected to friction-induced vibration.

This strategy consists in defining an efficient contact reduction at the frictional interface in

order to use a Super-Element for further study of the stability.
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To achieve the previous objectives, the paper is organized as follows: firstly, the brake

system under study is presented. Secondly, the proposed reduction method and the global

strategy for the generation of the reduced non-linear interface are discussed. More precisely

the Super-Element creation and Super-Element assembly are detailed. Finally, application for

an industrial representative finite element model is proposed. Results on different cases and

the influence of the number of nodes at the non-linear frictional interface are presented and

commented. The efficiency of the reduction strategy is undertaken by performing a stability

analysis around a non-linear equilibrium point for various operating conditions.

2 The brake model under study

For this study a finite element model of an industrial brake system that has been developed in

Abaqus is considered. It can be decomposed in several parts as detailed in Figure 1(a). This

system uses a floating caliper technology. The caliper that holds the two brake pads can move

with respect to the disc, along a line parallel to the axis of rotation of the disc. During a brake

operation, hydraulic pressure is applied on the piston, which pushes the inner brake pad until

it makes contact with the disc. Then, reaction force pulls the caliper body with the outer brake

pad against the other side of the disc. Considering the finite element model, a volume mesh is

realized using 10-node quadratic tetrahedron (see Figure 1(b)) . It represents a total of 176956

nodes for 100710 elements.

[Fig. 1 about here.]

Contact and friction modeling are key parameters for squeal simulation. Here, ∗CONTACT

PAIR card is used for node to surface contact modeling. The principal components of the brake

system in contact with the pads are the disc, the piston, the caliper and the bracket. For all

these contacts, pads are always defined as slave parts.

A linear penalty method is used for the contact constraint enforcement and the classic

Coulomb’s law is used for all the frictional interfaces. Also depending on the contact considered,

separation can be taken into account or not. All these parameters are summed up in Table 1.

[Table 1 about here.]
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3 Model reduction method

Previous research works were carried out to define a model reduction method to apply stability 

analysis on industrial representative models [24, 27]. Alternatively, Villard et al. [28] used an 

assembly of Super-Elements (SE) with reduced contact interface. However, some questions re-

mained after this study particularly concerning the modeling of the simplified contact interface.

This work was achieved in co-simulation between Abaqus and Matlab. This section will 

describe the different steps in detail, but it is interesting for the reader comprehension to first sum 

up the whole process. Firstly, Abaqus simulation is used to define an original reduced contact 

interface at the disc/pad interface with reduced number of nodes on both sides of pad and disc 

that will be later used for condensation and node to node contact. Secondly, the static equilibrium 

is found on this Abaqus model with reduced contact interface. Then, deactivating the disc/pad 

contact while fixing the displacement of the nodes of this reduced contact interface observed at 

the static equilibrium allows generating a super-element which is a linearization of this 

equilibrium configuration. Node to node contact is then used in Matlab at the disc/pad interface 

when the SE element is used to compute stability analysis with a new cubic contact law for the 

disc/pad interface.

In the next paragraphs, all these previous steps are detailed. This section is organized as follows: 

first the simplified contact modeling will be explained. Then, the super-element creation will be 

detail to then give some information concerning the Super element assembly and more 

particularly the method used to define contact force in the node to node contact used for the 

super-element assembly. Finally some new development brought to improve the reduction 

method proposed by Villard et al. [28] will be presented.

3.1 Global strategy and simplified contact modeling

The idea put forward by Villard et al. [28] is to create an assembly of Super-Elements (SE) 

at the contact zones defining a node to node contact. Due to the fact that industrial meshing 

process drives to non-coincident nodes at the frictional interfaces, Villard suggested to generate 

new contact interfaces for SE assembly using node to node contact with no need to re-mesh the 

model. Moreover this process allows to reduce the number of degrees of freedom (DOF) at the 

frictional interfaces of the initial brake system.

The nodes involved in the new contact interface will be later used as reduction nodes for the 

SE creation. The objective here is to have the smallest number of contact nodes in order
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to reduce the size of the super-element created in retaining this reduced number of contact 

nodes. Of course reducing the number of nodes kept for computing the contact at the disc/pad 

interface must not introduce error in the static equilibrium estimation.

This reduced number of nodes involved in the several contacts will be used to later define a 

node to node contact between the Super-Element (whereas a node to surface contact is used in 

the reference model). In so far as textcolorredthe reduction of the number of nodes involved in 

contact must not affect the static solution Villard et al. [28] suggest to distribute the contact 

forces around these reduced contact nodes. The *DISTRIBUTING and *COUPLING options 

are therefore used in Abaqus. Figure 2 illustrates this new proposed contact modeling. A 

reference node is created in the plane of the initial contact surface. It allows to distribute contact 

force on the nodes of the initial meshed surface involved in the contact. This reference node can 

not directly be used for the contact computation due to an incompatibility. Due to the fact that 

SE reduction can not be directly applied to this reference node, an new node must be created for 

contact force computation and used as a reduction node when SE will be created. An additional 

spring is created with arbitrary stiffness (i.e. the value of this spring is assumed to be very 

superior to the local stiffness) to link these two nodes. For the reader comprehension, it can be 

noticed that these nodes have the same geometric position in the model but they are dissociated 

on Figure 2 for a better illustration of the reduced contact modeling.

Then, the contact forces (but not the moment) computed at the reduced contact interface 

are distributed on the coupling nodes of the part surface. Indeed, this reduction method is 

interesting only if the reduced contact interface computation is relevant and does not gener-

ate error on the non-linear static equilibrium. In this strategy it is interesting to exploit the 

*DISTRIBUTING and *COUPLING cards in Abaqus in order to determine the best set of 

parameters [29] and decrease the error induced by this reduction and thus improve the previous 

reduction method.

One of the contribution of this study on simplified contact modeling is to create one Super-

Element reducing only the disc/pad interface. All the other interfaces are then linearized during 

the Super-Element creation. This choice allowed us to reduce the error involved by contact 

reduction and better understand its effect. Indeed increasing the number of reduced contact 

interfaces sums up the error involved by reduction. The major drawback is that individual 

damping can not be considered anymore for each component during Super-Element assembly.

[Fig. 2 about here.]
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3.2 Super-Element creation and Super-Element assembly

3.2.1 Super-Element creation

The first step concerns the Super-Element creation. Its generation can be summarized as follows: 

first of all the reduced disc/pad contact interface (i.e a contact with a reduced number of nodes 

using *DISTIBUTING and *COUPLING cards) is created on the Abaqus model. Then, a non-

linear static analysis is performed on the Abaqus model with reduced contact interface and the 

displacements at the nodes retained for Super-Element creation are stored. We will see later why 

it is also interesting to store reduced contact variables (contact force and gap). In a second step, 

contact at disc/pad interface is deactivated but the displacements measured are still applied to 

the future reduction nodes with the ”*Boundary, FIXED” parameter. This allows to linearize the 

other contacts of the model, that will not be taken in account in Matlab, at the static equilibrium 

while generating the Super-Element. Finally a Craig and Bampton reduction [30] is computed 

and the Super-Element is generated. The reduced number of nodes used in the disc/pad contact 

interface are kept as reduction nodes.

[Fig. 3 about here.]

3.2.2 Super-Element assembly

The second step concerns the Super-Element assembly. It may be noticed that Abaqus in no 

more used and all the computations are done thanks to Matlab software, as illustrated in Figure 

3. This subsection details the method to compute the non-linear static step of the SE assembly 

at the exact static equilibrium.

The non-linear static system solved by Abaqus is described as follows :

Knl(Us)Us + Fnl(Us) = Fext (1)

where Us corresponds to the static equilibrium position. Fext represents the external force due

to the external pressure applied to the piston and the caliper representing a brake operation.

Knl is the stiffness matrix due to the structural components and the three contact interfaces

Piston/Pad, Bracket/Pad and Caliper/Pad. Fnl contains the non-linear forces at the frictional

interface between the disc and the pad.

As the Super-Element is created in a perturbation step, the system linearized around the

static equilibrium can be written as follows:

Knl,Us
Us + Fnl(Us) = Fext (2)
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where Knl,Us
defines the linearized stiffness matrix at the vicinity of the static equilibrium

Us. All the contacts, except for the disc/pad interface, are linearized as a constant value in the

stiffness matrix.

The local stability is studied introducing a perturbation ∆U around the static equilibrium:

Knl,Us
(Us +∆U) + Fnl(Us +∆U) = Fext (3)

Considering the Matlab implementation, the linearized system at the static non-linear equi-

librium point is described in the following equation:

Knl,Us
Us + Fnl,matlab(Us) = Fext (4)

where Fnl,matlab corresponds to the non-linear contact as the disc/pad interface that will be

described in the next section. Knl,Us
is obtained thanks to the Super-Element creation in

Abaqus. The only difference with equation 2 is the way to compute the non-linear force involved

in disc/pad contact. According to the strategy defined above this contact is now a node to node

contact between condensation nodes. As the calculated linearized equilibrium points for Abaqus

software and Matlab software are the same, an equivalence of the contact force at the disc/pad

interface for the non-linear equilibrium point has to be performed:

Fmatlab(Us) = Fnl(Us) (5)

The next paragraph will develop the solution proposed here to respect the relation detailed

in the previous equation.

3.2.3 Generation of the contact force

Considering experimental data, Coudeyras [12] chose a cubic stiffness for the disc/pad non-linear

contact. For each contact node, its formulation is given in Eq.6 and 7

Fmatlab =







klδ + knlδ
3 if δ > 0

0 otherwise
(6)

δ = Ui −Uj (7)

where kl and knl are respectively the linear and the non-linear stiffnesses and Ui and Uj

the displacements of the coincident nodes i and j from the master and slave sides of the contact

respectively. The subscript matlab indicates that the non-linear forces computation is performed

on the Matlab environment.
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The main advantage of this choice is that this formulation is easy to linearize for further

stability analysis. As said earlier we need to ensure the continuity in the contact force estimation

between Abaqus and Matlab software. With two different contact formulations the only way

to respect this constraint is to find an equivalent contact penetration for each node to node

contact defined in Matlab in order to match the normal contact force value obtained with

Abaqus software. Knowing the value of Abaqus normal contact force for each reduced node and

the cubic stiffness parameters kl and knl, it is easy to solve the following relation

Fmatlab(δ + ξ) = Fnl(δ) (8)

where Fnl are the contact forces computed earlier with Abaqus software and δ the contact

penetration associated to the static equilibrium point that has been previously estimated using

Abaqus software. As said earlier this contact is computed using a linear penalty method in

Abaqus software. Then the corrective term ξ in node to node contact penetration can be easily

found.

Figure 3 details all the steps explained earlier of our model reduction strategy.

3.3 Interface reduction study: Radius of influence, Weighting methods and

Triangular distribution

In this section the simplified contact modeling defined in 3.1 will be detailed. By default,using 

*DISTRIBUTING and *COUPLING cards to couple a single node to a meshed surface transfers 

the forces computed at the reference node to all the nodes of the meshed surface. An interesting 

option is to limit the distribution in a spherical region centered on the reference node by defining 

a radius of influence. In this case the forces computed at the reference node are distributed only to 

the nodes of the surface that fall inside this spherical region. Another interesting parameter is the 

control over transmission through weight factors specified at each coupling nodes which allow the 

forces transferred to the coupling nodes to vary inversely with the radial distance from the 

reference node. For the proposed contact reduction, the radius of influence and weighting method 

are the main parameters to be fitted in order to have a smooth variation of contact force over the 

coupling nodes.

In Abaqus 6.10 the influence of the mesh size is also taken into account in the weighting 

factor computation but it was not considered in this study. To facilitate the understanding of 

the present study, the classic polynomials defined below as weighting method will be used

wi = 1−
ri

R
(9)
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wi = 1−
(ri

R

)2

(10)

wi = 1− 3.
(ri

R

)2

+ 2.
(ri

R

)3

(11)

where ri is the distance between the reference node and the ith coupling node, R the radius of

influence and wi the weight factor computed.

As said before, reducing the number of contact nodes and distributing force must not affect

the contact force mapping on the interface. Indeed it is not recommended to concentrate the

forces at the vicinity of the new reduced contact nodes and thus to modify the static equilibrium.

Considering these three weighting methods it is interesting to find for each of them the most

interesting radius of influence in order to ensure an uniform contact force distribution that

matches the most with the initial non-reduced contact. As distribution is made in a circular

region centered on the reference node, it is interesting to define the reduced contact nodes group

as an isometric grid to reduce voids in distribution (see Figure 4). Thus optimal radius will

depend on the triangle size of the isometric grid. So the optimum was calculated for an academic

example of a simple triangle of three nodes representing the elementary pattern of our isometric

grid. Weighting coefficient mapping inside this triangle of reduced nodes is computed in Matlab

for a triangle length of 1mm. As an equal force on each node of the triangle is applied , the

optimal radius that offers an homogeneous force distribution has to be found for each weighting

method, which means a computed weight factor centered on 1 inside this triangle. Results are

given on Figure 5 and Table 2.

It seems interesting to use a cubic distribution that offers the smallest standard deviation.

Whatever the number of reduced contact nodes and so the size of the triangle chosen later

in our reduction it will be easy to find, proportionally to these previous results, the radius of

distribution that needs to be used. However the edge of contact surface might be subjected to

boundary effect of the distribution.

[Fig. 4 about here.]

[Fig. 5 about here.]

[Table 2 about here.]

4 Application for the reduced industrial model

This section presents the application of the reduction strategy defined above to the industrial

brake model. The main objective of this section is to illustrate the efficiency of the proposed
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methodology to build a reduced finite element model while keeping a good prediction on the

three main instabilities observed on the reference Abaqus model.

4.1 Contact formulation and reduced models characteristics

First of all, it must be noted that the proposed strategy and reduction formulation is not

compatible with the *CONTACT PAIR card used for contact in Abaqus due to the fact that

the methodology involves node-based surface creation which can not be defined as the master

surface of a contact pair in Abaqus. One solution could be to directly define node to node

contact between reduced node of both side directly in Abaqus with *GAP elements with friction.

However, this strategy does not allow us to generate unsymmetrical terms in matrices which is

the key point for stability analysis. So we decided to create reduced contact nodes only for the

pad: coincident nodes on the disc volume mesh are imposed and a node to surface formulation

with *CONTACT PAIR card is kept. The reduced contact nodes and their coincident nodes on

disc mesh will then be used for condensation and node to node contact will be defined later in

Matlab between them.

To illustrate the effectiveness of the proposed strategy and discuss the impact of the size of

the proposed reduction, several Abaqus models with several triangle size for disc/pad contact

interface reduction will be investigated. Table 3 sums up the characteristics of the four models

under consideration. Figure 6 gives an insight of the reduced contact nodes layout over the

pad surface. As point of comparison, the industrial Abaqus model contains 1370 nodes on the

surface of each pad.

In the following of the study, the four Abaqus models with reduced contact interface will be

called Abaqus12, Abaqus44, Abaqus104 and Abaqus212 in reference to the number of reduced

contact elements they contain.

[Table 3 about here.]

[Fig. 6 about here.]

4.2 Abaqus reduced models: non-linear static analysis

As previously explained in [31], the complex eigenvalue analysis is based on the determination

of eigenvalues for the linearized system around the non-linear static equilibrium. The first

step to evaluate the performance of the reduced contact interface is to compare some static

quantities between the Abaqus reference and the four reduced models (Abaqus12, Abaqus44,
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Abaqus104 and Abaqus212): the estimation of the contact state at the frictional interface and

the constraints distribution will be undertaken.

4.2.1 Contact state

The first proposed comparison between the four reduced models and the reference model corre-

sponds to the contact state when establishing the non-linear static equilibrium. So, a non-linear

static analysis for a friction coefficient value of µ = 0.5 (at the disc/pad interface) is com-

puted. Figures 7(a-h) show the results for the four reduced models (i.e. Abaqus12, Abaqus44,

Abaqus104 and Abaqus212, respectively). Contact state at each reduced node is represented

by a circle (respectively by a plus sign) if the contact is open (respectively closed). Moreover,

the contact map of the reference model is superimposed for each reduced models: the green and

blue colors represent the closed and opened contact

As illustrated in Figures 7(a-b), the first reduced model Abaqus12 (with only 6 nodes by

pad) is not sufficient to respect an appropriate contact state at the static equilibrium point:

all the reduced contact nodes are closed, whereas the reference model indicates both opened

and closed contact area. Refining the number of reduced contact nodes allows to represent the

variation in the contact state for the reference model. For example, it clearly appears that the

reduced model Abaqus212 is in perfect agreement with the reference model, as indicated in

Figures 7(g-h).

Despite one or two nodes at the boundary between opened and closed contact zone the

numerical results with the other two reduced models (i.e Abaqus44 and Abqus104) are consistent

with those of the reference model (see Figures 7(c-d) and Figures 7(e-f), respectively). This

illustrates the fact that the number of nodes at the frictional contact interface can be drastically

reduced in order to estimate the contact states by applying an appropriate strategy.

[Fig. 7 about here.]

4.2.2 Constraints

The second verification to illustrate the efficiency of the proposed reduction during consideration

of the non-linear static analysis is to investigate the evolution of the constraint field at the

frictional interface.

Firstly, it may be noted that the general node to surface contact is defined such as each

slave node interacts with a projection point on the master surface. If the projection of the slave
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nodes on the master surface falls inside an element facet, the transmitted load is shared by the

nodes of this facet. With the coincident mesh the projected node falls at the exact position of

a node of the master surface. In this last case, the transmitted load is shared by the coincident

master node and all of the master surface nodes that share an adjacent surface facet with that

node, as illustrated in Figure 8. In one way we can say that the coincident node smooths the

contact force distribution on the master surface.

In order to be able to compare the constraint fields at the contact interface (i.e. Von

Mises stress), the contact force calculated at the reduced contact node of the pad side is then

distributed through the coupling element. Then, the constraint fields at the contact interface is

estimated. First of all, non-linear static analysis for a friction coefficient µ = 0.5 is computed.

Results of the constraint fields are presented for both the reference model and the reduced

model Abaqus212 on Figures 9(e-h) and Figures 9(i-l), respectively. The color scales given in

Figures 9(a-d) are based on the reference model and according to the finite element model units,

constraint value is given in MPa. It can be observed that the constraint fields for the reference

model and the reduced model Abaqus212 are very similar. Even if the disc mesh on the reduced

model differs from the reference models due to the imposed coincident nodes a good global

coincidence in the constraint field can be noticed for each interface of the brake system. Then,

numerical results at the inner pad interface for two different friction coefficients µ = 0.2 and

µ = 0.8 are also indicated in Figures 10. Whatever the friction coefficient and the evolution

of the associated non-linear static equilibrium, the constraint fields that are calculated via the

reduced model Abaqus212 are consistent with those of the reference. Results at the outer pad,

outer and inner disc surfaces (not presented in this study for µ = 0.2 and µ = 0.8) corroborate

these conclusions.

Finally, it should be interesting to observe the influence of the number of reduced contact

nodes on the constraint fields. Figures 11 give the constraint fields for the outer surface of the

disc with the four reduced models (i.e. Abaqus12, Abaqus44, Abaqus104 and Abaqus212) with

a friction coefficient µ = 0.5.

If the number of reduced contact nodes is very small (i.e. 6 and 22 nodes per pad for

Abaqus12 and Abaqus44), difference with the reference model is noticeable (see Figures 11(b-c)

for Abqus12 and Abaqus44 in comparison with Figure11(a) for the reference). Constraint peaks

are concentrated at the coincident nodes on the disc surface. For the reduced models Abaqus12

and Abaqus44, the distance between two reduced contact nodes is larger than the mesh size of

the disc, thus contact force are only computed on a really local zone around each slave node
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projection. Then, increasing the number of reduced contact nodes (i.e the reduced models

Abaqus104 or Abaqus212) allows a better distribution of the constraint field. So, the constraint

field estimated by using these two reduced models are in perfect agreement with the reference

model, as illustrated in Figures 11(d) (for Abaqus104) and 9(k). For the reader comprehension,

results for the reference model are given in Figure 9(g). Moreover, the other numerical results

(not presented in this study) at the inner/outer pads and the inner/outer disc surfaces for the

four reduced models (i.e. Abaqus12, Abaqus44, Abaqus104 and Abaqus212) and for the three

friction coefficients (i.e. µ = 0.2, µ = 0.5 and µ = 0.8) lead to the same conclusion.

[Fig. 8 about here.]

[Fig. 9 about here.]

[Fig. 10 about here.]

[Fig. 11 about here.]

4.3 Abaqus reduced models: stability analysis

In the previous section, it was illustrated that it is possible to drastically reduced the number

of contact nodes at the frictional interface while being able to estimate the contact states and

the constraint field at the static non-linear equilibrium.

The results of stability analysis between the reference Abaqus model and the four reduced

models Abaqus12, Abaqus44, Abaqus104 and Abaqus212 are discussed. A classical complex

eigenvalue analysis, with a friction coefficient varying from µ = 0.1 to µ = 0.9 with a step size

of 0.1, is performed and we focus on the instabilities in the 0-5kHz range. a global overview of

the stability analysis is given in Figure 12. Moreover, evolution of the frequencies and real parts

of the three unstable modes are drawn for the reference model and the four reduced models on

Figures 13.

It clearly appears that the reduced model Abaqus12 is not sufficient to predict instabilities

beyond 4kHz. Indeed, we observe that the unstable mode at 3.8kHz disappears for µ = 0.4 (as

indicated in Figure 13(e)) which suggests that a change in contact status can completely modify

the characteristics of the brake system. This result is not surprising because of the inconclusive

results of this reduced model to correctly estimate the static states, as previously seen in the

previous section. Concerning the second reduced model Abaqus44, the three instabilities of

interest (at 1900Hz, 3800Hz and 4900Hz) are predicted, even if a little delay for the first and
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second unstable modes (at 1.9hz and 3.9kHz) can be observed. Moreover, limitation of this

reduced model Abaqus44 can be highlighted by seeing evolution of the third unstable mode for

high friction coefficients: indeed a decrease in frequency and a margin in real part evaluation

are clearly observed in Figures 13 (c) and (f), respectively.

Finally, the two last reduced model (i.e. Abaqus104 and Abaqus212) correctly approximate

the three unstable modes on the frequency range of interest for both the value of real part and

the value of the associated frequency, as illustrated in Figure 12 and Figures 13. Increasing

the number of reduction nodes between Abaqus104 and Abaqus212 does not lead to signifi-

cant improvement. In order to have a more detailed comparison of these two reduced models

Abaqus104 and Abaqus212, the mean error on the three instabilities of interest is estimated for

all the values of the friction coefficient in the range of interest (i.e. from µ = 0.1 to µ = 0.9

with a step size of 0.1). The mean error is defined by

εtot =
9
∑

j=1

2
∑

i=1

1

M

|f red
µj ,i

− f
ref
µj ,i

|

f
ref
µj ,i

(12)

where µj corresponds to the value of the friction coefficient given by µj = 0.1 ∗ j. Considering

one instability, f ref
µj ,i

(respectively f red
µj ,i

) is the frequency of the ith of the two modes that couple

at the friction value µ for the Abaqus reference model (respectively reduced model). M stands

for the number of friction coefficient for which a complex eigenvalue analysis is computed for

the stability analysis. The minimum and maximum errors are also defined by

εmin =
min
µj

(

2
∑

i=1

|f red
µj ,i

− f
ref
µj ,i

|

f
ref
µj ,i

)

(13)

εmax =
max
µj

(

2
∑

i=1

|f red
µj ,i

− f
ref
µj ,i

|

f
ref
µj ,i

)

(14)

All these results are summed up on Table 4 and Table 5. Whatever the instability considered

the error does not exceed two percent, the performance of the contact reduction is clearly

highlighted here. Considering the mean error, the convergence of the reduction strategy is

observed and the remaining error can be explained by the boundary effect of the distribution.

In conclusion, results on stability analysis show that the reduced model Abaqus104 fits perfectly

on the whole frequency range of interest (i.e. between 0-6kHz) in order to predict all the

instabilities (in terms of frequency and real part of unstables modes) while allowing to reduce

significantly the number of contact nodes at the disc/pad interface.

15



[Fig. 12 about here.]

[Fig. 13 about here.]

[Table 4 about here.]

[Table 5 about here.]

4.4 Super-Element assembly: stability analysis

The previous results confirmed that reducing the disc/pad contact interface with 104 contact

nodes is sufficient to predict all the instabilities on the 0-5kHz range of interest. I t is worth

remembering that the number of reduction nodes at the frictional interface can vary with the

system under study due to the mode shape of unstable modes and the frequency range of

interest.

Now we propose to illustrate the efficiency of the second part of the global strategy based

on the Super-Element assembly. As a reminder, all these developments have been previously

explained in Section 3.

First of all, based on the retained reduced model Abaqus104, a Super-Element (SE) for a

friction coefficient of µ = 0.5 at the disc/pad interface is generated. Real modes over 0-12kHz

are kept for the Super-Element creation so that its validity can be assumed over 0-6kHz, our

frequency range of interest. It represents a total of 135 modes. Once the SE created, assembled

in Matlab with contact force matched and linearized around the non-linear static equilibrium,

a complex eigenvalue analysis is undertaken. The results between the Super-Element assembly

(SE assembly) and the reduced model Abaqus104 are compared in Figure 14. It can be noticed

that the stability analysis is performed on the whole friction range of interest (i.e. from µ = 0.1

to µ = 0.9) with only a Super-Element created at µ = 0.5. It is observed that the global

reduction based on the Super-Element assembly is not able to reproduce correctly the prediction

of unstable vibration modes (both in terms of frequency and real parts). For example it can be

seen that for high friction coefficient, the third instability (around 4.7kHz) disappears with the

reduced model via SE assembly. These results shows that a Super-Element remains valid only

at the vicinity of the non-linear static equilibrium point. More particularly, varying the friction

coefficient at the disc/pad interface changes the static equilibrium on the Abaqus reference

model as indicated in Figures 15. Such changes in the non-linear static equilibrium are not

taken in account if the same Super-Element created at µ = 0.5 is used for the whole stability
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analysis. This can explain the differences observed between the reduced model with SE assembly

and the reduced model Abaqus104.

Considering these first previous results based on the Super-Element assembly, we propose to

generate a Super-Element for each step of the friction coefficient (i.e. from µ = 0.1 to µ = 0.9

with a step size of 0.1). Then a complex eigenvalue analysis is performed for each friction

coefficient by using the associated Super-Element assembly. As illustrated in Figures 16, results

for SE assembly of both frequencies and real parts of the three unstable modes are in agreement

fit with those of the reduced model Abaqus104. Good enough with the evolution of the results

on the corresponding Abaqus104 model, even if a sudden rise in frequency of the third unstable

mode starting at µ = 0.6 can be noticed.

Finally, the mean error (given in equation 12), the minimum and maximum errors (given

in equations 13 and 14, respectively) are calculated for the SE assembly. The two strategies

defined for SE assembly (by using only one Super-Element for the whole stability analysis or by

estimating one Super-Element for each friction coefficient) are compared to the reduced model

Abaqus104. We recall that this reduced model Abaqus104 was used for the SE generation.

Results are given in Tables 6 and 7. It clearly shows the interest of creating one SE for each

friction coefficient value. With this strategy the error never exceeds five percent whatever the

unstable mode of interest. In conclusion, these results illustrate the efficiency of the global

strategy based on both nodal interface reduction and Super-Element generation.

[Fig. 14 about here.]

[Fig. 15 about here.]

[Fig. 16 about here.]

[Table 6 about here.]

[Table 7 about here.]

5 Conclusion

The global reduction strategy that is based on a nodal reduction, Super-Elements generation and

a Craig and Bampton modal reduction at the frictional interface, is proposed for an industrial

non-linear brake system model. One of the advantage of the proposed strategy is based on an

efficient contact reduction method for the disc/pad interface that allows a Craig & Bampton
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reduction to be used for further stability analysis. Final number of variables on this reduced

model is about 1500.

This strategy allows to predict correctly both the non-linear static equilibrium (i.e. the

contact states and the constraint field) and the stability analysis at this equilibrium. It is

shown that the Super-Element generation needs to be performed for each set of input parameters

because of the possible influence of the static equilibrium position on the stability analysis.

Based on these results, future work on the calculation of self-excited vibrations can be

investigated by using reduced models via Super-Elements generation.
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(a) Exploded view (b) Finite element model

Fig. 1. Brake system details
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Fig. 2. The reduced contact model
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Fig. 3. Global strategy
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Fig. 4. Reduced contact nodes layout
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(a) 1st degree

(b) 2nd degree

(c) 3rd degree

Fig. 5. Weight factor distribution inside a triangle of three reduced contact nodes for several interpola-
tion degrees. An equal force is applied on each node.
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(a) 12 nodes (b) 44 nodes

(c) 104 nodes (d) 212 nodes

Fig. 6. Reduced contact nodes layout over the pad surface for several reduced model
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. Contact state comparison for each reduced model. The left column is for the inner pad and the
right one is for the outer pad. (a)(b) Abaqus12 (c)(d) Abaqus44 (e)(f) Abaqus104 (g)(h) Abaqus212
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(a) Non-coincident mesh (b) Coincident mesh

Fig. 8. Contact force distribution according to the mesh coincidence. Triangles represent the master
surface facets. The circle corresponds to the projection of a slave node on the master surface. Squares
shows the master nodes where a contact force is computed.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 9. Constraint field comparison between Abaqus reference model (e-h) and Abaqus212 (i-l) for
disc/pad interface friction coefficient µ = 0.5 - (e)(i) Outer pad (f)(j) Inner pad (g)(k) Outer disc surface
(h)(l) Inner disc surface. Results are given in Mpa (a-d).
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Constraint field comparison at the inner pad between Abaqus reference model (c-d) and
Abaqus212 (e-f) for disc/pad interface friction coefficient µ = 0.2 - (c-e) and µ = 0.8 (d-f) - results are
given in MPa (a-b).
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(a) (b) (c) (d)

Fig. 11. Vom Mises stress comparison on outer disc surface for µ = 0.5 (a) Abaqus reference, (b)
Abaqus12, (c) Abaqus44, (d) Abaqus104. Results are given in MPa (see Figure 9(c) for reference).
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Fig. 12. Evolution of real part and frequency of the instabilities studied against the friction coefficient
for Abaqus12, Abaqus44, Abaqus104 and Abaqus212
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Fig. 13. Evolution of the frequencies (a,b,c) and the real part (d,e,f) of the eigenvalues against the
friction coefficient µ for the (a,d) 1.9kHz, (b,e) 3.8kHz and (c,f) 4.7kHz instabilities.
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Fig. 14. Evolution of the frequencies (a,b,c) and the real part (d,e,f) of the eigenvalues against the
friction coefficient µ for the (a,d) 1.9kHz, (b,e) 3.8kHz and (c,f) 4.7kHz instabilities. The same Super-
Element generated at µ = 0.5 is used for the whole friction coefficient range.
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(a)

(b)

(c)

Fig. 15. Outer pad/Caliper contact status evolution on Abaqus reference model for friction coefficient
value of 0.2(a), 0.5(b) and 0.8(c). Blue colour is for open contact, the others are for closed contact
sticking (red) or slipping (green)
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Fig. 16. Evolution of the frequencies (a,b,c) and the real part (d,e,f) of the eigenvalues against the
friction coefficient µ for the (a,d) 1.9kHz, (b,e) 3.8kHz and (c,f) 4.7kHz instabilities. A new Super-
Element is generated at each µ for complex eigenvalue analysis on SE assembly.
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Table 1

Contact modelling

Contact Friction coefficient Separation

Disc/Pad 0.5 Yes

Piston/Pad 0.15 No

Bracket/Pad 0.15 Yes

Caliper/Pad 0.15 No
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Table 2

Weight factor computation results for several interpolation degrees: Optimal Radius, mean value (ω̄)
and standard deviation (σ)

Interpolation degree Radius (mm) ω̄ σ

1 0.9501 1 0.0574

2 0.7425 0.9999 0.0835

3 0.9597 1 0.0234
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Table 3

Reduced models characteristics

Case 1 Case 2 Case 3 Case 4

Abaqus models Abaqus 12 Abaqus 44 Abaqus 104 Abaqus 212

Reduced contact nodes per pad 6 22 52 106

Total coincident nodes on disc volume mesh 12 44 104 212

Total references nodes for SE 26 90 210 526

Number of nodes to node contact elements 12 44 104 212
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Table 4

Mean error on frequency for each pair of mode on the whole friction range between Abaqus 104/212
and the Abaqus reference model

Instability number 1 2 3

Abaqus 104 0.713% 0.289% 0.536%

Abaqus 212 0.563% 0.247% 0.415%
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Table 5

Min/Max error on frequency for each pair of mode between Abaqus 104/212 and the Abaqus reference
model

Instability number 1 2 3

Abaqus 104 0.332%/1.688% 0.073%/0.459% 0.208%/0.779%

Abaqus 212 0.152%/1.821% 0.149%/0.411% 0.064%/1.293%

44



Table 6

Mean error on frequency for each pair of mode on the whole friction range between SE assembly and
the Abaqus 104 model

Instability number 1 2 3

Matlab 104 single SE 4.829% 0.543% 1.872%

Matlab 104 SE/µ 0.461% 0.713% 2.276%
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Table 7

Min/Max error on frequency for each pair of mode between SE assembly and the Abaqus 104 model

Instability number 1 2 3

Matlab 104 single SE 0.477%/12.818% 0.223%/0.873% 0.081%/5.131%

Matlab 104 SE/µ 0.355%/0.519% 0.587%/0.918% 0.778%/4.482%
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