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On the efficiency of decentralized epidemic
management and application to Covid-19 ∗

Olivier Lindamulage De Silva1, Samson Lasaulce1, and Irinel-Constantin Morărescu1

Abstract—In this paper, we introduce a game that allows one to
assess the potential loss of efficiency induced by a decentralized
control or local management of a global epidemic. Each player
typically represents a region or a country which is assumed to
choose its control action to implement a tradeoff between socio-
economic aspects and the health aspect. We conduct the Nash
equilibrium analysis of this game. Since the analysis is not trivial
in general, sufficient conditions for existence and uniqueness
are provided. Then we quantify through numerical results the
loss induced by decentralization, measured in terms of price of
anarchy (PoA) and price of connectedness (PoC). These results
allow one to clearly identify scenarios where decentralization
is acceptable or not regarding to the retained global efficiency
measures.

Index Terms—Game theory; Nash equilibrium; Epidemic;
SIR; Covid-19.

I. INTRODUCTION

IN 2020, many governments around the world had to take
drastic measures to mitigate the propagation of the SARS-

Cov2 virus. Especially over the first half of 2020, similar
measures were taken over large geographical areas such as
countries. One major drawback from implementing such a
(uniform) policy was that there has been a mismatch between
the measure severity level and the local situation. Among
the consequences of this mismatch we find: avoidable local
economic losses, potentially avoidable psychological damages,
frustration, and thus a degradation in terms of measure effec-
tiveness. In 2021, the experience acquired on the pandemic
shows that allowing regions (e.g., provinces in China, states in
the USA, Länder in Germany, or regions in France) to locally
adjust the decisions may be more suited. This is also true when
it comes to vaccination. Consequently, different countries
adopted different control strategies prioritizing aspects such
as education, social welfare, economy, or health. Also within
a given country the measures implemented were different
for regions depending on the local situation. These measures
have been aiming at achieving a certain tradeoff between
socio-economic aspects and health aspects. Motivated by this
observation, we propose a mathematical model to analyze
the effects of decentralization on the epidemic management.
In this context, each region or country is a decision-maker.
The proposed model is built on existing models such as the
networked epidemic models [1], [2], [3], [4, Chapter 9.3]. To
assess the potential efficiency loss induced by decentralizing
the epidemic management, we consider a mathematical model
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that is relatively simple while capturing the main effects of
interest. This paper considers a strategic-form game which is
built from a networked Susceptible-Infected-Recovered (SIR)
compartmental model [5], [6]. Precisely, we consider a game
where each player represents a geographical area which de-
cides social-distancing rules which aim at minimizing a cost;
this area may typically correspond to a country or a region
of a country but it can also correspond to a metropolis or a
group of countries. Each individual cost implements a given
trade-off between socio-economic losses and health losses.
Indeed, the value of the cost for each region not only depend
on its actions but also on the actions of neighboring regions
through the network structure and the epidemic dynamics. It
is noteworthy that the proposed game model is a static or one-
shot game model; a player chooses a control action which is
fixed over a given finite time horizon. In practice, this action
would need to be updated for each epidemic phase. Moreover,
each region is assumed to have its own virus transmission
rate (e.g., depending on local population density, weather
conditions, the effectiveness level of the taken measures); the
propagation among regions occurs with an intensity which is
given by the cross transmission rates (e.g., depending on the
geographic mobility among regions, the sanitary rules imposed
by the corresponding neighbors); the population of each node
recovers with a fixed recovery rate (e.g., depending on the
capacity and performance of the health system [7]). To the best
of our knowledge, the game we introduce in this paper differs
from existing works for several reasons. In [8], the players
are the individuals but their decision consist in controlling
social distancing with others to find a balance between social
interactions and the chances of being infected by the virus that
spreads through a single region SIR model.
The main differences between the present work and the
existing results on networked epidemic games (e.g., [9], [10],
[11], [12]) can be summarized as follows: we consider an
SIR model while the existing game models are applied to the
networked SIS model (Susceptible-Infected-Susceptible); we
control the inter-regions transmission rates while the existing
works consider networks described by a binary adjacency
matrix; we propose a one-shot game over a finite time horizon
unlike the existing works consider infinite time games with
constant actions.
Our key contributions can be summarized as follows:
• We formulate a strategic form game applied to a networked
SIR model, in which: the interactions are described by a
weighted adjacency matrix; a player is a node of the network
that tries to minimize its own cost capturing a tradeoff between
the socio-economic and health losses; the decision of each



player affects the costs of his neighbors in the network; the
decision of each player is constant during a finite time horizon
(working phase).
• We introduce an operating regime called the Weak In-
terconnection Regime (WIR), that allow us to conduct the
Nash equilibrium (NE) of the considered game, by ensuring
existence and uniqueness. Furthermore, this analysis ensures
the well-posedness of the two equilibrium efficiency measures
considered in this work: the Price of Anarchy (PoA) and the
Price of Connectedness (PoC).

This paper is structured as follows. In Sec. II, the considered
networked SIR epidemic model is described. The proposed
strategic form game model to implement the tradeoff of
interest and the chosen measures of global efficiency are
provided. In Sec. III, we conduct a complete analysis of
the corresponding Nash equilibria (existence, uniqueness). In
Sec. IV, we show how the studied game can be exploited
numerically for a Covid-19-type-scenario and we discuss the
effectiveness of the decentralization strategy on the decision-
making process.

II. PROBLEM STATEMENT

We consider a set of K > 1 interconnected regions (e.g.,
provinces, states, or cities) that are affected by an epidemic;
the region index is denoted by k ∈ K := {1, . . . ,K}. The
epidemic propagation within a region is assumed to follow
a SIR model. This section provides both the model that
we consider for the epidemic dynamics in the presence of
interconnected regions (Sec. II-A) and the game proposed to
model the fact that the epidemic management is decentralized
(Sec. II-B). The proposed game model intends to be simple
while capturing a key feature, which is the tradeoff between
socio-economic losses, and health aspects.

A. Epidemic Model

For Region k ∈ K, we respectively denote by βkk and γk the
virus (endogenous) transmission rate and the removal/recovery
rate ( 1

γk
is called the average recovery period). For k 6= `,

the quantity βk` denotes the transmission rate from Region
` to Region k. The action of Region k on the epidemics is
represented by a scalar control action denoted by uk ∈ Uk
where Uk := [Umin

k , Umax
k ] ⊂ [0, 1) is compact. The control

action uk is assumed to be constant over the time period
of interest (working phase) which is the interval [0, T ],
T > 0. In this paper, we restrict our attention to the study
over a single phase; a phase may typically last few weeks.
In practice, the action would need to be updated for each
phase. This corresponds to considering a blockwise constant
management strategy, which is the easiest to implement in
practice. We will denote by u the control action profile or
vector: u := (u1, . . . , uK) ∈ U where U := U1 × . . . × UK
and we will also use the notation u−k to refer to the re-
duced action profile u−k := (u1, . . . , uk−1, uk+1, . . . , uK).
The fractions of susceptibles, infected, and recovered for
Region k are respectively denoted by sk(t, uk, u−k) ∈ [0, 1],
ik(t, uk, u−k) ∈ [0, 1], and rk(t, uk, u−k) ∈ [0, 1]. With this
notation, the continuous-time dynamics for the epidemic in

Region k in presence of interconnection is assumed to be given
by ∀T ∈ R≥0, u ∈ U :

∂sk
∂t

(t, u) = −sk(t, u)
[
(1− uk)

K∑
`=1

βk`i`(t, u)
]

∂ik
∂t

(t, u) = −∂sk
∂t

(t, u)− γkik(t, u)

∂rk
∂t

(t, u) = γkik(t, u)

sk(t, u) + ik(t, u) + rk(t, u) = 1,

(1)

where the initial fractions of susceptibles and infected are
chosen as s0k > 0 and i0k ≥ 0.

For the sake of simplicity we assume that the social distanc-
ing rules imposed in Region k (namely, uk) affects uniformly
all the infected population of each region in contact with the
susceptibles of Region k, i.e., (1 − uk)βk` is the controlled
rate at which the infected individuals of Region ` infects the
susceptibles in Region k. In practice, it would be quite difficult
to measure its value, or to assign it a prescribed value. Then,
we assume policy makers of each region k would apply a
social-distancing rule close enough to the abstract quantity
uk.

B. Game Model
Each region is assumed to seek for a tradeoff between

the socio-economic losses and the local health impact of
the epidemic, induced by the sanitary rules. This amounts
to considering a cost function that comprises three terms.
Precisely, we assume that a region aims at minimizing the
following composite cost:

Jk(u) := akuk + bku
2
k︸ ︷︷ ︸

socio-economic losses

+ ck

[
s0k − sk(T, u)

]
︸ ︷︷ ︸

health losses

, (2)

where (ak, bk, ck) ∈ R3
≥0 are constant. The reasoning behind

this choice is that social-distancing strategies induce both
health and socio-economic losses. In particular, we assume
the socio-economic cost is a sum of linear and quadratic
terms w.r.t the social distancing rules, as motivated in the
related literature of optimal control applied to epidemic that
spreads in a single Region (see e.g., [13], [14, Section 2.4]);
this assumption seems to be commonly accepted in economic
studies, according to [15, Eq. 8 in Section 2.2.2]. On the other
hand, we consider the health losses to be proportional to the
final size of the epidemic after a working phase. In particular,
the decision of each node has an impact on its neighbors,
through the network structure and the epidemic dynamics.
The strategic form (see e.g., [16]) of the static game under
consideration is therefore given by:

G :=
(
K,
(
Uk
)
1≤k≤K ,

(
Jk
)
1≤k≤K

)
, (3)

in which the players (nodes of the network) are the regions of
a country (or simply countries); the action space for Player k
is given by Uk = [Umin

k , Umax
k ] ⊂ (0, 1); the individual cost

function of Player k ∈ K is given by Jk in (2). Region k ∈ K
expresses its interests by setting the triple (ak, bk, ck), whereas
the set of action Uk is imposed by a social planner (e.g.,
a country or an international organization, depending on the
nature of the player). In the case where players are countries,
we assume that the social planner might be a worldwide



organization such as the WHO (World Health Organization). In
addition, we emphasize that the theoretical results established
in this paper hold for a multistage game setup in which
the one-shot game is repeated at each stage (for which the
parameters are updated) and different constant control actions
are applied during it. In this letter we make the choice not
to add a constraint on the region states. For instance, there is
no constraint on ik(t, u) to account e.g., for the number of
intensive care units (ICU) in a region. To treat the problem
in presence of coupling constraints one would need to resort
to more advanced notions such as the generalized NE, which
is left as an extension of the proposed analysis. Notice that
the third term of the cost functions can already be seen as
a way of controlling the epidemic and the number of people
requiring ICUs.

C. Efficiency measures

One of the main objectives of this paper is to assess the
potential inefficiencies that might be induced by letting each
region choose its control action. A famous and well-used
measure of global efficiency is given by the Price of Anarchy
(PoA) of a game [17]. Before defining the PoA, let us remind
the definition of a Nash equilibrium (NE). An action profile
uNE is an NE if: ∀k, ∀u′k, Jk(uNE) ≤ Jk(u′k, u

NE
−k ). The PoA

is defined by:

PoA := max
u∈UNE

K∑
k=1

Jk(u)
/

min
u∈U

K∑
k=1

Jk(u), (4)

where UNE is the set of NE of G. The function
∑K
k=1 Jk is

often referred as the social cost of the game. The PoA thus
compares the performance of the worst NE to the performance
of the centralized solution. Implicitly, the PoA assumes that
the social cost is a relevant metric to measure the global
performance. In particular, when the PoA is too high the
decentralization strategy will not be effective at the risk of
observing selfish behavior from Players. To have a second
measure of global efficiency, we also introduce the Price of
Connectedness (PoC), which is defined as follows:

PoC := max
u∈UNE

K∑
k=1

Jk(u)
/ K∑
k=1

min
uk∈Uk

J̃k(uk), (5)

where J̃k(uk) is the cost that Region k would obtain if they
do not consider the influence of the network i.e., the crossing
transmission rates βk`, k 6= `, would be vanishing in (1). This
therefore corresponds to the performance that Region k would
expect to obtain by neglecting the interactions with the other
regions while these actually exist, hence the term PoC. Such
as for the other efficiency measure, we consider that when the
PoC is too high Regions should take into account the network
structure before taking a decision.

III. NASH EQUILIBRIUM ANALYSIS

Since one of our main objectives is to measure efficiency
at NE through the PoA and PoC in (4)-(5), it is necessary
to conduct the complete equilibrium analysis of the NE. This
analysis includes the study of the existence and uniqueness of
the NE.

A. Existence

In this section, we state our main result concerning the
existence of a pure NE. Notice that the existence of a mixed
NE is ensured by the continuity of the cost functions Jk, k ∈ K
(see [16]), but it is of no practical interest in our setting. The
existence of a pure NE is strongly related to the geometrical
properties of the cost functions Jk, k ∈ K, such as the quasi-
convexity properties. Since the dependency of the third term
of Jk on uk is not explicit, the quasi-convexity analysis of Jk
appears to be a non-trivial problem. This is the reason why
we define a working regime in which it is possible to prove
that Jk is quasi-convex w.r.t. uk.

Weak Interconnection regime (WIR): The game G is said
to be in the WIR, if ∀(k, `) ∈ K2 : ` 6= k there exists
νβ,k > 0 such that βk` ≤ νβ,k and Jk is quasi-convex w.r.t.
uk on Uk (i.e, ∀u−k ∈ U−k, ∀λ ∈ R, the lower level set
Lk(u−k, λ) := {uk ∈ Uk : Jk(uk, u−k) ≤ λ} is convex).

The motivation behind the definition of the WIR is given
by the following result.

Proposition 1: In the WIR the game G has at least one pure
NE.
Proof: See Appendix-A. �

An important practical question would be: ”When is the
game in the WIR?”. To answer this technical question, let us
introduce the following working assumption.

Assumption 1: Let ∀(k, `) ∈ K2, ρk` := βk`/γ`.
Condition (i): The matrix B̂ whose entries are given by:
B̂k,` = βk`, is non-singular.
Condition (ii): ∀k, ∀u, ∀T ∈ T one has that sk(t, u) > 0.
Condition (iii): T = R≥0 where
T :=

{
t ∈ R≥0 : ∀k, ∀u, (1− uk)sk(t, u) ≤ 1∑K

`=1 ρk`

}
.

Condition (i) is ensured when B̂ is strictly diagonally dom-
inant (which is often the case in practice because intra-
regions interactions are much stronger than inter-regions
ones); Condition (ii) is trivially satisfied as far as the
epidemic does not affect the entire population; Condi-
tion (iii) is needed to characterize a bound for the inter-
regions interactions i.e., to quantitatively describe the WIR

with νβ,k :=

(
min
`∈K

γ`

(1−Umin
k )s0k

− βkk
)/

4. In what follows,

we propose to exhibit a sufficient condition such that the
game is in the WIR. To establish the corresponding re-
sult, a few notations are in order. Let T ∈ T , u ∈
U and s(T, u) = (s1(T, u), . . . , sK(T, u))>, i(T, u) =
(i1(T, u), . . . , iK(T, u))>, r = (r1(T, u), . . . , rK(T, u))>. To
be able to express the derivative of sk w.r.t. uk and exploit
the implicit function theorem, let us introduce the two square
matrices B := diag(1 − u)B̂ and Γ := diag(γ), where
γ := (γ1, . . . , γK). The reformulated system (1) in a collective
dynamics form: ∀t ∈ [0, T ],

∂s

∂t
(t, u) = −diag(s(t, u))Bi(t, u)

∂i

∂t
(t, u) = diag(s(t, u))Bi(t, u)− Γi(t, u)

∂r

∂t
(t, u) = Γi(t, u).

(6)

Using (6) and [5, Section 2], one can write the following



identity:
d

dt
[BΓ−1 (s(t, u) + i(t, u))− ln(s(t, u))] = 0. (7)

Therefore, by integrating (7) on [0, T ], one has that
BΓ−1(s(T, u) + i(T, u)− x0) = ln(s(T, u))− ln(s0),

where s0 = s(0, ·), i0 = i(0, ·) and x0 = s0 + i0. Let F : U ×
(0, 1]2K → RK such that, for any k ∈ K, the kth-component
of F is given by Fk : U × (0, 1]2K → R:

Fk(u, s, i) = (1− uk)

K∑
`=1

ρk`
(
s` + i` − x0`

)
+ ln

(
s0k
sk

)
.

We define the set of non-monotonic players as KNM :=
{k ∈ K : Jk is not monotone w.r.t. uk}, (i.e., k ∈ KNM if the
assigned weights of socio-economic and health losses are such
as Jk is non-monotone w.r.t. uk).

Now that we have introduced all the notations needed to
establish the main result of this letter, let us exhibit the
following key Lemma that provides, ∀k ∈ K, a lower-bound
on the derivative of sk w.r.t. uk.

Lemma 1: Under Assumption 1, ∀T ∈ T , ∀u ∈ U and
∀(k, `) ∈ K2 one has ∂sk

∂u`
(T, u) ≥ 0 and

∂sk
∂uk

(T, u) ≥
sk(T, u) ln

(
sk(T, u)

s0k

)
(1− uk) [(1− uk)ρkksk(T, u)− 1]

.

Proof: See Appendix-B. �
The following Theorem establishes the main result of this

paper, by ensuring that the game G is in the WIR.
Theorem 1: Let T ∈ T . Suppose Assumption 1 holds and

the less restrictive action profile umin = (Umin
1 , ..., Umin

K ) ∈
[0, 1)K verifies that, ∀k ∈ KNM,

(1− Umin
k )sk(T, umin) ≥ 1

/
(2ρkk).

Then, the game G is in the WIR.
Proof: See Appendix-C. �

The additional condition we introduce means that if the
epidemics are sufficiently controlled, then the game G is a
quasi-convex game that ensures the existence of a pure NE,
according to Proposition 1. In practice, that would mean
that the social planner would need to track the regions at
least partially (e.g., by imposing some minimum epidemic
management measures).

B. Uniqueness

In practice having the uniqueness of the NE may be a useful
feature for a government (when players are the regions) or for
an international organization (when players are countries). It
is typically convenient to be able to predict the outcome of the
game. If the game models the interactive situation sufficiently
well, an NE can be effectively observed. If there is only one
NE, the situation becomes predictable, which is not the case in
the presence of multiple equilibria. It is known that uniqueness
typically requires additional conditions ([16]). The following
result establish the uniqueness property of the NE, and the
convergence of the sequential best-response dynamics.

Theorem 2: Suppose that ∀k ∈ K,

∂2Jk
∂uk2

(u) >

K∑
`=1, 6̀=k

∣∣∣∣ ∂2Jk∂uk∂u`
(u)

∣∣∣∣ .

Then G has a unique NE, and the sequential best-response
dynamics converges to this equilibrium.
Proof: See Appendix-D. �

We should note that, if the conditions of Theorem 1 hold
for all k ∈ K, then Jk is strictly convex w.r.t. uk that is,
∂2Jk
∂uk

2 (u) > 0. Here, the additional condition of Theorem 2
requires that the dependency of the second derivative of Jk
w.r.t. the control actions of the other regions is sufficiently
small. The latter is both useful to predict the epidemic ten-
dency when its management is decentralized and to compute
the NE (so the PoA and PoC).

Remark. If the game is not in the WIR but KNM = ∅, the
costs Jk are all individually quasi-convex and the existence
of a pure NE is ensured. Moreover, there is a unique pure
NE which lies at the extreme of the interval U , in particular
whatever the values of βk`.

IV. NUMERICAL PERFORMANCE ANALYSIS

The goal of this section is to quantify the PoA and
PoC numerically for a Covid-19-type scenario. The proposed
methodology can be applied to other epidemic scenarios where
multiple regions are involved. Motivated by a scenario which
has been studied by the French government in May 2020.
We assume that France is divided in K = 5 regions and
we propose to observe the influence of the inter-region virus
transmission rates βk` on the PoA and PoC. To choose
the epidemic’s parameters, we have exploited the studies on
Covid-19 that have been conducted in [14], [18], [19]. We
assume that: Regions k ∈ {1, 2} have selected the weight
ak, bk and ck such that only the socio-economic losses matter;
Regions k ∈ {3, 4, 5} weighted the weights of each of the
losses such that KNM = {3, 4, 5}; see the Table I.

k γk βkk s0k i0k ak bk ck
1 0.15 3γ1 0.8 0.2 2 0 0
2 0.15 2γ2 0.9 0.1 0.5 0 0
3 0.15 1.5γ3 0.9 0.005 5 2 50
4 0.15 1.2γ4 0.9 0.002 2 5 70
5 0.15 1γ5 0.9 0.001 3 5 70

TABLE I: Epidemic and Game parameters

The time horizon of the considered epidemic phase is
set to T = 30 days [20], [21], [22]. The coupled SIR
model is implemented by using the Matlab ODE45 solver
with the Runge-Kutta scheme. The action space is chosen
by the social planner such as: ∀k ∈ K, Umax

k = 0.9,
umin = (0.6, 0.51, 0.35, 0.2, 0.1) and Uk = {Umin

k , (Umax
k −

Umin
k ) · 0.1, . . . , Umax

k }. In view of the Table I, the Theorem
1 holds, when the inter-region virus transmission rates βk` are
lower than the constant threshold νβ,k = 1

4 ·(
γk

(1−Umin
k )s0k

−βkk),
which is reasonable in view of the situation in France provided
by the National Institute of Statistics and Economic Stud-
ies (INSEE) in [23, Table 6-8]. By applying an exhaustive
search to find the NE and the social optimal, we show
in Fig. 1 and 2 the interpolation of the PoA, PoC w.r.t
βk`, ∀k 6= `. Each curve corresponds to a scenario where
all incoming transmission rates from a given region vary



uniformly (i.e.,∀` 6= k, βk` ∈ {0, 1 · 10−3, . . . , 1.2 · 10−2}),
whereas the other transmission rates are fixed at the threshold
value νβ,k. We observe that the PoA can be as large as 1.2
for crossing rates greater than 0.2%. Therefore, the outcome
in this case is that the social planner should not decentralize
the decision making. We emphasize that, when βk` ≥ νβ,k
the simulation does not fit into our theoretical setup. The PoC
measures the impact of ignoring the connection with other
regions is even larger and reaches values as large as 3, which
shows that a region has a strong interest in accounting for the
crossing rates to manage the epidemic locally.

Fig. 1: Interpolation of PoA by varying uniformly the incoming transmission
rates of each Region k. The dotted curves do not fit into our theoretical setup.

Fig. 2: Interpolation of PoC by varying uniformly the incoming transmission
rates of each Region k. The dotted curves do not fit into our theoretical setup.

Fig. 3: Interpolation of infected proportions in each Regions k ∈ {3, 4, 5}.
uNE= Nash equilibrium strategy; uopt= optimal centralized strategy; umin=
less restrictive policy.

In view of the weights ak, bk, ck given in the Table I,
a natural question should be raised: “How is the epidemic
spreading in the regions k ∈ {3, 4, 5}?” Fig. 3 shows the
evolution over the time of ik, for k ∈ {3, 4, 5}, when different
strategy is considered and ∀k 6= `, βk` = νβ,k. Quantitatively
we observe that: when either the NE or optimal strategy
is applied, the maximum proportion of infected in Regions
k ∈ {3, 4, 5} is less that 0.94%, i.e. if the population sizes in
Regions k ∈ {3, 4, 5} are similar to the region “Île-de-France”,

then the infected proportions are upper-bounded by 112 800
cases, when policy-makers apply either NE or centralized
strategy.

V. CONCLUSION

The conducted Nash equilibrium analysis of the proposed
game largely relies on the individual quasi-convexity of the
cost function of a region. Because one cannot express the
state of the fraction of ”susceptibles” as a function of the
control actions, this analysis turns out to be non-trivial. We
exhibit a regime in terms of coupling degree among the
regions in which existence is guaranteed; this regime appears
to be non-limiting for real scenarios. The numerical analysis
allows one to clearly quantify what is lost when regions
or countries decide by themselves the way to manage the
epidemic locally, without coordination. The proposed approach
might be improved e.g., by integrating coupled constraints, by
investigating a dynamical game formulation of the problem, or
by performing a deeper numerical analysis on the impact of the
graph on the price of anarchy and the price of connectedness.

APPENDIX

A. Proof of Proposition 1

Since the action space of each player Uk is a convex,
compact and non-empty set; the costs Jk are jointly continuous
that is continuous w.r.t. the action profile u ∈ U ; the costs Jk
are quasi-convex w.r.t. uk on Uk. Then, the game G is a quasi-
convex game. By Debreu-Fan-Glicksberg theorem for quasi-
convex games [16, Theorem 50], the existence of a pure NE
is guaranteed.

B. Proof of Lemma 1

Let k ∈ K, u ∈ U , T ∈ T and, X :=
(
u, s(T, u),

i(T, u)
)
∈ U × (0, 1]K × (0, 1]K such that F (X) = 0. In

what follows, we denote by:
D :=

(
diag(s(T, u))−1 − diag(BΓ−1)

)−1
,

B := B − diag(B).

In view of the expression of F , we have that:
∂F

∂s
(X) = −D−1

(
IK −DBΓ−1

)
,

∂F

∂u
(X) = −diag(1− u)−1diag

(
ln (s(T, u))− ln

(
s0
))

.
According to Condition (iii) in Assumption 1, we derive that,∥∥DBΓ−1

∥∥
∞= max

k∈K

K∑
`=1, 6̀=k

∣∣∣∣ (1− uk)ρk`

sk(T, u)−1 − (1− uk)ρkk

∣∣∣∣ < 1.

Therefore, the Neumann series converges and,(
IK −DBΓ−1

)−1
=
∑+∞
k=0

(
DBΓ−1

)k
.

According to the implicit function theorem, it follows that,
∂s

∂u
(T, u) = −

[
∂F

∂s
(X)

]−1
∂F

∂u
(X).

We denote by ∂̂s
∂u (T, u) the approximation of ∂s

∂u (T, u)
at the first order of the Neumann series, such that,
∀k, `, ∂̂s

∂u (T, u) :=
(
IK + DBΓ−1

)
D ∂F

∂u (X). Therefore,

∀k, `, ∂sk
∂u`

(T, u) ≥ ∂̂sk
∂u`

(T, u) ≥ 0, since Condition (iii) of



Assumption 1 holds. The lower bound of ∂sk
∂uk

(T, u) given in

Lemma 1 corresponds to ∂̂sk
∂uk

(T, u).

C. Proof of Theorem 1

The goal of this proof is to ensure that ∀k ∈ K, Jk is
quasi-convex w.r.t uk ∈ Uk. We know that, ∀k ∈ K \ KNM,
Jk quasi-convexity property holds. In what follows, we are
interest in to show the convexity of costs Jk for Players k ∈
KNM. Therefore, we propose to analyze in a first step the
convexity of ik w.r.t uk, which allows us to discuss about the
concavity of sk w.r.t uk for k ∈ KNM.

Let k ∈ KNM, u ∈ U , T ∈ T and X :=(
u, s(T, u), i(T, u)

)
∈ U × (0, 1]K × (0, 1]K such that

F (X) = 0. By following the same reasoning as in Lemma
1, we apply the implicit function theorem to the function F :

U×(0, 1]K×(0, 1]K → RK with:
∂F

∂i
(X) = diag(1−u)B̂Γ.

Hence, we derive that

∂ik
∂uk

(T, u) =

[
∂F

∂i

−1
(X)

∂F

∂u
(X)

]
k,k

=
γkb

inv
kk ln

(
sk(T,u)
s0k

)
(1− uk)2

,

where binvkk is the (k, k)th element of B̂
−1

. Let u−k ∈ U−k,

λ ∈ R, (uk, uk) ∈
{
uk ∈ U :

∂ik
∂uk

(T, u) ≤ λ
}

such that uk ≤
uk. Given that: (i) ∀α ∈ [0, 1], uk ≤ αuk + (1− α)uk ≤ uk;
(ii) sk is increasing w.r.t. uk; we derive the quasi-convexity of
∂ik
∂uk

w.r.t uk, since the following holds.

∂ik
∂uk

(T, αuk+(1−α)uk, u−k) ≤
γkb

inv
kk ln

(
sk(T,uk,u−k)

s0k

)
(1− uk)2

≤λ.

Let us write the second derivative of ik w.r.t. uk,
∂2ik
∂u2k

(T, u)

=
γkb

inv
kk

(
∂sk
∂uk

(T,u)(1−uk)+2sk(T,u) ln

(
sk(T,u)

s0
k

))
(1−uk)3sk(T,u)

. By combin-
ing with the lower-bound of ∂sk

∂uk
given in Lemma 1, we

derive that ∂2ik
∂u2

k
(T, u) ≥

γkb
inv
kk ln

(
sk(T,u)

s0
k

)
(1−uk)3

Gk(u) where

Gk(u) :=
(

−γk
γk−sk(T,u)(1−uk)βkk

+ 2
)
. In view of the con-

dition given in Theorem 1, it follows that Gk(umin) ≤ 0

then ∂2ik
∂u2

k
(T, umin) ≥ 0. Since ∂ik

∂uk
is quasi-convex w.r.t.

uk, then ∀T ∈ T and ∀u ∈ U , ∂2ik
∂u2

k
(T, u) ≥ 0. Since,

∀k, rk(T, u) =
∫ T
0
γkik(t, u)dt, it follows from the Leib-

niz’s rule for differentiation under the integral sign that
∂2rk
∂u2

k
(T, u) =

∫ T
0
γk

∂2ik
∂u2

k
(t, u)dt ≥ 0. Hence, ∀T ∈ T , ∀u ∈

U , ∂
2sk
∂u2

k
(T, u) ≤ 0, since sk = −ik − rk.

To conclude this proof, ∀k ∈ K, Jk is quasi-convex then by
definition the game G is in the WIR.

D. Proof of Theorem 2

According to [24, Section 2.5-2.6], a sufficient condition to
ensure the contraction of the Best-response mapping given by,

BR(·) =

(
argmin
u∈U1

J1(u, ·), . . . , argmin
u∈UK

JK(u, ·)
)

is to verify

the strict diagonal dominance condition, which yields that:[
∇2J

]
1≤k,`≤K =

[
∂2Jk
∂uk∂u`

]
1≤k,`≤K
> 0⇒ ∇2J+∇2J> > 0. Hence,

according to [25, Theorem 2 and Theorem 6], the diagonally
strictly convexity (DSC) condition is verified that ensures the
uniqueness of the NE. Moreover, in view of [24, Section 2.5],
the sequential best-response algorithm converges to the unique
Nash equilibrium of the game G.
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