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Abstract

The computational workload involved in CNNs is typically out of reach for low-
power embedded devices. The Approximate Computing paradigm can be exploited to
reduce the CNN complexity since it improves performances and energy-efficiency by
relaxing the need for fully accurate operations. In this work, we target weight-sharing
as an approximate technique to reduce the memory footprint of a CNN. More in detail,
we prove that optimizing the number of shared weights can enable significant network
memory compression without noticeable accuracy loss without retraining or fine-tuning
steps. However, we observe that the exploration time can easily explode in state-of-
the-art CNNs. We thus propose the use of a fast accuracy estimation metric to guide
the design space exploration and drastically reduce the exploration time up to 12×.
Compared with state-of-the-art CNN approximation methods, we obtained more than
4× compression on GoogleNet on the ImageNet dataset with less than 1% accuracy loss
in less than 5 hours and without any retraining step.

Keywords: Convolutional Neural Networks, Approximate Computing, Model
Compression, Weight Sharing, Design Space Exploration, Embedded System

1. Introduction

Deep Neural Networks (DNNs) are currently one of the most widely used predictive
tools in the field of machine learning. They are used today in various applications such
as object recognition, drug discovery, and natural language processing, as well as safety-
critical applications like autonomous driving. Recent DNNs are articulated around the
use of multiple chained convolution layers, called Convolutional Neural Networks (CNNs),
using a dot product between input and filter [1].

Unfortunately, the computational workload and memory footprint of CNNs are often
out of reach for low-power embedded devices [2]. For example, the amazing performance
of AlphaGo [3] required a supercomputer composed of 2,000 CPUs and 250 GPUs for
a total of about 600 KW of power consumption, while the human brain of a go player
requires about 20W.
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Novel computing paradigms and emerging technologies are under investigation to
make CNNs available for low-power devices. Among them, the Approximate Computing
(AxC) paradigm leverages the inherent error resilience of CNNs to improve energy effi-
ciency, by relaxing the need for fully accurate operations. CNNs have a high degree of
redundancy in terms of their architecture and parameters, this redundancy is not always
necessary for accurate prediction. This observation has paved the way for several highly
recognized approximation techniques [2] such as pruning[4], quantization[5], low-rank
factorization[6], and weight-sharing[4].

In this work, we intend to investigate the opportunity of Weight-Sharing (WS). How
WS can help in reducing the memory footprint of CNNs, what is the best granularity
(i.e., network-, layer-, channel- or kernel-wise) to apply it and finally develop a framework
to allow design space exploration for approximating CNNs. The main contributions of
this paper can be summarized as follows:

1. We present the WS and its implication in CNN compression;

2. We present a granularity analysis to identify the best opportunity for WS applica-
tion;

3. We propose the use of a heuristic design exploration method based on a fast accu-
racy estimation metric for the efficient CNN compression;

4. Thanks to the proposed metric, we were able to implement a multi-objective design
space exploration to identify trade-offs between compression and accuracy.

The rest of the paper is organized as follows: Section 2 introduces the concepts and
state-of-the-art weight-sharing AxC technique. Section 3 describes the proposed weight-
sharing exploration. Section 4 introduces the adopted heuristic while Section 4.1 presents
the obtained results. Finally, Section 5 concludes the paper.

2. Weight-Sharing Approximation Related Works

A wide range of approximation techniques targeting CNN has been proposed so far
in the literature. Among them, we distinguish between three different classes. The first
class, known as structure refinement, includes the techniques that modify the computa-
tional structure (i.e., the network layers and their parameters) of a given CNN model.
Some notable examples include the knowledge distillation [7] that uses the model as a
teacher to train smaller models (i.e., students); compact architectures [8] where layers are
transformed into more hardware-friendly ones; and the Neural Architecture Search [9]
that identify the most appropriate CNN architecture satisfying a given set of constraints.
The second class, known as data refinement, focuses on optimizing the finite precision
data representation of the given CNN model without modifying its computational struc-
ture. Notable examples are the weight pruning [10] aiming at setting less important
weights to zero; the quantization [11] aiming at changing the data types of the weights
and intermediate results to more efficient representations (i.e., lower bit-width); and the
weight-sharing [4] aiming at replacing clusters of similar weights with a common (shared)
value. The third class, named operator refinement includes all the techniques aiming
at approximating the arithmetic operators used by the given CNN model computation
structure [12].

2



In this paper, we focus on the Weight-Sharing (WS) technique, which belongs to the
second class and targets a reduction in the number of different weight values to achieve a
significant reduction of the CNN memory footprint. WS identifies clusters of weights
and replaces all the weights belonging to the same cluster by the cluster’s centroid. Let us
resort to the example of Figure 1 where starting from an initial 5x5 convolutional kernel
matrix, clustering is applied. Usually, clusters are identified by using the K-means [13]
algorithm as described in DeepCompression [4].
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Figure 1: Weight-Sharing example for a 5x5 matrix with weight values grouped in 5 different clusters

From the original matrix in Figure 1,K-means is applied to identify 5 different clusters
(i.e., depicted through colors) corresponding to cluster centroids (0, 5, 10, 15, and 20).
These values are stored in the so-called WS table. In our example, we have weight values
represented as integer values stored in 8-bit variables. The 5x5 convolutional kernel
matrix will thus require 200 bits of memory (5x5x8 bits). On the other hand, the WS
table requires 40 bits of memory (each centroid value is still represented as an 8-bit
integer). However, in the kernel matrix, we will store only the centroid index (from 0 to
4) instead of its value. We thus only need 3 bits per index, leading to 75 bits of storage.

3



To sum up, the memory footprint will be 115 bits (40 bit + 75 bit) much lower compared
to the original 200 bit. Memory footprint reduction is thus the main advantage of WS,
however, it is important to mention that reducing memory usage also implies less energy
consumption because fewer data have to be transferred from/to memory (i.e., this is the
well-known architectural power-wall problem as discussed in [14]).

More formally, we can define the memory footprint reduction as follows. The size of
the weight matrix can be reduced from B bits for each value to ⌈log2(K)⌉ with K being
the number of clusters.

The size of the memory footprint then becomes W × ⌈log2(K)⌉ +K × B instead of
W × B, where W is the number of weights. We can thus define the Compression Ratio
(CR) as

CR =
W ×B

W × ⌈log2(K)⌉+K ×B
. (1)

In the literature, there are many practical applications of WS. Existing solutions
differ from the abstraction layer, the use of combined techniques, and the need for re-
training steps after the approximation to compensate for the accuracy loss. A simple WS
application is the vector quantization [15], where a model-level WS approach based on
K-means is applied to fully connected layers of a trained network. Hashed net[16] pro-
poses to randomly group weights into buckets sharing the same value before the training
step. A more efficient method is presented in DeepCompression [4], it achieves impressive
results due to the use of several model-level AxC techniques as pruning, WS, and cod-
ing. Deep K-means [17] uses regularization terms to encourage weights to concentrate
at retraining time. Moreover, it also targets the architecture level by exploiting data
re-shaping techniques optimized for higher data reuse with row-stationary dataflow[18]
at inference time. Soft weight-sharing[19] uses a simple (re)training step with a regu-
larizer to efficiently compress the network using pruning and weight-sharing. It is also
possible to reduce complexity by encoding both weights and features maps. Then, at the
architecture-level, it computes multiplications using a lookup table. Both LookNN[20]
and Quantized CNNs[21] are based on this concept and achieve good results at inference
time, particularly if energy efficiency is taken into account.

Although CNN retraining after approximation allows accuracy loss recovery, there
are many reasons to develop design methods that can largely benefit from clustering
without requiring any further retraining. For example, retraining may require access to
the full training data which may not always be possible due to the size of the entire
dataset or to legal and privacy compliance reasons. Furthermore, training is a long and
compute-intensive step, and thus, it is costly and can delay the CNN time-to-market.

In our previous works [22, 23], we developed a simple, but efficient, cluster identifica-
tion method. The method was first based on the identification of the layers’ sensitivity
to approximation. Then, a greedy algorithm aims at identifying, for each layer, the best
number of clusters. Every time a solution is generated, the whole CNN model is evalu-
ated (i.e., scored) to quantify the impact of the WS on the inference accuracy. Due to the
high computational cost of CNN scoring, the previous approach could not scale to the
size of state-of-the-art CNN models. Instead, in this work, we propose a new exploration
method based on a fast accuracy estimation metric to drastically reduce the number of
scoring, and thus, the overall computational time. Moreover, we also extend our explo-
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ration framework to optimize the WS application for maximizing the compression rate
(Eq. 1) and, at the same time, minimizing the impact on the CNN accuracy.

3. Weight-Sharing Exploration

This section presents the approach used for exploring the opportunities of approx-
imating CNNs using weight-sharing. We first present the granularity analysis used to
identify the best WS application, then the proposed design space exploration.

In the previous section, we show that the number of clusters K plays a crucial role
in terms of CR and accuracy. The term “accuracy” is the capability of the CNN to
correctly behave. For example, if the CNN is supposed to classify images then, its
accuracy is quantified as the ratio between correct classifications over the number of
processed inputs. When the correct label corresponds to the first ranked output, we
refer to the term “top-1” accuracy. When correct classification corresponds to the first
five ranked outputs, we refer to the term “top-5” accuracy.

To show how can vary the accuracy of a CNN w.r.t. K (i.e., in our case K is the
degree of approximation), we resort to the chart depicted in Figure 2. The target CNN
is the MobileNet V2 [24] trained using the ImageNet database [25]. The chart only
reports the first layer. On the X-axis, we plot different K (from 0 to 120) and the Y-axis
reports the achieved accuracy. The accuracy strictly depends on K. We can easily note
that around K = 38 the top-1 accuracy is really close to the reference one (the black
bar). It is really important to mention that the reference layer has 864 weights. Each
weight is stored into a 32-bit floating-point variable leading to a memory footprint of
27,648 bits. Now if we keep 38 clusters, we need 5,184 bits for storing the 864 cluster
indexes (6 bits each) plus 1,216 bits for storing the 38 centroids values. The achieved
CR is about 4× without any accuracy loss. The CR changes depending on the
bit-width of the CNN weights. In the above example, if 16-bit data types are
used, the CR will be 2×, while for 8-bit the CR will be 1.25×. In this paper,
we only consider CNN models where weights are represented using a 32-bit
floating-point variable to fairly compare our approach with the state of the
art.

This example confirms once again the potential of the WS technique. However, to
approximate a CNN using WS, one could try to act at different granularity here listed
from coarser to finer grain:

• Layer : all the weights of a layer are clustered together;

• Channel : all the weights of a filter are clustered together;

• Kernel : all the weights of a channel corresponding to a specific input channel are
clustered together.

Figure 3 shows a graphical example of the above granularity level for a given con-
volutional layer. Each of the above granularity levels allows to achieve different CRs
(eq.1) and accuracy loss w.r.t. the reference (non approximated) CNN. Figure 4 plots
the trade-off obtained at different levels of granularity. These experiments were carried
out on LeNet. Each solution corresponds to a network with a certain number of clus-
ters. The results clearly show that the “kernel” and “filter” granularity does not lead
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Figure 2: Achieved top-1 accuracy, obtained by varying the number of shared values for the first layer
of MobileNet V2[26]

to a good tradeoff between compression and accuracy. On the other hand, the “layer”
granularity allows up to 3/times higher compression ratios for the same accuracy loss.
For the remainder of the paper, we thus exploit the layer granularity in our weight
sharing technique. The complete description of this analysis is provided in [27].

In the next subsection, we will present our design space exploration for approximating
CNNs.

3.1. Design Space Exploration for AxCNNs

Figure 5 sketches the overall flow of the proposed design space exploration for Approx-
imate CNNs (AxCNNs). The starting point is a trained CNN (i.e., the Reference CNN)
with the Dataset (DS) used for training. We got trained CNNs and DS from the open-
source framework ONNX [28] model zoo. It is important to mention that our AxCNNs
framework is fully compatible with any CNNs described in ONNX format. Therefore,
any ONNX-compatible framework can be used for training. The reference CNN (Ref
CNN in Figure 5) is then “scored” on the Testing Dataset to measure its Accuracy. The
CNN scoring is implemented by using MXNET[29].

Algorithm 1 shows the pseudo-code of the approximation framework implementing
the WS. It takes as input the Reference CNN, its accuracy, the number of clusters k

6



Figure 3: Different granularities for the weight sharing. Weights can be shared at the level of the layer,
the channel or the kernel.

expressed as a range (min to max), and the testing Dataset. The algorithm processes one
CNN layer at a time. For each layer, the K-means algorithm is executed by varying the
number of clusters K from minCluster to maxCluster. The K-means is implemented
using the libKMCUDA [30], a CUDA-based K-means library. Each K-means execution
provides an approximation of the CNN. The latter is scored to determine the accuracy
loss. At the end of the clustering loop, the best K is determined. Before moving to the
next layer, the current CNN layer is approximated through weight sharing based on the
best k. At the end of the algorithm, we compute the final accuracy of the approximate
CNN and the compression rate. The approximation framework is thus based on a greedy
algorithm with a complexity equal to O(N × |Krange|), where N is the number of layers
composing the CNN and |Krange| is maxCluster −minCluster.

3.2. Experimental Setup

In this section, we present the experimental setup used for the validation of the
AxCNNs flow of Figure 5. First of all, we targeted three state-of-the-art image classifier
CNNs trained and tested using the ImageNet[31] dataset working with 224x224 images
with 1,000 class output. CNNs trained model came from the ONNX model zoo.

Table 1 presents the details of each CNN in terms of computing complexity measured
as the number of Multiply ACcumulate operations (#MAC), the number of layers, mem-
ory footprint representing the size of weights in MegaBytes (each weight is stored in a
32bit floating-point format) and the top-1 accuracy. Each selected CNN implements a
specific trade-off between accuracy versus complexity. We considered the following three
targets:
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Figure 4: Top-1 accuracy loss and memory compression over varying numbers of clusters at different
sharing granularity citeDupuis2020autoWS

• Accuracy: This target aims to maximize the accuracy of the CNN thus leading
to the highest computational complexity (almost 2 GOPS required for inference)
and memory footprint (almost 50 megabytes are required to store the weights of
the model) (ResNet18 v2 [26]);

• Memory: This target aims to minimize the memory footprint (less than 2 megabytes)
of the CNN thus leading to the lowest accuracy and low computational complexity
(less than 0.5 GOPS) (SqueezeNet v1.1 [32]);

• Energy efficiency: This target aims to minimize the energy required during the
inference thus leading to the lowest computational complexity(less than 0.5 GOPS)
medium memory footprint (14 megabytes) and good accuracy (MobileNet v2 [24]).

We performed experimental validation of Algorithm 1. All the experiments were
executed on a server equipped with a single NVIDIA TESLA V100 GPU and the latest
CUDA version of MXNET[29] for the CNN scoring. The results are presented in Table
2.

For each Network, we report the clustering range (Krange from min to max), the
Accuracy Loss (AL), the Accuracy Ratio (AR), the Compression Ratio (CR), the number
of iterations (#It), the time required to execute all the Kmeans() functions, the time
required to execute all the score() functions and in the last column the total time (i.e., the
sum between the Cl. and Sc. time). Before analyzing the results, let us briefly describe
the overall set-up. First of all, the clustering range has been empirically determined
for each network in the same way as the example reported in Figure 2. That means,
that for each CNN layer, we execute the k-means algorithm until we reach the reference
accuracy. This explains why different CNNs have different Kranges. The Accuracy Loss
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Figure 5: Overall flow of the proposed method

is computed as the difference between Reference accuracy and Approximate accuracy.
The Accuracy Ratio is computed as the ratio between the Approximate accuracy over the
Reference accuracy. The CR is computed through equation 1. The number of iterations
is simply obtained as the number of elements of the Krange times the number of CNN
layers.

The first comment on the results is about the important CR that has been obtained.
We were able to successfully compress each of the reference networks by up to 5× with a
very small accuracy loss (less than 1.5%). The interesting point is that the CR depends
mostly of the input range for the number of shared values and is rather constant for the
different CNNs shown in Table 2. In fact, even for SqueezeNet v1.1, which is already
designed to have a very low memory footprint, we achieve a 5× CR. In other words, even
if the reference CNN has been designed to be efficient in terms of the memory footprint,
we were able to further reduce it. The second comment is about the achieved accuracy
ratio. We clearly paid the price of the approximation, however, the AR is always greater
than 97%. We can thus safely state that the accuracy loss due to the approximation is
negligible (up to 1.43%).

The last comment is about the required execution time. The cost of Algorithm 1
is dominated by more than 90% by the scoring time (i.e., the time to execute the
inference of the test dataset to measure approximated CNN top-1 accuracy). Hower as
the complexity of the algorithm is Ø(N ∗ |Krange|), with N being the number of layers
and Krange the number of solutions evaluated for each layer. This limited scalability
prohibits the use of Algorithm 1 for larger networks. In the next section, we thus present
an indirect way to estimate the accuracy of CNN without running the inference.
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Algorithm 1: Design Space Exploration

Input: CNN , minCluster, maxCluster, RefAccuracy, DS,
inertiaF iltreRatio
Output: AxCNN , AxCAccuracy, CR

1: for layer in getLayers(CNN) do
2: modelSet← [];
3: i← 0;

// Compute different version of the layer with different number of cluster
4: for K ← minCluster to maxCluster do
5: modelSet[i]← Kmeans(CNN [layer],K);
6: i← i+ 1;
7: end for

// Score versions and select the best
8: bestAccuracyLoss← None;
9: for j ← 0 to i do

10: accLoss← (RefAccuracy − score(modelSet[j], DS));
11: if accLoss < bestAccuracyLoss then
12: bestAccuracyLoss← accLoss;
13: bestK ← K;
14: end if
15: end for
16: end for

Table 1: Characteristics of the selected CNNs

Network Target #MAC #layer Memory
Top-1

Acc. (%)
ResNet18v2 Accurate 1,82x109 21 48Mb 69,7

SqueezeNetv1.1 Compressed 0,36x109 26 1,6Mb 57.5
MobileNetv2 Efficient 0,32x109 54 14Mb 70,8

4. Sensitivity Metric

The key to identifying an alternative to the need of scoring each CNN approximation
relies on the analysis of the k-means algorithm. Indeed, k-means clusters data by trying
to separate samples in k groups of equal variance, minimizing a criterion known as the
inertia or within-cluster sum-of-squares [33] defined by the following equation:

Inertia =

N∑
i=0

min
µj∈C

(||xi − µj ||2) (2)

with N is the number of samples, xi is the ith sample, K is the number of clusters,
C is the clusters and µj are the centroids. Inertia can be described as a measure of how
coherent are the clusters, and the lower the inertia the better the coherence. We thus
argued that the inertia could be a good estimation of the accuracy of the approximated
CNN, the lower the inertia the higher the accuracy.
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Table 2: AxCNNs DSE Results obtained with Algorithm 1

Network Krange AL AR CR #It Cl. time Sc. time Tot. Time
ResNet18v2 40-80 0.22% 99.68% 5.28 840 02:19:51 13:50:40 16:10:31

SqueezeNetv1.1 40-80 0.53% 99.05% 5.17 1040 00:06:51 12:58:38 13:05:30
MobileNetv2 2-120 1.43% 97.98% 4.85 6372 01:12:54 84:49:10 86:02:05

(a) Layer 1 of MobileNet V2 (b) Layer 154 of MobileNet V2

Figure 6

Correlation between the inertia and the top-1 accuracy for two distinct layers of Mo-
bileNet V2[24]. Having different number of weights (i.e., 864 for layer 1, 1,280,000 for
layer 154) results in different correlation profiles.

Figures 6 report two examples of how good is the inertia as accuracy loss estimation by
showing the inertia and the accuracy loss obtained after clustering layers with Krange =
[2, 120]. Both the examples are related to MobileNet V2 [24]. In particular, we reported
layer 1 of MobileNet (Figure 6a) and layer 154 (Figure 6b). These layers have been chosen
because they have a different complexity expressed in terms of weights: 864 for layer 1,
1,280,000 for layer 154. Both graphs plot the CNN accuracy loss (obtained through CNN
scoring) w.r.t the inertia. Despite the differences, the correlation in the small layer is
not as strong as in the large layer, both cases confirm that lower inertia leads to higher
accuracy.

As the inertia proved to be a good estimation of the approximated CNN accuracy,
we modified Algorithm 1 to use it. In Algorithm 1, after each k-means application,
the approximated CNN has been scored. In Algorithm 2, the idea is to use inertia to
filter a subset of the best approximate candidates to be scored. The number of selected
candidates depends on the inertiaF iltreRatio parameter. The complexity of Algorithm
2 is thus O(N × inertiaF iltreRatio).

4.1. Experiments

The experiments have been carried out under the conditions described in Section 3.2.
Table 3 presents the obtained results. The table format is the same as Table 2 except
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Algorithm 2: Design Space Exploration with Inertia Filtering

Input: CNN , minCluster, maxCluster, RefAccuracy, DS,
inertiaF iltreRatio
Output: AxCNN , AxCAccuracy, CR

1: for layer in getLayers(CNN) do
2: modelSet← [];
3: i← 0;

// Compute different version of the layer with different number of cluster
4: for K ← minCluster to maxCluster do
5: modelSet[i]← Kmeans(CNN [layer],K);
6: i← i+ 1;
7: end for

// Filter the versions of the layers based on their inertia
8: sortByInertia(modelSet);
9: fiteredModelSet← takeNFirst(modelSet, inertiaF iltreRatio ∗ i);

// Score remaining versions and select the best
10: bestAccuracyLoss← None;
11: for j ← 0 to i ∗ inertiaF iltreRatio do
12: accLoss← (RefAccuracy − score(fiteredModelSet[j], DS));
13: if accLoss < bestAccuracyLoss then
14: bestAccuracyLoss← accLoss;
15: bestK ← K;
16: end if
17: end for
18: end for

Table 3: AxCNNs DSE-inertia Results obtained with Algorithm 2

Network Filt. (%) AL AR CR Cl. time Sc. time Tot. Time

ResNet18v2
5 0.47% 99.33% 4.93 02:20:33 00:59:34 03:20:07
15 0.23% 99.67% 4.95 02:26:38 02:27:16 04:53:54
33 0.23% 99.67% 4.94 02:30:03 04:48:00 07:18:04

SqueezeNetv1.1
5 0.57% 98.97% 4.77 00:06:51 01:01:39 04:53:03
15 0.55% 98.01% 4.8 00:06:51 02:15:48 02:22:39
33 0.49% 99.12% 4.73 00:06:52 04:46:11 01:08:31

MobileNetv2
5 2.78% 96.08% 4.54 00:59:12 06:16:21 07:15:33
15 1.58% 97.77% 4.55 01:00:19 18:49:56 19:50:15
33 1.13% 98.41% 4.55 01:07:02 40:57:55 42:04:57
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for the column “Filtering”. Filtering value corresponds to inertiaF iltreRatio parameter
of Algorithm 2. In our set of experiments, we tested the following values: 5%, 15%,
and 33%. Once again, filtering is the percentage of approximate CNN versions that will
be scored. When Filtering is equal to 100, Algorithm 2 has the same complexity and
provides the same results as Algorithm 1.

From the results in Table 3, we can see that at highest values of Filtering generally
results in higher values of AR. This improvement comes at the cost of a higher optimiza-
tion time due to a larger number of candidates passing through the inertia filter to the
costly scoring step. Like in Algorithm 1, the scoring time dominates the clustering time
and the CR is between 4.5 and 5, due to the same input range. However, using a small
filtering value (i.e., 5%, 15%) significantly reduces the overall exploration time with a
limited impact on the compression rate and accuracy loss.

It is particularly interesting to compare the case of MobileNet. Using inertia (Algo-
rithm 2) with the Filtering equal to 33% the achieved AR is 98%, better than the result
obtained with Algorithm 1 (see Table 2). However, the most relevant impact of the
proposed heuristic is on the overall exploration time. In this case, we reduce it by 50%
(i.e., 40 hours instead of 80). When reducing the Filtering value to 5% the AR is just 1%
less than Algorithm 1 but here the execution time reduction by 12/times (i.e., 7 hours
instead of 80). Similar results were obtained for the other CNNs. Looking at CR, we
did not observe a significant difference with the variation of the filtering value. Achieved
CRs are slightly less than those of Algorithm 1 but still significant. These results prove
the efficiency of using inertia as a quick and effective metric for determining the impact
of weight-sharing on CNN.

4.2. Comparison with prior work

We compared our results with the two state-of-the-art methods. The first one, named
Deep K-means [17], adds the K-means objective metric (i.e., inertia as explained at the
beginning of Section 4) to the optimization objective used during training. Applying a
weight-sharing aware training brings weights closer to the cluster centroids, which reduces
the error introduced in the subsequent weight sharing step. They used a fixed cluster
rate defined as the number of cluster K divided by the number of weights of the layer N .
On the other hand, the second method, named DP-Net [34], uses dynamic programming
over the K-means algorithm to optimize the weight sharing. This brings a performance
improvement as well as a guarantee of the convergence of the clustering compared to
the highly-variable K-means complexity. They use a fixed and homogeneous number of
clusters for the network. Both papers [17, 34], reported results on GoogleNet [35] with
the Imagenet dataset. We thus apply our exploration algorithm on the same CNN model
and dataset. More in detail, we use the available GoogleNet Pytorch implementation
achieving 69.78% top-1 accuracy on the Imagenet dataset with standard preprocessing
including normalization,re-scaling, and center-crop. We used an inertia filter value of
15%, which shows the best trade-off between computation time and result. Finally, it is
important to stress the fact that a fair comparison is only possible with Deep K-means
since it is the only approach that can be used without retraining. Table 4 shows the
results of the comparison. The first column depicts the method, the second specifies if
the retraining phase is applied or not. Finally, the third and fourth columns report the
CR and AL respectively. As already pointed out, our approach does not use retraining,
Deep K-means can use it or not, while DP-Net always uses retraining.Even though that
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Table 4: Comparing our result with other weight sharing techniques on GoogleNet[35] using Algorithm 2

Method Retraining CR AL

Deep K-means(2018)[17]

No 1.5 1.22
No 2 3.7
No 3 13.72
No 4 48.95
Yes 1.5 0.26
Yes 2 0.17
Yes 3 0.36
Yes 4 1.95

DP-Net (2020)[34]
Yes 7 -0.3
Yes 10 1.56

Our method No 4.55 0.83

our method is the only one that does not use retraining, our results fall in between the
two reference methods. Interestingly, we achieve a higher CR than Deep K-means at a
lower accuracy loss. It is important to mention that when Deep K-means does not use
retraining, our approach simply works better. For similar CR (about 4x) we achieved
0.83 of Accuracy Loss while Deep K-means got 49% of AL. The DP-Net, however, finds
a more efficient solution by better leveraging the retraining phase. Results of 4 showed
that our approach is comparable with state-of-the-art, even if no retraining is applied.
Unfortunately, no data are reporting the execution time of Deep K-means and DP-Net
for further comparison.However, the execution time of our algorithm took less than 5h
on our NVIDIA Tesla V100 GPU. On the same machine with the same CNN model and
dataset, 5h corresponds to the time required to run about 5 epochs of retraining. We
can thus conclude that our exploration time is far less than the required retraining step
of Deep K-means and DP-Net.

4.3. From single objective to multi-objective

Results shown in Table 3 reflect the behavior of Algorithm 2. The objective of Algo-
rithm 2 is to minimize the accuracy loss without considering other constraints. However,
It would be interesting to investigate different trade-offs between Accuracy Loss and
Compression Rate. In other words, the user can be interested to accept higher AL for
higher CR. This means that we have to consider more objectives to optimize our algo-
rithm. We thus modified Algorithm 2 to have two objectives: (i) minimize accuracy loss
and (ii) maximize compression rate.

To achieve this modification, we start by enlarging the number of candidates selected
during each layer exploration. Instead of selecting only the candidate showing the lowest
AL, we explore the AL vs. CR trade-off and select Pareto optimal candidates. This
implies enlarging the complexity of the exploration for the next layers. Indeed, we need
to run the exploration for each selected candidates of the previous layer, raising the
complexity of the layer-wise exploration of layer i to O(|Si−1| × |Krange|), where Si−1

is the number of selected candidates. The resulting complexity of the multi-objective

exploration for the whole network is therefore O(

N∏
i=1

|Si−1| × |Krange|). In the worst
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case (i.e., every candidate is Pareto optimal from the first layer to the last, meaning

|Si−1| = |Krange|), the complexity becomes O(

N∏
i=1

|Krange|2) −→ O(|Krange|2N ). For

example, for a N = 2 layer CNN, given a Krange = [2, 128], and considering that the
clustering step takes 1 second, it will take more than 56 years. To avoid this explosion of
the number of candidates, we need to restrain their count between each iteration, we can
see in Equation 1 that in the memory footprint of the approximated model given by the
formulaW ∗⌈log2(K)⌉+K∗B, the most important term is the first oneW ∗⌈log2(K)⌉+K,
and this is because W tends to be up to several million for the largest network. This
is why instead of selecting candidates that are Pareto optimal in terms of their AC and
CR, we use their AC and number of bits required to store the indexes of the shared
values (nbitindex), which is given by the formula nbitindex = ⌈log2(K)⌉. Considering that
max(Si−1) = ⌈log2(|Krange|)⌉, the complexity of the exploration is reduced to

O(N ∗ ⌈log2(|Krange|)⌉ ∗ |Krange|), (3)

which our experiments show affordable even for a large network. The resulting multi-
objective hierarchical exploration algorithm is detailed in Algorithm 3

Algorithm 3: Design Space Exploration with Multi-Objective (Accuracy loss
& compression rate)

Input: CNN , minCluster, maxCluster, RefAccuracy, DS,
inertiaF iltreRatio; Krange
Output: optimalAxCNNPopulation,

1: population← [CNN ]
2: for layer in getLayers(CNN) do
3: newPopulation← []
4: i← 0 // Compute different version of the layer with different number of cluster
5: for candidateinpopulation do
6: for K ← minCluster to maxCluster do
7: newPopulation[i]← Kmeans(CNN [layer],K);
8: i← i+ 1;
9: end for

10: end for // Filter the versions of the layers based on their inertia
11: sortByInertia(newPopulation);
12: newPopulation← takeNFirst(newPopulation, inertiaF iltreRatio ∗ i);

// Score filtered candidates
13: score = []
14: for j ← 0 to i ∗ inertiaF iltreRatio do
15: score[j]← (RefAccuracy − score(newPopulation[j], DS));
16: end for

// filter Pareto optimal candidates based on their accuracy loss and nbitindex

17: newPopulation← paretoF ilter(newPopulation)
18: population← newPopulation
19: end foroptimalAxCNNPopulation← population
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Figure 7: Results of multi-objective Explorations for MobileNet v2 with 3 different inertia filtering value.
Comparison with results obtained with the second algorithm

Figure 7 presents the results obtained by applying the multi-objective version of
Algorithm 3 to MobileNet v2. The chart reports on the X-axis the Compression Rate
(eq 1) and the Y-axis shows the Accuracy Loss. Three Pareto frontiers corresponding to
different inertia filter values are shown. As expected, a higher CR is achieved at the cost
of higher accuracy loss and vice-versa. From these results, it is now possible to select
among different solutions presenting a trade-off between AL and CR.

The second point of the results shown in Figure 7 is that the filtering level impacts
the results, again this was expected because depending on the filtering level we have a
more or less precise evaluation of the applied approximation. On the other hand, we can
note that the Pareto frontier obtained using 15% of filtering is close to the one related
to 33% of filtering. This means that inertia is really an efficient way to estimate the
accuracy loss when WS is applied. Also choosing 15% as a value for the inertia filter
provides the best trade-off between results and execution time, as the obtain Pareto front
is nearly the same as the one with 33% but the execution time is 2x faster (see Table5).

Figure 7 also compares the results of Algorithm 3 with the results of Algorithm 2. We
can see that except for 5% inertia filtering value, the solutions obtained with Algorithm 3
dominate those of Algorithm 2.

Table 5 reports the execution time required to obtain the three Pareto frontiers. The
time is reported in hours and we divide it as clustering (cl.) and scoring (sc.), while the
total time is simply the sum. As already pointed out in table 3, the scoring time is the
dominating the overall execution time. Looking at the absolute values, we can note that
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Table 5: MobileNet v2 - multi-objective DSE Elapsed time, obtained with Algorithm 3 on MobilenetV2

Filtering Cl. time (hours) Sc. time (hours) Tot. Time (hours)
5% 4 32 36
15% 6 120 126
33% 6 280 286

executing the multi-objective exploration with 5% of filtering requires 36 hours, which
is 2/times less than running Algorithm 1 on the same CNN. Finally, we can safely use
15% of filtering to achieve results as precise as the 33% filtering but with 2/times less of
execution time. Once again, this confirms that the use of inertia as a sensitivity metric
allows a significant speedup and opens the door to more complex exploration for Weight
Sharing based approximation.

5. Conclusion and Future Work

This paper presented our work towards the application of the weight-sharing tech-
nique to approximate a given CNN. A Design Space Exploration has been first introduced
through a greedy algorithm. The presented DSE algorithm was able to successfully com-
press a CNN incurring in a very small accuracy loss. Reaching around 5× compression
with less than 1% top-1 accuracy loss. The most important advantage is the fact that
our approach is a one-shot conversion, and thus, we can avoid the prohibitive cost and
constraints tied to network retraining.

Despite the good results, the computational cost of this first DSE algorithm was pro-
hibitive (up to 80 hours of optimization), especially for bigger CNNs. We thus identified
an alternative way to estimate the accuracy without running a full inference. We used
the inertia computed during k-means execution as a local proxy for accuracy loss. We
showed that inertia correlates well with accuracy and we were able to reduce the overall
execution time up to 12× with a negligible cost in terms of accuracy and compression
loss.

The reduction in the number of scoring iterations provided by the filtering allowed
for more complex two-objective optimization, showing the trade-off between compression
rate and accuracy loss. The results we obtained on the Mobilenet CNN show that setting
the inertia filtering to 15% already gives a close to optimal Pareto front with greatly
reduced optimization time.

We have compared our results with two state-of-the-art CNN weight sharing methods.
And despite both of them use training as a way to recover the accuracy loss due to
the approximation, we obtained similar if not better results. We obtained more than
4× compression on GoogleNet on the ImageNet dataset with less than 1% accuracy
loss in less than 5 hours and without any retraining step. We intend to continue our
work on approximating CNNs by first exploring other design space objectives such as
performance and hardware metrics. Finally, we will extend the framework to support
different approximation strategies such as pruning and quantization.
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