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Abstract: We present a methodology for PpIX parameters estimation based on multi-
wavelength excitation. This method aims to distinguish healthy tissues from tumour mar-
gins. It reduces the absolute estimation error of low density margins by 39.9%. © 2021
The Author(s)

1. Introduction

Diffuse gliomas account for more than fifty percent of primitive brain tumors and are still hardly curable
today. All subtypes of gliomas share the same highly infiltrative behavior of individual tumor cells. However
surrounding infiltrated tissue often resemble normal tissues. The world health organization (WHO) classifies
gliomas in 4 grades [1], but most studies commonly consider two separate groups having different biological,
molecular and tissue properties: High Grade Gliomas (HGG) and Low Grade Gliomas (LGG). HGG are mainly
malignant tumors (grades III and IV of WHO classification), while LGG are benign tumors (grades I and II). In
both groups, infiltrative tumor cells are still difficult to identify during surgery. Pre-operative MRI combined with
neuro-navigation is currently used to localize surgical tools and tumour cells in the operating theater but it shows
strong limitations.
As a complementary method to pre-operative MRI, fluorescence microscopy has shown its relevance in neuro-
oncology and 5-aminolevulonic acid (5-ALA) induced fluorescence of protoporphyrin IX (PpIX) is currently used
through surgical microscopes [2]. However, its sensitivity is still limited when applied to low density infiltrative
parts of High Grade Gliomas (HGG) or Low Grade Gliomas (LGG). To overcome sensitivity issues, various
5-ALA induce PpIX fluorescence spectroscopy methods have been proposed. Many studies on biopsies raised
the presence of two states of PpIX with different fluorescence spectra, peaking at 634 nm and also at 620 nm, in
HGG as well as in LGG [3]. A recent 10 patient clinical trial demonstrated the presence of the second peak of
fluorescence of PpIX at 620nm in non-extracted and freshly extracted living brain tissues, and its correlation with
the pathological status of tissues [4].
The presence of the second peak of fluorescence of PpIX at 620 nm is known in solution and closely linked
with the chemical microenvironment [5, 6] or in cell culture. But its origin in vivo is still an open issue.
Some works support the assumption that the origin of the peak at 620 nm in vivo is a different aggregate of
PpIX. Other works [7] explained it by precursors of uroporphyrins or coproporphyrins. Furthermore, other
endogenous fluorophores could play a important role in the fluorescence emission spectrum in the 600 nm
region. The fitting of fluorescence 5-ALA induced fluorescence spectra in vivo is indeed multi-parametric. Then,
there is a need to propose robust models to improve the accuracy of fitted biomarkers of PpIX fluorescence spectra.

In these works, we propose a new method using multiple wavelength excitation of the PpIX fluorescence. The
model integrate the multiple excitation process and the estimation of contributions of both states without any a
priori other endogenous fluorescence spectra. The results indicate that our method reduces the relative estimation
error of the contributions of both states under 10% on average for each pathological category.



2. Material and methods

2.1. Multi excitation fluorescence model, estimation and error metrics

The fluorescence emission spectrum used in this study relies on multiple excitation wavelengths. At each excitation
wavelength λe, the fluorescence spectrum Sλe(λ ) can be written :

Sλe(λ ) = α620 ·η620(λe) ·S620(λ )+α634 ·η634(λe) ·S634(λ )+ ε(λe,λ ) , (1)

where S620(λ ), resp. S634(λ ), are the normalized emission spectrum of PpIX 620 nm, resp. 634 nm; η620, resp.
η634, are the quantum yield at excitation wavelength of PpIX 620 nm, resp. 634 nm, α620, resp. α634, are the
contribution at excitation wavelength of PpIX 620 nm, resp. 634 nm, and ε(λe,λ ) represents other endogenous
fluorophores emission spectra.
Whether in the case of mono- or multi-excitation, we suggest to minimise the cost function :
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where w(λ ) is a user-defined weights function.

To compare estimation results α∗620,α
∗
634 with the ground truth α620, α634, errors were computed as :
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2.2. Digital Phantom

In order to validate our method, we use a digital phantom which includes a parasitic fluorophore. The digital
phantom is parameterized from experimental data obtained on liquid PpIX phantom made as in Ref. [6].
We consider two excitation wavelengths λe1 =385 nm and λe2 =405 nm; quantum yield ratio for PpIX 620 nm
ηλe2/ηλe1 = 1.6176; for PpIX 634 nm ηλe1/ηλe2 = 0.9743, after Ref. [8]. For parasitic fluorophore, we decided to
get values of lipofuscin : the quantum yield ηλe1/ηλe2 = 0.75 is used, after Ref. [9]; central emission wavelength
λpara u 590 nm and standard deviation σpara = 15 nm are used, after Ref. [10]. The parasitic fluorophore amplitude
A is set as 50% of PpIX amplitude in healthy tissues : A = 363.2050 a.u. as insipred by previous in vivo works [4].
In order to have a more realistic digital phantom, we decided to model acquisition noise. Therefore, we have a
two-part noise : a Poisson noise P which mimics photon noise and an additive Gaussian white noise N mimics
electronic noise.
This leads to the following function for spectrum generation :

Sλe(α620,α634,λ ) = |P [α620 ·η620(λe) ·S620(λ )+α634 ·η620(λe) ·S634(λ )+ ε(λe,λ )]+N | , (5)
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3. Results and discussion

The previous study of Alston et al. [4] gives specific α620, α634 parameters for each one of the pathological
statuses : solid HGG, margin HGG, low density HGG, LGG and Healthy. We take these values of α620, α634
parameters and Eq. 5 to generate fluorescence spectra associated to a specific pathological status. The weight
function w(λ ) in Eq. 2 is zero except between 620 nm and 650 nm, where it is equal to one.

We made a strict comparison between four different estimation methods. Alston et al. [4] estimation method,
estimation based on excitation at 385 nm only, estimation based on excitation at 405 nm only, or excitation at
both wavelengths. Results are shown in Fig 1.

In Fig. 1a, we notice that for the given digital phantom, the multi-excitation estimation method reduces at least
by 41% the absolute estimation error (see eq. 3) compared to estimation at 385 nm wavelength only, by 23%
compared to estimation at 405 nm wavelength only, and by 27% compared to Alston et al. [4] estimation for each
pathological status.



Fig. 1: (a) Absolute Estimation Error (see eq. 3) of α620,α634 by four different methods for each pathological
status.
(b) Relative Estimation Error (see eq. 4) of α620,α634 by four different methods for each pathological status

In Fig. 1b, we notice that the highest relative estimation error (see eq. 4) is for the healthy tissue category. This
seems to be a consequence of the small PpIX fluorescence intensity in a noisy environment whose signal to noise
ratio at 630 nm equals 20,3.

In conclusion, this work indicates that multi-wavelength excitation of the PpIX fluorophore with an estimation
using all acquired spectra reduces the average relative estimation error, see eq. 3. In the case of two different
excitation wavelengths, the average relative estimation error staid below 10% in all pathological status, whereas
Alston et al. [4] relative estimation error staid only below 16% in average. More detailed results will be
presented and discussed at the conference. This study confirms the usefulness of multi-wavelength excitation for
distinguishing both states of PpIX.
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