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ABSTRACT Approximate Computing (AxC) paradigm aims at designing computing systems that can
satisfy the rising performance demands and improve the energy efficiency. AxC exploits the gap between
the level of accuracy required by the users, and the actual precision provided by the computing system,
for achieving diverse optimizations. Various AxC techniques have been proposed so far in the literature at
different abstraction levels from hardware to software. These techniques have been successfully utilized and
combined to realize approximate implementations of applications in various domains (e.g. data analytic,
scientific computing, multimedia and signal processing, and machine learning). Unfortunately, state-of-
the-art approximation methodologies focus on a single abstraction level, such as combining elementary
components (e.g., arithmetic operations) which are firstly approximated using component-level metrics and
then combined to provide a good trade-off between efficiency and accuracy at the application level. This
hinders the possibility for designers to explore different approximation opportunities, optimized for different
applications and implementation targets. Therefore, we designed and implemented E-IDEA, an automatic
framework that provides an application-driven approximation approach to find the best approximate
versions of a given application targeting different implementations (i.e., hardware and software). E-IDEA
compounds 1) a source-to-source manipulation tool and 2) an evolutionary search engine to automatically
realize approximate application variants and perform a Design-Space Exploration (DSE). The latter results
in a set of non-dominate approximate solutions in terms of trade-off between accuracy and efficiency.
Experimental results validate the effectiveness and the flexibility of the approach in generating optimized
approximate implementations of different applications, by using different approximation techniques and
different accuracy/error metrics and for different implementation targets.

INDEX TERMS Approximate computing, evolutionary algorithm, design space exploration, code mutation.

I. INTRODUCTION

Approximate Computing (AxC) term has been introduced to
define a computing paradigm applied at different abstraction
levels, spanning from hardware to software components [1].
Intuitively, instead of performing exact computation requir-
ing a high amount of resources, AxC aims to carefully violate
non-critical specifications, trading accuracy off for efficiency.
For several real-world scenarios, the effectiveness of impre-
cise computation has been demonstrated in the literature,
for both software and hardware components implementing
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inexact algorithms. Indeed, some applications show an inher-
ent resiliency to errors [2], [3].

The inherent resiliency property tightly depends on the
application domain. It can be observed for algorithms dealing
with noisy real-world input data (e.g., image processing,
sensor data processing, speech recognition, etc.), or with
outputs that have to be interpreted by humans, such as dig-
ital signal processing of images or audio; also data ana-
Iytic, web search and wireless communications exhibit an
equivalent property [4]—-[6]. Other involved applications are
those that iteratively process large amounts of information,
sample data, stop the convergence procedure early, or apply
heuristics [7].
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Diverse research articles in the literature explored the
opportunities provided by AxC paradigm. Many of them
proposed new methodologies to automatically define best
trade-off configurations between result quality and perfor-
mance. However, there are still open challenges holding AxC
back from wider employment. In particular, the key point is
the lack of a general and automatic design space exploration
methodology to find the best trade-off between the degree
of inaccuracy and the efficiency gain of an approximated
application.

Most of the proposed techniques try to define new
methods to generate alternative versions of specific com-
ponent (either hardware or software) with less resources.
For example, there are several proposals of approximate
arithmetic operations [8]-[10]. Such variants differ from
speculative implementations, because they do not focus
on generating alternatives, rather on restoring the possible
introduced error [11]-[13]. Other techniques generate vari-
ants by considering a high level description of the appli-
cation or its implementation at low-level [4]. Moreover,
existing approaches target only implementations at a spe-
cific level of the computing stack, i.e. either software or
hardware.

In this work, we foster a unified methodology able to
automatically explore the impact of different approximation
techniques on a given application. The methodology does
not need to specify which part(s) of the application should
be approximated and how. It only requires the definition
of the acceptable output degradation from the user. More-
over, it allows the user to define custom approximation tech-
niques and describe the most suitable optimization objectives,
according to the requirements.

Therefore, we developed Evolutionary-IDEA, or E-IDEA
(ITIDEAA Ts a Design Exploration tool for Approximate Algo-
rithm), which is able to find approximate versions for an
application expressed as C/C+-+ code, by mutating the orig-
inal code. The output can be either a software or a hardware
implementation of the approximated application, according
to involved approximation technique(s).

E-IDEA consists of two main components: (i) a source-
to-source manipulation tool, the clang-Chimera, and (ii) an
evolutionary search engine, the Bellerophon. Firstly, Clang-
Chimera analyzes the Abstract Syntax Tree (AST) of the
C/C++ code to apply approximation techniques. These tech-
niques are described as code mutators, which allow intro-
ducing approximation by means of tunable parameters, and,
as previously mentioned, new approximation techniques can
be defined by implementing new code mutators. Secondly,
Bellerophon is devoted to find the best approximation version
of a given C/C++ code, according to user-defined optimiza-
tion objectives. In other words, Bellerophon is confronted
to a Multi-objective Optimization Problem (MOP). To face
such a complex problem, Bellerophon gradually tunes the
parameters of the mutators to obtain different approximate
application codes. The evolutionary nature of the approach
allows converging towards the Pareto-optimal solutions in
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terms of the defined objective functions, in a fairly reason-
able time.

The remainder of the paper is structured as follows.
In Section II we briefly report the state of the art about
AxC design tools available in the literature. In Section III we
present the global flow of the proposed approach, detailed
in Subsection III-A (Clang-Chimera) and Subsection III-B
(Bellerophon). Section IV illustrates experimental results.
Finally, Section V draws the conclusion of this manuscript.

Il. RELATED WORK

When dealing with the introduction of the approximation
into an application, two challenging problems must be faced:
(1) the selection of the portion of the application to approx-
imate and (ii) the identification of the best combination of
AxC techniques to use. The main goal is to obtain the best
efficiency gain while satisfying the accuracy requirements
of the final result. This paves the way to virtually infinite
possibilities of approximation. However, most of the existing
studies target a specific component at a given abstraction level
rather than the full application. As an example, in [14] authors
propose a circuit level model to systematically characterize
different AxC circuits without considering the impact of the
use of these circuits in a full application.

To the best of our knowledge, the literature lacks of an
automatic approach for generating, exploring and select-
ing the best approximate versions of a given application.
Indeed, existing methodologies allow the programmer (i.e.,
the user) to indicate what are the code lines or blocks to be
approximated and how. For example, the programmer can
annotate through compiler directives that a given loop has
to be approximated by applying the loop perforation tech-
nique [15]. Moreover, existing approaches target a specific
implementation, either software-level or hardware-level.

The established approach to validate the approximation
effect (i.e., verify whether it satisfies the accuracy require-
ments) is the application profiling. After applying different
combinations of AxC operators, the application is executed
several times and the results are compared with those pro-
duced by a golden (i.e., approximation-free) implementation.
The comparison is done exploiting metrics that suit the spe-
cific application domain (e.g., the structural similarity index
in the image processing domain).

Early attempts dedicated to the approximation of the
data precision are presented in [16]-[18]. The pioneering
work in [18] illustrated the CMUFloat, a C++ library that
redefines operators for integers, shorts and floating-point
types in order to simulate reduced bit-width. Such a library
allows simulating DSP units realized in an approximate man-
ner. Anyway, one of the first attempt to define a system-
atic methodology for digital circuits approximation is [17],
which introduced a power-aware design methodology by
exploiting a word-length optimization. They proposed the
PowerCutter tool to dynamically analyze the range of vari-
ables and reduce the precision of arithmetic operations for
C/C++ code. Authors of [16] introduced Precimonious,
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which provides an automatic tuning tool for IEEE 754 Float-
ing Point standards. Indeed, Precimonious uses the Low Level
Virtual Machine (LLVM) Intermediate Representation (IR)
to perform a float-type exploration by means of annotations.
This allows the user to specify the maximum loss in accuracy.
Early approaches, however, were very unsophisticated and lit-
tle automated, requiring several user interventions, including
specifying which operations to approximate.

The state-of-the-art techniques working at software-level
are ACCEPT [4] and its extension REACT [19]. ACCEPT
is an adaptation for C/C++ of Ener] [20], which has
been designed to work within Java environment. ACCEPT
introduces an extension of the C/C++4 language to pro-
vide programming annotations. Such tools give to design-
ers a program-guided technique for the inner-implemented
approximation techniques. The implementation of ACCEPT
involves the LLVM IR [21], providing a modified com-
piler to support the language extension. REACT uses a
compiler-infrastructure to create a framework for the rapid
exploration of well-known AxC techniques, proposing an
energy model to evaluate the actual power saving for different
approaches. REACT extends ACCEPT, so it exploits the
LLVM IR to manipulate algorithms written in C/C+4+. Still
on the use of reduced precision, recent GPU architectures
introduced the opportunity to use floating-point types with
different precision, with native support from the hardware.
Indeed, the new IEEE 754 half type has been implemented
within the most recent GPU architectures, aiming at enhanc-
ing the throughput and reduce the latency. However, develop-
ment environments lack automatic precision tuning tools.

Concerning the hardware-level techniques, some approx-
imate design approaches manually identify approximable
sub-parts of circuits, mainly focusing on arithmetic com-
ponents [22], [23] On the other hand, several other works
attempt to define systematic and generic approaches. The
paper by Nepal et al. introduced the ABACUS tool [24],
which directly manipulates hardware circuits coded in Hard-
ware Description Languages (HDL). It adopts a greedy algo-
rithm to perform a design exploration to find solutions in
terms of a trade-off between accuracy and power consump-
tion. Another approach, proposed in [25], is able to take into
account information about the underlying hardware architec-
ture, such as the use of over-scaling techniques. Recently,
authors of [26] proposed WOAXC, a workload-aware frame-
work to automatically select pre-existing approximate units
(adders and multipliers) minimizing energy consumption
while meeting quality requirements of the application. Since
quality requirements may change at run-time, authors of [27]
propose an automated framework for the design of dynami-
cally reconfigurable circuits. The framework modifies the cir-
cuit netlist by replacing the wires with approximate switches
to reduce circuits’ dynamic power consumption through a
reduction of the switching-activity. Although, the added cir-
cuitry increases the static power consumption, a high reduc-
tion in total power consumption is achieved since the dynamic
power is predominant in Application-Specific Integrated
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Circuit (ASIC) technologies considered by the authors.
Unfortunately, the approach is tightly coupled with the tar-
get technology, hence it is not guaranteed that it could be
used effectively on a different technology. A recent work
claims approximate computing cannot be fully exploited
by only considering hardware or software; therefore, hard-
ware/software co-design should be considered in order to
achieve better trade-off between accuracy and efficiency,
in machine learning applications in particular [28].

All the aforementioned approaches either combine
multiple design objectives in a single-objective optimization
problem or optimize for a single parameter. Therefore, result-
ing solutions are centered around a few dominant design
alternatives and do not cover the whole Pareto front [29].
Recent works addressed the circuit design problem by using
multi-objective optimization to search for Pareto-optimal
approximate circuit implementations. Such approaches focus
on arithmetic components and image-processing operators,
such as adders and multipliers. In [30], for instance, authors
present a general-purpose method, based on multi-objective
Cartesian genetic programming, for automating functional
approximation of digital combinational circuits. Further-
more, many libraries consisting of thousands of elemen-
tary approximate circuits, which also supply hundreds of
implementations of single arithmetic operations, have been
proposed in the scientific literature [22], [31]. Authors of [32]
addressed how to effectively combine approximate arith-
metic circuits from libraries to design complex approximate
accelerators. Their methodology aims at providing designs
with a set of Pareto-optimal configurations (i.e., approxi-
mate arithmetic circuits to use) where the quality of results
and hardware costs are both optimized. It is organized in
three steps: (i) the target accelerator is profiled, in order
to prune the library of approximate components discard-
ing unsuitable circuits; (i) machine-learning algorithms are
employed to build predictors which enable the estimation
of result quality and hardware cost; thus, the design space
exploration does not require simulations nor hardware syn-
thesis; (iii) the Pareto-front is iteratively constructed using
a two-phases approach: first, predictors built in the second
step are employed to quickly build a pseudo-Pareto front,
hence refinement is needed towards the final Pareto front
using quality and hardware estimation provided by actual
simulations and hardware syntheses. In the above mentioned
methodologies elementary components (i.e., arithmetic oper-
ations) are firstly approximated using component-level met-
rics and then combined to provide a good trade-off between
efficiency and accuracy, according to application-level met-
rics. Anyway, such an approach do not provide the flexibility
to use different approximation techniques.

Depending on the application needs and on the desired
target (software or hardware) different approximations have
different effects. Therefore, in this work, we propose a
general methodology to explore the approximation oppor-
tunities at different levels (software and hardware) with
an application-driven approach. The methodology itself is
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completely independent of the final implementation and tech-
nology target. However, it takes them into account by means
of custom models. Specifically, we resort to (i) a model
of the target application (i.e., C/C++), (ii) a model of the
approximation techniques (i.e., code mutators), and (iii) a
model of the application accuracy requirement (i.e., error
metrics). An early version of the proposed framework, IDEA,
was presented in [33] and was applied only at hardware-level.
Moreover, at that time, the search engine was not based on
evolutionary algorithms. In fact, it was based on the Branch &
Bound (B&B) algorithm. The latter is a well-known generic
method to find an optimal solution of single-objective opti-
mization problems. Therefore, this approach was not suitable
to deal with MOPs, such as the ones that we face in this work.
Moreover, B&B could not scale with the complexity of the
input application. Finally, in [33] only results for the bit-width
precision reduction approximate operator were presented.

Compared to state-of-the-art, we can list the main contri-

butions of this paper as follows:

o we propose an application-driven approximation pro-
cess (i.e., the approximation is performed based on
application-level metrics);

« the methodology is compatible with any functional
approximation technique;

o both software and hardware implementations of the
approximate application can be produced;

« no profound knowledge of the application code is
needed;

« the proposed framework is completely open-source [34]
and extensible.

Ill. PROPOSED APPROACH

Existing AxC design tools consider specific transformations
and specific domains, as discussed in Section II. Moreover,
they are not fully automatic and simply provide a guided
approach for approximation. Conversely, we aim to define
an automatic and general approach. Figure 1 sketches
the overall flow of the proposed approach, namely E-IDEA.
It requires the following inputs:

Approximate variants
(Mutated C/C++ source-code)

Mutators
configuration file

Fitness-functions

specification
Application C/C++
source-code

Clang-

Chlmera Bellerophon

%

Approxlmate
Conflguratlons
Native

Software

AxC Operators

| Cross
| |Compilation

FIGURE 1.
tool.

E-IDEA flow, which includes Clang-Chimera and Bellerophon
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1) the original application described as C/C++ code;

2) the set of approximate operator, called “mutators’;

3) the fitness-functions to select the appropriate approxi-
mation outcomes; in particular, the user must specify
(i) the error metric to quantify the approximate version
deviation compared to the original outcomes and the
related error threshold in order to determine whether
the approximate outcomes are acceptable or not, and,
optionally, (ii) the gain metrics required to estimate
gains achieved through the approximation.

Concerning mutators, E-IDEA is already provided with a set
of mutators implementing the most common approximation
techniques.

As main output, E-TDEA produces the mutator configu-
ration of the best approximate application variants obtained
(i.e., the non-dominated solutions). Such configurations are
then used to produce software or hardware implementations,
possibly involving also High Level Synthesis (HLS) tools.

Below, we report a few remarks on the requirements that
drove E-IDEA development.

o E-IDEA is general: the implementation of any
approximate computing technique is possible through
code-mutation;

o E-IDEA is target independent: it produces configura-
tions applicable at any level of the computing stack;

o E-IDEA is application independent: it allows the user to
define custom error/reward functions to evaluate appli-
cation approximation variants;

o E-IDEA is extensible: it is an ensemble of tools written
in C++ that can be easily extended and integrated,;

o E-IDEA is free and open-source: it is released under
the GNU Affero General Public License and its code is
publicly available [34].

As already mentioned, E-IDEA is composed of two
phases carried out by two components, Clang-Chimera and
Bellerophon, respectively described in Subsections III-A
and I1I-B.

A. Clang-Chimera

The green dotted box in Figure 1 reports Clang-Chimera flow.
Clang-Chimera is a mutation engine for C/C++ code. It is
based on the Clang compiler [?], used to rapidly develop
source-to-source C/C++ compilers. Clang-Chimera applies
the set of mutators (i.e., AxC Operators) to the input appli-
cation code, in order to make systematic modifications to the
latter, and produce a set of mutated files, i.e. the configurable
approximate variants of the input application code. In addi-
tion, it also provides the mutators configuration file, which
will be subsequently used during the DSE.

Clang-Chimera borrows the terminology from the muta-
tion testing technique, which is a software testing approach
used to evaluate the quality of a test set, in terms of its ability
to detect software faults [35]. Mutation technique consists in
using supporting tools to mutate the original source code —
thus emulating programmer mistakes — to generate erroneous
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programs. The test set quality is evaluated according to the
number of mutated versions detected.

In the context of Clang-Chimera, the mutation is used in
order to generate modified (i.e., approximate) versions of the
original code. Here, the concept of software fault is replaced
by the concept of approximation technique. The latter is
formalized as a mutator.

Mu = {Match, Mutate} €))

Eq. 1 defines the mutator Mu as a duplet where:

o Match identifies where in the code the mutation has to
take place. This is defined by means of matching rules;

o Mutate indicates how to actually modify the source
code. This is defined by means of mutation rules.

Clang-Chimera analyzes and manipulates the input appli-
cation source code through its‘AST, which is a tree-based
representation of the application code where each node of the
tree denotes a language construct of the analyzed code. A set
of AST nodes defines an AST pattern, which corresponds to
a specific structure of the code. Altering the AST results in
introducing constructs through which it is possible to tune
the approximation degree.

Clang-Chimera utilizes LLVM/Clang facilities, such as
ASTMatcher and Rewriter in order to apply a given mutator
Mu;. In details, ASTMatcher searches for all occurrences of
the “Mu;.Match” rule and Rewriter modifies the identified
nodes by applying the “Mu;.Mutate” rule.

Clang-Chimera is already provided with a set of muta-
tors implementing common approximation techniques, such
as: (i) two loop-perforation mutators, namely LOOP1 and
LOOP2; (ii) two precision-scaling mutators for the
floating-point arithmetic, namely Variable Precision Arith-
metic (VPA) and FLexible Arithmetic Precision (FLAP);
(iii) a precision scaling mutator for the integer arithmetic,
namely TRUNC; (iv) a mutator supporting approximate
arithmetic operator models of circuits being part of the
EvoApproxLib [31] and EvoApproxLib-Lite [36] libraries.
Moreover, adding new mutators to this set allows the IDEA
framework to be easily extended. Next subsection presents
some examples.

1) LOOP PERFORATION EXAMPLE

The goal of this example is to illustrate the application of
the well know loop perforation technique to the C/C++code
reported in listing 1.

The related AST is reported in Figure 2.

Basically, we want the loops to skip some iterations. This
can be obtained by altering the stride of the loop vari-
able(s). Therefore, let the Mutator related to the Loop Per-
foration (LP) be defined as follows:

Muypp = {FOR_STMT , var++ — var+ =stride;} (2)

The application of the mutation described in Eq.2 modifies
the AST (see Figure 2). For each occurrences of FOR_STMT ,
the corresponding FOR_EXPR node is altered. The resulting
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FIGURE 2. For loop AST example (see Listing1).

1 int main (void) {
for (int i = 0; i < N; i++4) {
3 for (int j = 0; j <M; j++) {
4 body ;
5 }
6 }
7}
Listing 1. Precise code
i int main (void) {
for (int i = 0; i < N; i+=stridel) {
3 for (int j = 0; j <M; j+=stride2) {
4 body ;
5 }
6 }
}

Listing 2. Mutated code

mutated code, produced by Clang-Chimera, is reported in the
following listing.

Finally, the loop perforation effects depend on the actual
values of stride; and stride; variables. Indeed, by assigning
different values to the variables, different trade-offs between
skipped iterations (thus performance increase) and accuracy
reduction can be obtained.

2) APPROXIMATE CIRCUIT EXAMPLE

With this example we apply mutators to alter an algorithm,
such that in Listing 4, to be approximated by replacing every
sum operation with a configurable approximated sum. The
Clang-Chimera allows the automatic generation of an approx-
imate variant having one, or more, sum operations replaced
with a call to a function that implements the approximate sum.
Let us suppose that the function performing the approximate
sum is the one reported in Listing 3, with add and add?2 being
the addends and ax being the configurable parameters govern-
ing the approximation. The exact nature of the approximation
being made by this function is hidden in the function itself:
whether the function implements bit-width reduction, the lat-
ter parameter may govern the Number of Approximate Bit
(NAB) of the sum; conversely, whether the function imple-
ments a library of approximate circuits, the ax parameter
may allow to select which particular circuit is to be adopted.
Anyway, from the Clang-Chimerapoint of view, the particular
approximate technique being implemented does not matter:
using the appropriate mutator, the Clang-Chimera mutates the
code in Listing 4 and generates the code in Listing 5.

86979



IEEE Access

S. Barone et al.: Multi-Objective Application-Driven Approximate Design Method

i int ax_sum(int addl, int add2, int ax);
Listing 3. Example of approximate sum

1 ..

>y =X + 2

z=2=%X+3xy+ 2

4
Listing 4. Example code to be mutated

1 int ax_0 = 0;

> int ax_1 = 0;

s int ax_2 = 0;

4 .

sy = ax_sum(x, 2, ax_0);

6 z = ax_sum(ax_sum(2 * x, 3 *x y, ax_1), 2, ax_2);

Listing 5. Mutated code

As for the loop-perforation technique discussed above,
the effects of approximation depend on the actual value of
configuration parameters. Hence, the main problem is to find
an appropriate value for these parameters, in order to achieve
the best trade-off between performance gains and accuracy
losses.

As described in the next section, the main goal of
Bellerophon is tuning these values to ultimately find
non-dominated solutions in terms of trade-off between per-
formance gain and accuracy loss.

B. Bellerophon

Red continuous box in Figure 1 depicts the Bellerophon
flow. The tool analyzes the set of mutated files generated by
Clang-Chimera and explores the different possible mutators
configurations, i.e. different configurations for the tunable
parameters in mutators, which results in different fitness val-
ues. The final result is a set of solutions corresponding to the
(sub-)optimal trade-offs between the user-defined objective
functions.

1) TECHNICAL BACKBROUND

More formally, Bellerophon faces a MOP, which, as described
in [37], can be defined as the problem of finding, for some
decision variables, a set of values satisfying imposed con-
straints. At the same time, those values have to optimize
(minimize/maximize) a set of objective functions. Those
functions describe criteria in conflict with each other.
In MOPs, we deal with finding compromises between the
objectives rather than a single solution as in global optimiza-
tion. Therefore, Bellerophon explores the different approxi-
mate variants while ‘moving’ towards the Pareto front of the
solutions, in terms of the defined objective functions. The
Pareto front is defined as the set of solutions for which it does
not exist any other solution improving some objective without
simultaneously deteriorating at least one other objective.
Since finding exact solutions for MOPs is complex — and
often computationally infeasible — the scientific community
usually resorts to Evolutionary Algorithms (EAs), which
provide satisfactory solutions in reasonable time.

86980

EAs mimic the genetics by performing optimization by
evolution, i.e. the best fitting individuals survive [38]. Indeed,
EAs manage a group of solutions — called a population — and
optimize them in parallel. Every solution in a population is
called an individual. Every individual is represented by its
chromosome, composed of genes (i.e., the parameters of the
approximation techniques, in our context). A fitness value
is assigned to each chromosome, according to the fitness
functions (i.e., objectives). The basic principle is that indi-
viduals with best fitness values will survive. Individuals are
mutated — to mimic genetic gene changes — until only the best
population remains.

In particular, Genetic Algorithms (GAs), a subclass of EAs
inspired by evolutionary theory, exploits mutation, crossover
and selection concepts to cause the extinction — through
generations — of weak and unfit species. Strong species have
greater chances to survive and thrive by spreading their genes
to future generations. A mutation entails a random change
in genes. If it provides additional advantages to the specie,
it will propagate to next generation. Conversely, disadvan-
tageous changes are eliminated by selection. The crossover
phenomenon combines two chromosomes — referred to as
parents — to form a new one — referred to as offspring. The
synergy of mutation, crossover, and selection makes good
genes thrive through generations. In this way, starting from
a randomly generated initial population, GAs make it evolve
towards a set of non-dominated solutions which are as close
as possible to the Pareto dominant ones.

2) MOP MODELING
Bellerophonmodels our problem as follows:

1) Population: each solution (i.e., approximate version)
represents an individual of the population;

2) Chromosomes: each individual has a chromosome,
modeled as an array of integers. Each value (i.e., gene)
corresponds to an approximation parameter that can be
mutated through generations;

3) Fitness: a single, or multiple user-defined and
fitness-functions are employed to select the best indi-
viduals;

4) Variation Operations: the mutation and crossover
operations randomly alter genes, or combines parents’
genes to generate an offspring.

Fitness functions might be defined accordingly to the par-
ticular exploited AxC technique. In case of precision-scaling
technique, for instance, a feasible fitness function could be
based on the number of neglected bits, since it translates in
less hardware resources.

To perform the exploration, Bellerophon creates new
populations by tuning the approximation parameters (i.e.,
mutator parameters in the code) and evaluates the correspond-
ing approximate variants according to the fitness functions,
to finally select the best set. The mutators configuration
file (see Figure 1) reports the maximum and minimum pos-
sible values for all approximation parameters. The main
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1 stridel , N, 1
» stride2 , M, 1

Listing 6. Mutators configuration file example

objective of Bellerophon is to converge toward optimal solu-
tions improving fitness-functions as much as possible.

In order to perform the exploration, we resorted to Par-
adisEO [39], a software framework for meta-heuristics for
MOP. In particular, we resorted to the state-of-the-art GA,
the Non-dominated Sorting Genetic Algorithm-II (NSGA-
1) [40].

In order to be evaluated, each individual has to be compiled
and executed. To speed-up the execution time, the compila-
tion strategy adopted by Bellerophon allows to compile just
what it is necessary to retrieve information about approximate
variants. Bellerophon uses the Just-in-Time engine provided
by clang LLVM [41]: each time the software needs to be
altered to test a new variant, Bellerophon do not invoke the
system loader, rather it alters the program image which is
already loaded into the memory.

The next subsection will show an example of how
Bellerophon creates a population and evaluates the fitness of
its individuals to then select the best set.

3) EVOLUTION EXAMPLE

Let us refer again to the example in subsection III-A1. Clang-
Chimera applied the mutations to the AST and, consequently,
it generated the C/C++ code shown in listing 2 and provided
the “mutators configuration” file. In this example, a Mutator
(i.e., approximation technique) modeling the loop perforation
has been used. The technique has been applied to both the
loops in the code (lines 2 and 3 of the code). The mutators
configuration file produced by Clang-Chimera reports the
maximum and minimum values for the two stride variable
introduced (i.e., stride; and stride;). The following listing
reports the mutators configuration file generated by Clang-
Chimera for this example.

TABLE 1. Examples of a population made of k individuals.

Individual  Stridel  Stride2 | Error Reward
0 3 5 5 8
1 2 9 7 11
k; 1 5 2 3 7

Thanks to mutation, crossover and selection operations,
Bellerophon moves towards the Pareto-front. The first pop-
ulation is generated randomly. Within the limits imposed by
the configuration file, Bellerophon is able to mutate the indi-
viduals and generate a non-dominant population as reported
in Table 1. In this example, k individuals have been created.
Each individual is characterized by its own chromosomes
(i.e. value of the stride variables), reported in the table rows.
Bellerophon evaluates the individuals according to the fitness
functions and assigns corresponding values to each of them.
For example, here the reward is simply defined as the sum of
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the stride variable values: the higher the stride value the more
iterations will be skipped. However, skipping loop cycles
also entails an accuracy loss. Depending on the fitness values
measured for each individual, Bellerophon will select the set
of best candidates to generate the next population.

IV. EXPERIMENTAL RESULTS

In this section, we report experimental results achieved with
the proposed approach. The main goal of the experiments is
to prove the effectiveness and the flexibility of the proposed
approach in terms of target application, AxC techniques and
implementation level. We thus applied E-IDEA to differ-
ent applications and target implementations. In particular,
we show case studies of different complexities and targeting
hardware accelerator and software implementations. Appli-
cation source codes belong to the AxBench benchmark suite
for AxC [42]. The goal of the experiments is to show the ver-
satility and the efficiency of the proposed approach. To this
end, we performed the experiments by using various error
metrics and rewards, as well as diversified approximation
techniques. For what pertains to scalability and sufficiency
of the DSE, the E-IDEAframework addresses them both by
allowing the user to set (i) the number of iterations, (ii) the
size of the initial population, (iii) the technique to define the
initial population, (iv) mutation and crossover probabilities,
and (v) the amount of genes involved in crossover. Moreover,
the framework allows to retry experimental campaigns each
time results belongs to an uncrowded Pareto-front or they
are too close to few minimum spots. Finally, the E-IDEA
framework is intended to be employed on common hardware.
In order to run experiments reported below, we employed a
common personal computer based on Intel I7 8550@ 1.8GHz,
equipped with 16 GB of RAM and running Linux 4.9.

A. K-MEANS CLUSTERING SOFTWARE IMPLEMENTATION

As first case study, we target a software implementation of the
K-means clustering algorithm, applied to image processing.
This algorithm is used in computer vision for image seg-
mentation. The goal of image segmentation is to process a
digital image and divide it into multiple segments, i.e., sets of
pixels. The segmentation helps in simplifying the image for
analysis purpose [43]. Typical utilization are object location
and boundary recognition. We executed this case study on a
generic CPU.

1) SETUP

As approximation technique, we used the loop perforation,
as illustrated in Subsection III-A1. The technique is applied
on loops performing centroid computation; thus, skipping an
iteration coincide to ignoring some points to be clustered.
We instrumented Bellerophon to maximize the well-known
Structural SIMilarity (SSIM) index [44], which corresponds
to minimize the error entailed by the approximation. The
SSIM is widely used in the image processing community.
SSIM is a model based on the perception. It considers the
degradation of the image as observed variation in structure,
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luminance and contrast. The SSIM index is a decimal value
between —1 and 1. The value 1 represents perfect structural
similarity. A value of O indicates no structural similarity
between the two input data sets. We evaluated the error
entailed by the approximation over four 512 x 512 images.
As for the reward function, we used the number of skipped
loops in the approximate versions of the code.

2) RESULTS

In Figure 3, we report the percentage of skipped loops
(y-axis) and the corresponding SSIM index (x-axis) for the
non-dominated solutions found with E-IDEA. Moreover,
in Figure 4, we report two examples of images produced
with the approximate variants having the highest and the
lowest SSIM. Figure 4a and 4b depict the input and output
images to the k-means algorithm, for its precise version
(i.e., without approximation). Figure 4c and 4d report the
images obtained with two of the approximate variants, with
the highest and lowest SSIM, respectively. As the images
clearly show, the proposed approach allowed us to find
approximate variants of the code leading to skip from 16%
up to 29% loops, without significantly impacting the output
quality. Indeed, in the best case, the achieved SSIM index was
0.99998; in the worst case, we obtained a SSIM of 0.99988. E-
IDEA found the reported set of approximate variants in about
90 minutes.
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FIGURE 3. Non-dominated solutions found with E-IDEA: approximate
variants for the K-means clustering algorithm, obtained by applying the
loop perforation approximation technique.

B. TAYLOR SERIES SOFTWARE IMPLEMENTATION

The second targeted case study is a software implementation
of the Taylor series expansion of the logarithmic function,
expressed as follows:

0o " 2 3
— _ n+1 X X X
J@ =it 0 =3 T =x - 4T -

3

Taylor series in general are largely used in computer
graphics, in linearization problems (e.g., in Robotics), and
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(d) Approximate variant;

(c) Approximate variant;
SSIM = 0.99998, skipped SSIM = 0.99988, skipped

loops = 16.67% loops =29.2%
FIGURE 4. Example of output of two approximate variants of the K-means
clustering algorithm, obtained by applying loop perforation technique.

1 int main (void) {
for (int i = 0; i < N; i++) {
if (i % skipl == 0){
for (int j = 0; j <M; j++) {
if (j % skip2 == 0){
body ;
}

T T I R

:
10 }
o}

Listing 7. Example of mutated code with the loop-second variant

in engineering and computational sciences in general. In
this case, we applied two different versions of the same
approximation technique and used a different error met-
ric, better suited to the case study. We targeted a software
implementation.

1) SETUP

As approximation technique, we adopted the loop perforation
so that skipping the i-th iteration translates in skipping the
computation of the i-th coefficient of the series. We instru-
mented Clang-Chimera to use two different loop perforation
variants:

1) The one illustrated in Subsection III-A1, that we refer
to as loop-first,

2) A technique, that we refer to as loop-second, which
executes only loops having an index multiple of a
certain value ’skip’ [45]. For instance, by using this
variant, the mutated version of the example code shown
in Subsection III-A1 is the following:

Concerning Bellerophon instrumentation, as error metric

we employed the Maximum Absolute Error (MAE), calcu-
lated as follows:

MAE = n’(l;l)x lf (x) _fapprox (x)| 4)
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FIGURE 5. Non-dominated solutions found with E-IDEA: approximate
variants for the Taylor Series expansion, obtained by applying both loop
perforation approximation techniques.

We evaluated the error entailed by the approximate variants
over 1,000 different x values and by calculating the Taylor
expansion up to the order of 100 (n € [1, 100] in Equation 3).
The error threshold was set to 0.6. As for the reward function,
we used the inverse of the execution time in milliseconds,
since we target a software implementation.

2) RESULTS
In Figure 5, we report the non-dominated solutions found
with E-IDEA for both variants of the loop perforation tech-
nique. We report the trade-off between the execution time
(y-axis) and the MAE entailed by the approximate versions of
the code (x-axis). The blue circles represent results obtained
with the loop-first (Loopl) variant and the green triangles
those obtained with the loop-second (Loop?2) variant. Finally,
red squares represent the precise variants of the program. The
execution time needed by E-IDEA to find the two sets of
approximate variants was of few seconds for the loop-first
variant and of about three minutes for the loop-second variant.
Hence, the loop-first variant clearly shows solutions dom-
inating the loop-second variant, for this benchmark.

C. JPEG COMPRESSION ALGORITHM

In this case study, we targeted both a hardware accel-
erator implementation and a software implementation of
the well-known JPEG compression algorithm. In particu-
lar, we addressed the approximation of the Discrete Cosine
Transformation (DCT) employed by the JPEG algorithm.
We applied two different approximation techniques and met-
rics suitable to the two different target technology imple-
mentations (i.e. custom hardware accelerator and software
implementation).

1) BIT-WIDTH REDUCTION

a: SETUP

We configured Clang-Chimera to generate mutants by alter-
ing the bit-width of numeric variables involved in the
DCT function. Furthermore, we configured the Bellerophon
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FIGURE 6. Non-dominated solutions found with E-IDEA: approximate
variants for the JPEG benchmark, obtained by applying bit-width
reduction approximation technique to the DCT algorithm.

objective functions as follows. The accuracy loss estima-
tion was computed by using the Peak Signal-to-Roise Ratio
(PSNR). We calculated the PSNR between the image pro-
duced by the precise (i.e., non-approximate) JPEG and the
output image of the approximate versions to measure the
degradation. For each version, we applied this measure to
four different pictures and used the maximum as reference.
The maximum allowed value (i.e., error threshold) was set
to 33 dB. Typically, acceptable PSNR values in lossy 8-bit
image compression span between 30 and 50 dB (higher is
better) [46]. The reward was measured as the total number
of neglected bits, since we aimed to reduce the resources
to implement a hardware custom accelerator. To perform
the experiment, we adopted the FLAP library. This library
allows replacing standard numeric variable types (e.g., dou-
ble, int, ...) with custom-precision variables. Details about
FLAP library can be found in [47]. As output, E-IDEA
produced a set of approximate variants of the original appli-
cation. In details, it generated a set of configurations for the
custom-precision numerical variables within the DCT. These
are the non-dominated solutions in terms of trade-off between
accuracy loss and gain of hardware resources. We processed
the obtained configurations with an HLS engine to generate
a hardware implementation of the DCT. In particular, for this
experiment, we used Xilinx Vivado HLS [48].

b: RESULTS

Figure 6 depicts the obtained experimental results. The
approximate variants were synthesized to hardware accel-
erators implemented on a Xilinx Zyng-7010 FPGA board.
We report the percentage of hardware resources saved by the
obtained variants w.r.t. the synthesis of the original precise
version. In particular, for each approximate variant, we report
savings (in percentage) in term of Look-Up Tables (LUT),
Flip-Flops (FF), slices and clock period. For instance, the first
variant saves 22% of Look-Up Tables (LUTs), 19% of FF
21% of slices and the clock period is 9% shorter compared
to the original precise version. The PSNR for this variant
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FIGURE 7. Non-dominated solutions found with E-IDEA: approximate
variants for the JPEG benchmark, obtained by applying loop perforation
technique to the DCT algorithm.

is 33 dB. When negative values appear for saved resources,
the related variant requires more hardware resources than
the original precise version. This can happen when the HLS
engine is not able to perform as much hardware optimizations
as in the full-precise synthesis. This kind of problem is also
described in [25] and it is not due to E-IDEA, rather to the
adopted AxC operator. Since the PSNR value of the precise
version image against itself would be oo, it is not reported in
the figure.

2) LOOP PERFORATION

a: SETUP

We performed the same experiment also by configuring
Clang-Chimera to generate mutants using the loop perfo-
ration as approximation technique, (see Subsection III-A1).
The technique is applied to loops that compute the DCT, and
the resulting effect is that some of the terms of the transform
are not computed. Hence, we instrumented Bellerophon to
use (i) the SSIM index [44] to measure the accuracy loss of the
final approximate images w.r.t. to the precise one and (ii) the
percentage of skipped loops as measure of the gain, since we
aimed to reduce the execution time of a software implemen-
tation. Once again, E-IDEA produced a set of non-dominated
approximate variants of the original application, i.e. a set
of configurations for the loop perforation to obtain a good
trade-off between accuracy loss and performance gain.

b: RESULTS

In Figure 7, we report the percentage of skipped loops
(y-axis) and the corresponding SSIM index (x-axis) for the
non-dominated solutions found with E-IDEA. The precise
version is the reference and is placed in (SSIM = 1, skipped
loops = 0). Moreover, in Figure 8, we report two examples
of images produced with the approximate variants having the
highest and the lowest SSIM. Figure 8a and 8b depict the
input and output images of the precise (i.e. non approximate)
JPEG compression algorithm. Figure 8c and 8d report the
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(b) Precise output

(d) Approximate variant;
SSIM = 0.18, skipped
loops = 81.25%

(c) Approximate variant;
SSIM = 0.87, skipped loops
=25%

FIGURE 8. Example of output of two approximate variants of the JPEG
algorithm, obtained by applying loop perforation technique to the DCT
algorithm.

images obtained using approximate variants at the borders
of the Pareto-front, i.e. those exhibiting the minimum error
and the minimum amount of retained loops. These variants
exhibit, with the SSIM values equal to 0.87 and 0.18, respec-
tively, having skipped 25% and 81% during the computation
respectively. E-IDEA found the reported set of approximate
variants in about twenty minutes.

D. SOBEL EDGE-DETECTION FILTER

In this case study, we targeted the Sobel filter. This filter is
usually employed in image processing and computer vision
applications. Also for this benchmark we applied different
approximation techniques and metrics, targeting different
technology implementations (i.e. custom hardware acceler-
ator and software implementation).

1) BIT-WIDTH REDUCTION

a: SETUP

Also for this case study, we instrumented Clang-Chimera to
alter the bit-width of numeric variables involved in additions
and multiplications within the Sober filter code. Bellerophon
was configured as for the first case study: maximum PSNR
as error metric among 4 images, 33 dB as error threshold
and total number of neglected bits as reward function, since
we aimed to reduce the resources to implement a hardware
custom accelerator. The FLAP library was used to achieve
the bit-width reduction. Finally, we processed the obtained
solutions with the HLS engine.

b: RESULTS

In Figure 9 we depict the obtained non-dominated solutions
achieved by E-IDEA for the Sobel filter case study. As shown
in the figure, for this case study E-IDEA did not suggest
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FIGURE 9. Non-dominated solutions found with E-IDEA: approximate
variants for the Sobel edge-detection benchmark, obtained by applying
bit-width reduction approximation technique.
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FIGURE 10. Non-dominated solutions found with E-IDEA: approximate
variants for the Sobel edge-detection algorithm, obtained by applying
loop perforation approximation technique.

any solutions with hardware overhead. Moreover, the variant
1 entailed a PSNR of 39.99 dB, while saving more than 65%
of hardware resources and increasing the performance (i.e.
lower clock-period) by 10%. E-IDEA found the reported set
of approximate variants in about fifty seven minutes.

2) LOOP PERFORATION

a: SETUP

As done for the previous case study, we executed the same
experiment by applying the loop perforation technique to the
convolution algorithm, which results in skipping a few multi-
plications, according to the approximation degree. As fitting
functions we used again the SSIM to measure the accuracy
loss and the percentage of skipped loops as gain metric,
since we aimed to reduce the execution time of a software
implementation.

b: RESULTS
In Figure 10, we report the percentage of skipped loops
(y-axis) and the corresponding SSIM index (x-axis) for the
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(a) Input image

(c) Approximate variant;
SSIM = 0.89, skipped
loops = 16.66%

(d) Approximate variant;
SSIM = 0.06, skipped
loops = 83.33%

FIGURE 11. Example of output of two approximate variants of the sobel
edge-detection algorithm, obtained by applying loop perforation
technique.

non-dominated solutions found with E-IDEA. Moreover,
in Figure 11, we report two examples of images produced
with the approximate variants having the highest and the
lowest SSIM. Figure 11a and 11b depict the input and out-
put images to the sobel filter edge-detection algorithm, for
its precise version (i.e., without approximation). Figure 11c
and 11d report the images obtained approximate variants at
the borders of the Pareto-front, i.e. those exhibiting the minu-
mum error and the minimum amount of retained loops. These
variants exhibit SSIM values equal to 0.89 and 0.06, and 16%
and 83% skipped loops during the computation, respectively.
Also for this case study, E-IDEA found the reported set of
approximate variants in about twenty minutes.

3) APPROXIMATE CIRCUITS

a: SETUP

Aiming at reducing costs of a hardware accelerator for
vertical edge detection, both in terms of silicon area and
power consumption, in this experiment we configured the
Clang-Chimera tool to replace exact arithmetic operators
using approximate ones, by adopting implementations from
the EvoApproxLib library of approximate circuits [31]. Thus,
the Clang-Chimera tool generates an approximate version
of the considered application in which it is possible to select,
for each addition, an implementation between either the
exact or an approximate implementation from the mentioned
library.

Concerning optimization, during this experiment we con-
sidered three different fitness-functions, i.e. error minimiza-
tion, silicon area minimization, and power consumption
minimization.

We selected the PSNR as error metric, and, during
error assessment, the PSNR is computed by considering
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images resulting from the exact and approximate Sobel filter
while resorting to a comprehensive data set [49] consisting
of 44 different images. Circuit area and power consumption
are estimated as the sum of the contributions of each single
approximate circuit, as reported in [31].

Please, kindly note that, for this particular application,
an exhaustive evaluation of the whole set of approximate con-
figurations is computationally feasible, since the moderate
amount of operations required by the filter. Indeed, vertical
edge detection requires only five additions and two doubles,
with the latter being implementable using wire-only left-shift,
which nullifies hardware costs of multiplications. The total
amount of approximate configurations is about 4.9 x 10.
This gives the opportunity to compare the actual Pareto-front
resulting from the exhaustive evaluation with the estimation
provided by the E-IDEA framework.

In order to also evaluate how the quality of the Pareto-front
estimation is affected by the GA configuration parameters,
we performed three different runs of the Bellerophon tool,
varying the effort for the DSE phase while keeping mutation
and crossover probability unmodified. In particular, (i) for the
low-effort run, we considered a population of 500 individuals
and 3 iterations, (ii) for the medium-effort run, we con-
sidered a population of 2000 individuals and 11 iterations,
and (iii) for the high-effort run, we considered a population
of 20000 individuals and 100 iterations. Table 2 summarizes
the experimental setup.

TABLE 2. DSE parameters and relative results for the Sobel vertical edge
detector case study. Note that the normalized distances is computed from
fitness-function values normalized to [0, 1].

Absolute Dist: Normalized Distance
Effort Pop. Iter. Time Min. Avg Max Min Avg Max
Exh. - ~170h - - - - -
Low 500 3 ~5min | 0.013 1.58 7.6 | 59e-6 24e-4 1.7e-3
Med. 2000 11 ~4h 0.002 1.57 58 | 37e-6 69e-6 5.6e-4
Hig. 20000 100 ~~22h 0.001 1.5 44 | 3.6e-6 68e-6 S5de-4
b: RESULTS

For comparison purposes, Figure 12 and Figure 13 report,
respectively, experimental results in the “PSNR vs. area”
and “PSNR vs. power” perspective. Furthermore, in order to
measure how close configurations P provided by E-IDEA are
w.r.t. the optimal configurations Q resulting from exhaustive
evaluation, we measure the distance from each point p € P
to the nearest optimal configuration g € Q, as reported in
Equation (5). The minimum, average and maximum distance
are reported in Table 2, along with normalized distances,
as done in [32].

dp =\§(r;élé lg—pl VpeP (5)

As the reader can figure out, results from E-IDEA are
very close to those resulting exhaustive simulation, while,
as reported in Table 2, the amount of time needed by exhaus-
tive evaluation is prohibitively higher than that required by
the high-effort run of the GA.
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FIGURE 12. Comparison of results from exhaustive evaluation w.r.t
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FIGURE 13. Comparison of results from exhaustive evaluation w.r.t
estimation from E-IDEA (PSNR vs. estimated power consumption).

TABLE 3. Comparison of results from [32], in terms of normalized
distance between estimated and actual Pareto front.

Results from [32]

Effort ‘ ‘ Avg. Max

Avg. Max.
Low 2.5e-3 7.5e-3 24e-4  1.7e-3
Med. 2.5e-4 1.3e-3 6.9¢-6  5.6e-4
High le-5 6.5¢e-3 6.8¢e-6 S5.4e-4

c: COMPARISON WITH PREVIOUS WORKS

A comparable case study is presented in [32], where a Sobel
vertical-edge detector is approximated using circuits from the
EvoApproxLib8b library [31], and results from hill-climbing
search, varying the effort, are confronted with those from
exhaustive exploration.

The E-IDEA is capable of providing comparable exper-
imental setup. In particular, Table 3 reports comparison of
results from [32] with results from our method, for compa-
rable effort levels. As the reader can figure out, the NSGA-II
allows achieving better results by at least an order of magni-
tude. Furthermore, when compared to the one proposed [32],
our method does not require (i) the user to know how the filter
is implemented, (ii) a full characterization of circuits from the
library, (iii) the library pre-processing step to eliminate irrele-
vant circuits, which significantly reduces activities demanded
to the designer, and simplifies the design process.

E. CONVOLUTIONAL NEURAL NETWORK

In this case study, we target Convolutional Neural Networks
(CNNs), that are a class of deep neural networks most com-
monly applied to analyzing visual imagery. In particular,
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we focus on a LeNet5 [50] network, trained to classify images
from the Modified National Institute of Standards and Tech-
nology (MNIST) benchmark [51].

Table 4 reports relevant structural parameters of the con-
sidered network, including the type of each layer, its input
and output volume size, kernel size, activation functions and
so forth.

TABLE 4. Structural characteristics of LeNet5 [50].

Layer Convl  Pooll Conv2 Pool2 Conv3  Fulll Full2
Input volume 32x32x1 28x28x6 14x14x6 10x10x16 5x5x16 1x1x120 84x1x1
Kernel size 5x5 2x2 5x5 2x2 5x5 - -
Stride 1 1 1 2 1 -
Padding 0 - 0 - 0

Filters 6 - 16 - 120 -
Activation rect - rect - rect rect linear
Pooling - max - max

Output volume 28x28x6 14x14x6 10x10x16 5x5x16 1x1x120 84xIx1 10x1x1

We aim at designing a hardware accelerator suitable to
speed-up weighted sums computed within neurons, in order
to reduce both hardware requirements and power consump-
tion. In this case study, we apply two approximate techniques,
i.e. precision scaling and approximate circuits, to multipliers,
since they are considered the most demanding arithmetic unit
within CNNs [52], [53]. We discuss experimental setup and
results in Section IV-E1 and Section IV-E2, respectively.

1) PRECISION-SCALING

a: SETUP

The network being considered during this first experiment has
been trained using single precision floating-point, exhibit-
ing 99.07% accuracy. We performed, then, performed 8-bit
integer quantization, without experiencing any accuracy loss.
Nevertheless, being the tool working on an already trained
network model, the overall approach does depend neither
on the particular network nor the particular implementation
being considered.

We configured Clang-Chimera to truncate input operands
and results of multiplications in the three convolutional and
in the two fully connected layers of the considered network.
Thus, the tool generates an approximate version of the consid-
ered CNN in which it is possible to configure, for each mul-
tiplication involved in the weighted sum, the NABs, in order
to tune the introduced approximation degree.

To estimate the error introduced by the approximation,
we configured Bellerophon to execute the approximate CNN
to obtain its classification accuracy; then, Bellerophon com-
pares it to the non-approximate 8-bits quantized CNN accu-
racy, on the MNIST test data set [51], to calculate the error
as the difference between the two CNNs accuracy. One of the
objectives of the Bellerophon is to find approximate solutions
minimizing the so-defined error fitness function.

Concerning the reward fitness function, we estimate the
gains by taking into account several network parameters that
definitely have some impact on hardware requirements, such
as: (i) the NABs within a single neuron, since the number
of bits impacts hardware requirements of multipliers, (ii) the
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input-volume of a neuron, which impacts the amount of oper-
ations performed within it, and (iii) the amount of neurons
within a layer, i.e. the output volume size of a layer, which
impacts the hardware requirements of the whole layer. In
details, let us consider the following:

o §: the data-width for inputs, weights, biases and outputs

in the non-approximate CNN;

o N: the amount of approximate layers;

e I; = d; x hj x w;: the input volume size of each neuron

belonging to the i-th layer;

o O; = D; x H; x W;: the i-th layer output volume size;

o NAB;: the NABs for multiplications within the i-th layer.
Our proposed reward fitness function (6) is defined as the
ratio between neglected and total bits, weighted according to
input and output volume size of each layer.

_ YV NAB: x I; x 0;
Sx YN x 0

(6)

b: RESULTS

The design-space exploration phase took about 5 hours so
complete, and provided approximate configurations reported
in Table 5. For each of the configurations, the amount of
neglected bits for each layer and the corresponding fit-
ness function values are reported. Being CNNs quite error
resilient, approximate configurations exhibit negligible error,
in spite of significant potential saving estimated through (6).
Please note that, although negligible, some approximate
configurations exhibit even some classification accuracy
improvements.

TABLE 5. Bellerophon results for LeNet5 while applying precision-scaling.

Conf#|Error (%) Reward (%)|Conv.1 Conv.2 Conv.3 F.C.1 F.C.2
1 -0.07 16.64 0 2 1 1 3
2 -0.06 24.60 2 2 0 2 3
3 -0.02 24.94 2 2 2 2 0
4 0.06 28.16 3 2 0 1 2
5 0.07 28.61 3 2 2 1 3
6 0.10 28.86 3 2 2 2 0
7 0.12 32.60 2 3 0 2 3
8 0.18 3291 2 3 0 3 2
9 0.33 35.80 3 3 0 0 1
10 0.34 36.25 3 3 2 0 2
11 0.35 36.28 3 3 2 0 3
12 0.38 36.99 3 3 1 3 0
13 0.48 37.31 3 3 2 3 4

In order to measure actual hardware savings, we designed a
parallel weighted-sum accelerator in VHDL. Such an acceler-
ator guarantees high flexibility, since it handles the configura-
tion of (i) the data width for synaptic weights, inputs, biases
and outputs, (ii) input and output volume size, and (iii) the
NABs for multiplications, allowing hardware synthesis of
any solution eventually found during the design space explo-
ration process performed with E-IDEA. Our implementation
aims at taking advantage from the massive inner-parallelism
hardware provides; therefore, unrelated operations are per-
formed exploiting parallel multipliers and adders. Inputs and
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weights signals are fed into a multiplier block that computes
partial-products using d x h x w parallel multipliers, where
d, h and w are, respectively, the depth, height and width
of the input-volume. These partial-products are, then, fed
into a binary-tree-based sum-reduction block. It consists of
logy (d x h x w) + 1 levels, each one having 2! parallel
adders, with [ € [0, logs (d x h x w)]; [ = 0 is the root-node
of the reduction tree, i.e. the one computing the final sum.
In order to obtain the hardware implementations,
the non-dominated solution configurations (reported
in Table 5) are employed to configure the above mentioned
VHDL design. Finally, we performed FPGA synthesis target-
ing a Xilinx Virtex Ultrascale4- FPGA to measure the actual
hardware gains entailed by the approximation. Figure 14
reports the synthesis results. The stacked bars graph repre-
sents, for each layer, the requirements of the above discussed
accelerator in terms of both LUTs and Flip-Flops (FFs).

mess Convl  wesss Conv2  wess= Cony3 == FCL FC2
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Amount of required LUTs

=
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Amount of required FFs

- N M 1N O N~ 0 O
# O* OH ¥ OH ¥ H ¥ H#

Exact
#10
#11
#12
#13

FIGURE 14. FPGA resource requirements (single neuron per layer) for the
LeNet5 CNN.

As foreseeable, accelerating the weighted sum computa-
tion for the third convolutional layer (Conv.3) requires the
largest amount of resources, due to the input volume size of
such a layer, which is far larger w.r.t. other layers.

As it can be observed, overall the predicted trend is con-
firmed: the hardware resources significantly decrease as the
introduced classification error increases. Configuration #13,
for instance, allows achieving up to 40% and 30% savings
in terms of LUTs and FFs, respectively, with only a 0.48%
accuracy loss. As it is easy to imagine, savings due to
precision-scaling does not only affect hardware requirements,
but also energy consumption. Trivially, the less hardware a
circuit require, the less energy is spent to power it. More-
over, the whole circuit is also expected to exhibit a lower
switching activity w.r.t. its exact counterpart, since the least
significant bits of inputs, weights and biases are constant-zero
signals thanks to the approximation. In order to evaluate
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potential power savings, we performed simulations on the
non-dominated approximate configurations shown in Table 5
to compare them to the exact (non-approximate) counterpart.
Simulations involve 10,000 input combinations, each con-
sisting of an appropriate amount of inputs, weights and bias
vectors depending on the input volume size of the considered
accelerator. Figure 15 reports the results. The third convolu-
tional layer requires larger amount of power w.r.t. the other
layers, since it performs far more parallel multiplications and
additions.

mess CONv1l  messm Conv2 — wessm Conv3  memmm FCL FC2
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FIGURE 15. Power consumption (single neuron per layer) for the LeNet5
CNN.

The non-monotonic trend of the reported results are due
to the heuristic nature of the algorithms used by the syn-
thesis tool. Therefore, a solution needing less resources (i.e.
higher reward in Table 5) could end up being less optimizable
than one needing more (i.e. lower reward in Table 5), espe-
cially in complex application, such as CNNs. Nevertheless,
the exploration performed with E-IDEA is useful to iden-
tify the approximate configurations achieving good trade-offs
between hardware gains and accuracy loss. This introduce the
important benefit of synthesizing only a reduced set of the
explored approximate configurations (i.e. 13 over ~40,000)
to finally find the best suited one for the given design
requirements.

2) APPROXIMATE CIRCUITS

a: SETUP

The network we consider in this experiment results from
16-bits quantization on the single-precision floating-point
network from which we begin the above discussed case study.
After quantization, we witness no accuracy loss.

The Clang-Chimera is configured to supersede exact mul-
tiplications in the three convolutional and in the two fully
connected layers using approximate circuits taken from the
EvoApproxLib-Lite [36]. Thus, the tool generates an approx-
imate version of the considered CNN in which it is possible
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to select, for each multiplication involved in the weighted
sum computation within neurons, an implementation between
either the exact or an approximate implementation from the
library.

Concerning MOP, as done for precision-scaling, one of
the objectives of the Bellerophon is to find approximate
solutions minimizing the classification-accuracy loss. There-
fore, in order to perform error assessment, we configured
Bellerophon to execute the approximate CNN to obtain its
classification accuracy on the MNIST test data set [51].
Then, that accuracy is compared against the accuracy of the
non-approximate 16-bits quantized CNN, and the error is
computed as the difference between the two CNNs accuracy.

In this experiment we also pursue circuit area minimiza-
tion: we estimate the circuit area by taking into account (i) the
silicon area of exact and approximate multipliers, as reported
in [36], (ii) the input-volume of a neuron, which impacts
the amount of operations performed within it, and (iii) the
amount of neurons within a layer, i.e. the output volume size
of a layer. In details, being: (i) N: the amount of approximate
layers, (ii) I; = d; x h; x w;: the input volume size of each
neuron belonging to the i-th layer, (iii) O; = D; x H; x W;: the
i-th layer output volume size, (iv) «;: the silicon area of the
multiplier being adopted within i-th layer as reported in [36],
the Bellerophon aims at minimizing Equation (7), which is
the sum of the silicon area of multipliers being adopted within
each of the layers, weighted according to input and output
volume size of each layer.

N
p=>Y axI;x0 @)
i

Furthermore, we also aim to minimize the power consump-
tion of the circuit. We estimate power consumption resorting
to the same reasoning as for silicon area minimization. In par-
ticular, being B;: the power consumption of the multiplier
adopted within i-th layer, the Bellerophon aims at minimizing
Equation (8), which is the sum of the power consumption
of multipliers being adopted within each layer, weighted
according to the input and output volume size.

N
Y= BixIlix0 ®)

b: RESULTS

The design-space exploration phase took about 25 hours to
complete, due to the increased time needed to simulate C cir-
cuit models from [36]. Resulting approximate configurations
are reported in Table 6. For each of the configurations, besides
the corresponding fitness function values, also the multiplier
circuits being adopted are reported.

In order to measure actual hardware requirements,
we resort to the parallel weighted-sum accelerator we dis-
cussed above. In order to allow the hardware synthesis of any
solution eventually found during the DSE process performed
with E-IDEA, we added the possibility of using multipliers
from [36] to that parallel weighted-sum accelerator.
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TABLE 6. Bellerophon results for LeNet5 while using approximate circuits
from [36].

Conf#|Error (%) Silicon area (pm2) Power (W) |Conv.1 Conv.2 Conv.3 F.C.1 F.C.2
1 -0.04 1012.24 x 10° 945.199 | Exact HHP Exact GK2 HDG
2 0.15 900.95 x 108 736.031 | HFZ HDG Exact HDG Exact
3 -0.08 1143.84 x 108 1014.180 | Exact GK2 G7Z HHP HFZ
4 0.13 950.48 x 106 789.560 | HFZ G7Z G80 Exact G7Z
5 0.04 970.83 x 106 859.568 | HDG HEB HHP G7F G7Z
6 0.07 970.17 x 106 784903 | G80 G7F G80 HEB G7F
7 0.01 997.27 x 106 832993 | G80 HDG Exact GK2 HFZ
8 -0.02 999.64 x 106 930.959 | Exact HHP HHP GK2 HDG
9 0.22 814.35 x 106 648.202 | HDG HFZ Exact HFZ HFZ
10 0.34 731.97 x 106 563.760 | HFZ HFZ GK2 HHP G80
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FIGURE 16. Silicon area requirements (single neuron per layer) for the
LeNet5 CNN.
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FIGURE 17. Power consumption (single neuron per layer) for the LeNet5
CNN.

Approximate configurations reported in Table 6 are
employed to configure the above-mentioned accelerator;
then, we performed ASIC synthesis targeting the 65um Fin-
FET library to measure the actual hardware requirements
entailed by the approximation.

Figure 16 and Figure 17 report silicon die area require-
ments and estimated power consumption provided by the
Cadence Genus Synthesis Solution tool. As discussed above,
the third convolutional layer (Conv.3) is the most burdensome
since its input volume size. Anyway, the predicted savings are
still confirmed: using the E-IDEA tool results in hardware
resources significantly decrease as the introduced classifica-
tion error increases. Configuration #8, for instance, allows
achieving up to 35% and 30% savings in terms of silicon area
and power consumption.
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Authors of [36] proposed a comparable approach in which
basic arithmetic components are first approximate while con-
sidering component-based error and saving metrics, thus
employed to design a hardware accelerator CNNs. In par-
ticular, multipliers are employed to perform error resiliency
estimation of single layers of CNNs, and to reduce figure of
merits such as silicon area and power consumption of hard-
ware accelerators.

As already shown in Section IV-D3, although the results
are not directly comparable, those achieved through the use
of our tool — 0% classification accuracy drop against 35%
area and 30% power savings — are on the same quantitative
relation as those obtained using state-of-the-art approaches —
1.8% accuracy traded for 29% power savings. On the other
hand, looking at the methodological aspect, we deem that our
approach provides a significant step forward. In fact, it allows
to consider the application as a whole, and to explore, in a
single run, the different degrees of approximation that each
of the layers of the network is able to withstand, allowing to
diversify the degree of approximation that can be exploited
during the design of a hardware accelerator. Conversely,
the state-of-the-art studies carry out the analysis of resilience
with respect to the error by considering the layers one at a
time, and, as far as the design of an accelerator is concerned,
they do not fully exploit the approximation that is possible
to introduce, employing the same degree of approximation
for all the layers. Moreover, they do not allow to explore
the effects of different approximation techniques on the same
application.

3) COMPARING PRECISION-SCALING AND
APPROXIMATE-CIRCUITS

In this section, exploiting flexibility provided by E-IDEA,
we make a comparison between the precision-scaling and the
approximate circuit techniques, while resorting to the CNN
case study discussed in Section E.1 and E.2.

Resorting to the 16-bits quantized CNN model we adopted
for the approximate circuit technique case study, here we
configure Clang-Chimera to truncate input operands and
results of multiplications in the three convolutional and in
the two fully connected layers of the considered network.
As a result, the tool generates an approximate version of
the considered CNN in which it is possible to config-
ure, for each multiplication involved in the weighted sum,
the number of neglected bits, in order to tune the introduced
approximation degree. Concerning the design-space explo-
ration phase, we configured Bellerophon to minimize both
the classification-accuracy loss and silicon die area. In par-
ticular, (i) Bellerophon compares the approximate and the
non-approximate networks in terms of classification accu-
racy while considering the MNIST test data set, in order to
assess error, and (ii) for what pertains to area minimization,
we resort to Equation (9). Finally, we synthesized approx-
imate configurations resulting from Bellerophon while tar-
geting the 65 um FinFET technology library — the same we
targeted for the approximate circuit case study — in order
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FIGURE 18. Comparison between precision-scaling and approximate
circuits techniques, in the error v.s circuit area perspective.

to compare actual savings provided by the adopted approx-
imate techniques, both in terms of silicon area and power
consumption.

Results of such a comparison are reported in the classi-
fication accuracy loss vs silicon area and power consump-
tion perspectives, respectively in Figure 18 and Figure 19.
In order to state which Pareto-front provides better results,
we resort to the Coverage of two sets metric, proposed in [54].
Let A and B be two sets of non-dominated solutions for
a MOP. The function C in Equation (9) maps the pair (A, B)
to the interval [0, 1]: where the expression « covers  (a > )
means that the solution « dominates the solution g or they
are the same solution. The value C (A, B) = 1 means that all
points in B are dominated by or equal to points in A. Con-
versely, the value C (A, B) = 0 represents the situation where
no points in B are covered by any points in A. When using
this metric, both C (A, B) and C (B, A) have to be considered,
as they are not necessarily equal.

C(A’B)::HV,BEB,EIaeA.azﬂH ©)
|B|

We measured C between the Pareto-fronts resulting from
precision-scaling and approximate circuits, and vice-versa.
As reported in Table 7, we obtained 90% and 22% coverage,
which means the precision-scaling dominates the approxi-
mate circuits techniques 90% of time, while the opposite
occurs only 22% of time.

TABLE 7. Coverage of two sets metric between Pareto fronts.

Pareto-fronts C(A,B)
Ax Circuits v.s. Precision scaling 0.22
Precision scaling v.s. Ax Circuits 0.91

Although the precision-scaling seems to provide better
trade-offs w.r.t the approximate circuits technique, results
might differ whether considering a different application
domain, paving the way for future research.

F. DISCUSSION

The conducted experiments showed the flexibility of the
proposed E-IDEA framework. Indeed, we were able to
quickly evaluate the resiliency of algorithms to a particular
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FIGURE 19. Comparison between precision-scaling and approximate
circuits techniques, in the error v.s power consumption perspective.

approximation technique. This was possible thanks to the
evolutionary-based exploration of different approximate con-
figurations to ultimately produce efficient variants without
significantly impacting the output accuracy, as shown, for
instance, in the k-means case study.

Furthermore, with E-IDEA it is also simple to automat-
ically evaluate the impact of different variants of the same
approximation technique: in the Taylor series expansion case
study we showed that two variants of the same AxC technique
(loop perforation) lead to different trade-offs between perfor-
mance and accuracy loss (Figure 5). A simple modification
in the E-IDEA mutator allowed us to easily perform the
analysis.

Moreover, since different approximation techniques are
applicable to different targets, usually it is complicated to
evaluate their impact on an application. For example, while
the bit-width reduction is more suitable when targeting a
custom hardware accelerator — since it is fully customiz-
able — the loop perforation is mostly applied in software
implementations. Nevertheless, with E-IDEA it is possible
to easily explore the trade-off opportunities stemming from
the different AxC techniques within the same framework. In
this regard, JPEG and Sobel filter case studies proved the
possibilities of exploring the trade-off opportunities brought
by two totally different AxC techniques — bit-width reduc-
tion and loop perforation — to the same application. To do
so, we simply defined different code mutators and fitting
functions.

Thus, E-IDEA allows exploring the impact of different
approximation techniques on different benchmarks, with dif-
ferent targets (i.e., software, hardware accelerators) and error
metrics.

Finally, the approach introduced with E-IDEA is scalable.
Indeed, as shown in the last case study, it allows analyzing
complex applications as the CNNs. We instrumented E-IDEA
to apply the precision scaling approximation technique to
a 8-bit quantized CNN. This allowed us to find solutions
achieving more than 30% savings, with a negligible accuracy
loss (0.48%).

Besides, Table 8 summarize reported case studies, includ-
ing the approximate technique being adopted and which are
the parts of the application on which the technique is applied,
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TABLE 8. Summary of reported case studies, including employed
techniques, approximate parts, fitness functions and DSE.

Exploration

Application  Technique Part(s) Fitness

Time (min)
Centroid Min.Error &
KMeans LoD compuation  MincCompTime
Loopl Amount of Min.Error & <1
Taylor . . .
o ___ Loop2 _ _ seriesterms _ Min.Comp.Time <3
Precision Ad.d 1t'1 on .& Min.Error &
JPEG . multiplications Lo ~55
. scaling . Min.Bit-width
Compression bit-width
Loopl Amount of DCT Min.Error & ~20
R P _tems _ MinCompTime .
Precision Adfi 1t} on A& Min.Error &
Sobel scalin multiplications Min Arca ~57
edge seang bit-width :
detection Amount of Min.Error &
Loopl multiplications ~20
in convolution Min.Comp.Time
Addition Min.Error,

Ax-cirtcuits operators in Min.Area & ~5
,,,,,,,,,,,,,,,, convolution MinPower
Precision e Min.Error,

CNN Scaling M}lll}pllcatlons Min.Area ~300
within neurons .
Min.Error,
Ax-cirtuits Min.Area & ~1500
Min.Power

the fitness-functions driving the DSE, and the execution time
that E-IDEA spent to perform the latter. In general, the explo-
ration time depends on the application, specifically on its
requirements in terms of computation and code complexity.
Also, the complexity of the metric calculation impacts the
exploration time. Indeed, for instance, for all the applica-
tions used to process images (k-means, JPEG, and Sobel)
E-IDEA had to calculate the related metrics (PSNR, SSIM)
to determine the accuracy loss. Moreover, to calculate the
approximate-CNN accuracy loss, the inference process must
be executed and the results compared to the non-approximate
CNN. On the other hand, the Taylor benchmark only needed
the calculation of the Maximum Absolute Error which was
pretty quick.

V. CONCLUSION

In this paper, we presented E-IDEA, an automated frame-
work able to generate approximate variants of a given input
application described as C/C++ code. The approach is based
on automatic code mutation and on an evolutionary engine,
whose synergy enables the exploration of the best approxi-
mate variants in terms of trade-offs between accuracy reduc-
tion and efficiency gains. E-IDEA has been validated over
different kinds of applications and target implementations
(i.e. software, hardware accelerators). Experimental results
presented throughout the article showed that E-IDEA can be
very useful as a design exploration tool to help the user select-
ing the most suitable approximation technique, according to
the desired requirements and constraints.

E-IDEA is released under the GNU Affero General Public
License and it is completely open-source [34]. We believe that
the E-IDEA approach will help software and hardware engi-
neers to design the future energy-efficient integrated systems
and applications.
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