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A new brittle-elastoviscoplastic fluid based on the Drucker-Prager
plasticity

Pierre Saramitoa,˚

aLab. Jean Kuntzmann – CNRS and Université Grenoble-Alpes, F-38041 Grenoble, France

Abstract

A new brittle-elastoviscoplastic (BEVP) fluid model is presented in this paper. This model is
relatively simple to use, as it contains few material parameters and a simple fixed-point algorithm
is effective for solving the coupled system of equations. The model combines some existing fun-
damental features such as elasticity, plasticity and brittle damage. The combination of them is
based on thermodynamics that ensures the positivity of the dissipation and the Onsager symme-
try. Moreover, thermodynamics allows to point out the link between thixotropy and damage in
the context of elastoviscoplastic (EVP) fluids. Theoretical results on the Drucker-Prager plasticity
criterion are completed in order to use it here. Preliminary results with the proposed BEVP model
are very encouraging: it is able to represent the pre-failure, failure and post-failure behavior of
quasi-brittle materials.

Keywords: elastoviscoplastic fluid, damage, thixotropy, finite element method

Introduction

Materials that present microstructure of particles with frictional contacts and a large scale re-
arrangements are very common in nature. Typical examples are dry or wet granular flows and
concentrated suspensions. Also, rocks and cements undergoing large and unbounded deformations
share this microstructural aspect. At a larger scale, the dynamic of earthquakes and the sea ice, for
predicting the climate evolution, are potential applications of the present work. The development
of efficient rheological models for the flow of dense granular maters and suspensions is also a chal-
lenge for continuous models, where discrete simulations are still more relevant for applications, but
limited in terms of the particle number. The most popular continuous description of granular flows
is certainly the viscoplastic µpIq rheology [31], despite its mathematical issues [3, 54]. The µpIq
pressure-dependent yield stress feature was recently revisited by Daviet and Bertails [11, 10],
based on the elegant de Saxcé mathematical formalization [27] of the Drucker-Prager plasticity
criterion [14]. The present paper is a contribution in this direction, in order to develop continuous
models that take into account microstructural frictional contacts and large scale rearrangements.
For that purpose, theoretical results on the Drucker-Prager plasticity criterion are completed in
order to use it for general elastoviscoplastic (EVP) fluids.

During the flow, the properties of these materials are likely to develop. Indeed, large stresses tend
to break grains. For instance, during the sea ice flow, the floes are broken, as shown on Fig. 1.left,
but a healing process due to freezing tends to collapse neighbors floes with a time scale of few
days [9]. A similar effect is observed with earthquakes, where faults could slowly heal. Developed
in the context of elastoplastic solids, the damage theory [36, 44] is widely used from years, with
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Figure 1: (left) The damage variable d P r0, 1s is defined by Kachanov [33] as the density of micro-cracks and
comminution of the fractured material at the macroscopic level. The background image is a SPOT satellite aerial
picture of a 59ˆ59 km2 portion of the Arctic sea ice cover centered around 80.18˝ N, 108.55˝ W. (right) The
rheological model combines two viscous elements ηpdq and ηs with a dry-friction element including both yield stress
and Coulomb friction µ, together with a compressible elastic element with a Poisson ratio νpdq.

applications to rocks, concretes and steels. Damage mechanics for modeling strongly elastic, but
not brittle, solid materials such as bread dough was also used by Phan-Thien et al. [46]. Conversely,
thixotropy [4, 42, 35] is a different kind of approach, used mostly in the context of viscoelastic
fluids, such as suspensions of colloidal and non-colloidal particles that form flocculated systems,
as well as gels that form cross-linked systems. Such materials are handled in the food, petroleum
and cosmetic industries. One of the main characteristics of both damage and thixotropic effects
is the time-dependent change in the material parameters associated to elasticity, viscosity and
plasticity.

Thus, the proposed brittle-elastoviscoplastic (BEVP) model, represented on Fig. 1.right, shares
some structural similarities with some existing thixo-elastoviscoplastic models (TEVP, see
e.g. [35, 13, 12]). By introducing an abstract mathematical model suitable for such soft-solids
and complex fluids, the present paper points out these similarities. Using this abstract model,
three main features, namely elasticity, plasticity and damage could be combined together, as a
Lego game, with the fundamental viscous effects. This abstraction is first illustrated with the
BMP [5] thixotropic model before to develop the present BEVP model. Our abstract framework
bases on the thermodynamics with internal variables and a potential of dissipation, known as the
generalized standard materials (GSM). GSM was introduced by Halphen and Nguyen [23] in the
context of elastoplasticity of solids and previously used by the present author for the development
of elastoviscoplastic (EVP) fluids [49, 50]. While thermodynamics is popular in the elastoplastic
solid’s community, observe that its usage is much less advanced in the complex fluid’s community.
Remarkable contributions are those of Leonov [38], which was based on thermodynamics to pro-
pose a viscoelastic fluid and Beris and Edwards [6], who proposed the Poisson bracket tool for the
development of new fluid models. Thus, to the author’s best knowledge, the present theoretical
approach is new in the context of these TEVP and BEVP complex fluids.

The outline of the paper is as follows: section 1 presents the thermodynamic framework that
leads to the mathematical expression of the rheological model. At this stage, the obtained model
still contains three black-boxes, namely the elasticity, the plasticity and the damage, that will be
chosen in section 2 for obtaining the new BEVP model. Section 3 presents preliminary results on
the uniaxial compression benchmark. The paper contains two appendices. The first one is the
complete and self-contained proof of a theoretical result on the Drucker-Prager plasticity criterion
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in order to use it for general EVP fluids. The second one is the details of the numerical method
used in section 3.

1. Abstract problem statement

In this section, the thermodynamic framework is defined. First, the free energy and the potential
of dissipation are introduced. Next, constitutive equations are obtained by differentiation of these
two previous fundamental functions. A thorough discussion about the dissipation is developed
before to expand the abstract problem statement. This section closes with a practical example:
the thixotropic BMP model and its dissipative effects are discussed. Recall that the abstract
mathematical model still contains three black-boxes, namely the elasticity, the plasticity and the
damage, that will be chosen in a forthcoming section for obtaining the new BEVP model.

The impatient reader – and the reader who is unfamiliar with the thermodynamic framework –
could jump directly to section 1.4 where the complete set of equations governing such a flow is
presented, before reading section 1.5 where the BMP model is discussed.

1.1. Thermodynamic framework

Notation Description

N dimension of the physical space

RN N̂
s set of real symmetric NˆN matrix

I identity tensor

tr τ , dev τ trace and deviator of a tensor τ

d damage (scalar)

Y strain energy release rate (scalar)

u velocity

γ total deformation

γe elastic deformation

γp plastic deformation

σ Cauchy total stress

σe elastic stress

We Weissenberg number, viscoelasticity

γy elastoplastic yield deformation

Wed for damage relaxation

γc elastodamage yield deformation

Notation Description

ρ density

η0, ηs viscosities

ηtot “ η0 ` ηs, total viscosity

ηd damage-related viscosity

σy viscoplastic cohesion (yield stress)

σc damage cohesion

µ friction coefficient (dimensionless)

ν, E Poisson ratio and elastic modulus

G, λ Lamé coefficients

A elasticity fourth order operator

ψ Helmholtz free energy

φ dissipation potential

φp viscoplastic dissipation potential

φd damage dissipation potential

w total dissipation

wp viscoplastic dissipation

wd damage dissipation

Kµ Drucker-Prager cone

Tµ,σy translated Drucker-Prager cone

IC indicator function of the set C

Table 1: Table of notations.

The total deformation tensor γ is assumed to split as the sum of γe, the elastic deformation, and
γp, its complement:

γ “ γp ` γe (1)

Following Kachanov [33], let us introduce the progressive damage variable d: it quantifies the
density of micro-cracks and comminution of the fractured material at the macroscopic level (see
Fig. 1.left). It evolves between d “ 0 for an undamaged and d “ 1 for a completely damaged
material. As in most previous progressive damage models [33, 55, 57, 2], and based on the notion
of effective stress, we choose to let the elasticity operator Apdq of the material vary with the level
of damage.
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The thermodynamic framework of standard generalized materials [23] (see also [51, p. 222]) is
considered here. Let pγ,γp, dq be the three independent thermodynamic state variables of our
material. At any time, we assume that we are able to impose some arbitrarily value to the rate
variables p 9γ, 9γp,

9dq without changing the values of the state variables pγ,γp, dq, so state variables
and rate variables are considered as independent thermodynamic variables. The specific Helmholtz
free energy ψ and the dissipation potential φ are defined by

ψpγ,γp, dq “
1

2ρ

ˇ

ˇγ´γp
ˇ

ˇ

2

Apdq (2a)

φ
´

rγ,γp, ds; 9γ, 9γp,
9d
¯

“ Ikerptrqp 9γq ` ηs| 9γ|
2 ` φp

`

rds; 9γp
˘

` φd

´

rγ´γp, ds;
9d
¯

(2b)

In (2a), the density of the material is denoted by ρ and is assumed to be constant. The notations
used all along the paper are summarized in Table 1. Let us denote by |δ| the tensor norm:
|δ|2 “ δ :δ, for any δ P RN N̂

s , where N ě 1 is the physical space dimension, and RN N̂
s the

space of symmetric NˆN real matrix. For any matrix δ, τ P RN N̂
s , the associated dot product

is δ :τ “
řN
i,j“1 δi,jτi,j . For convenience, the notation |δ|Apdq represents the tensor norm in the A

metric: |δ|2Apdq “ pApdqδq :δ. The elasticity operator Apdq is assumed to be symmetric definite

positive and thus it is invertible: its inverse is called the compliance operator. The term Ikerptrqp 9γq
in (2b) imposes the incompressibility of the material: kerptrq denotes the set of traceless tensors.
For any convex set C, the indicator function IC is defined by:

ICpξq “

"

0 when ξ P C
`8 otherwise

The indicator function of a convex set is also convex but not differentiable.

In (2b), the notation with square brackets r.s, as in φprγ,γp, ds; 9γ, 9γp,
9dq indicates a dependence

of the dissipation potential upon the state variables γ, γp and d as parameters: it is distinct from

9γ, 9γp and 9d which are the thermodynamic rate variables of the dissipation potential.

Finally, the potentials φp and φd describe respectively the viscoplasticity and the damage and ηs
is the bulk viscosity. We assume that both φp and φd are positive, convex and vanish in zero.
Some practical choices for them will be discussed in details in the next paragraph. We are now
able to prove the following major result.

Theorem 1 (second principle of thermodynamics and Onsager symmetries).
Assume that the dissipation potential φ is convex, positive and vanishes when the rate variables
are zero. Then, the rheological model defined by (2a)-(2b) satisfies both the second principle of
thermodynamics and a generalized Onsager symmetry principle.

Proof: The second principle of thermodynamics is directly obtained from [51, p. 223]. From [23,
p. 40], the generalized Onsager symmetry principle is obtained as a direct consequence of the
present formalism based on the dissipation potential. �

1.2. Constitutive equations

The constitutive equations are obtained by derivation of the specific free energy and the potential
of dissipation by (see [51, p. 223]):

σ “ ρ
Bψ

Bγ
pγ,γp, dq `

Bφ

B 9γ

´

9γ, 9γp,
9d
¯

“ Apdqγe ` BIkerptrqp 9γq ` 2ηs 9γ

0 P ρ
Bψ

Bγp
pγ,γp, dq `

Bφ

B 9γp

´

9γ, 9γp,
9d
¯

“ ´Apdqγe ` Bφp prds, 9γ´ 9γeq

0 P ρ
Bψ

Bd
pγ,γp, dq `

Bφ

B 9d

´

9γ, 9γp,
9d
¯

“ pA1pdqγeq :γe ` Bφd
´

rγe, ds;
9d
¯

4



where σ denotes the total Cauchy stress tensor and we have used γe “ γ´γp from (1). Also, A1pdq
denotes the derivative of the elasticity operator versus d. Here Bφd

´

rγe, ds;
9d
¯

is the subdifferential

of φd with respect to the variable 9d. From proposition 17 in appendix:

BIkerptrqp 9γq “ t´pI ; p P Ru

i.e. the set of spherical tensors. After rearrangements, the three constitutive equations become:

σ “ ´pI ` 2ηs 9γ ` Apdqγe (3a)

Bφp prds, 9γ´ 9γeq Q Apdqγe (3b)

Bφd

´

rγe, ds;
9d
¯

Q p´A1pdqγeq :γe (3c)

The first equation (3a) expresses the total Cauchy stress tensor σ as the sum of a pressure term,
a viscous one and an elastic extra stress contribution. This third contribution involves both the
elastic deformation γe and the damage d, which are provided by the two last constitutive relations
Let us review them.

The second constitutive relation (3b) appears as an implicit differential relation for γe, for any
given 9γ. It can be rearranged in a more convenient way, suitable for numerical computations.
Let us introduce the elastic stress σe as the dual variable associated to the state variable 9γp, i.e.
σe “ ´ρ Bφp{B 9γp “ Apdqγe. Then (3b) writes equivalently σe P Bφpprds, 9γpq or also equivalently
9γp P Bφ

˚
p prds, σeq thanks to the Fenchel-Young theorem 4 and where φ˚p denotes the convex con-

jugate of φp, defined for any τ P RN N̂
s by the Legendre transformation (see definition 18). We

assume that φ˚p is continuously differentiable, which is the case for our practical choices of this
potential. Thus (3b) becomes 9γp “ ∇φ˚p prds; σeq, or equivalently, using (1):

9γe `∇φ˚p prds; Apdqγeq “ 9γ (3d)

Note that, for some given d and 9γ, relation (3d) appears to be an explicit nonlinear time-differential
equation in terms of γe, which is suitable to numerical computations. Thanks to the continuity
of ∇φ˚p , the existence of a solution for (3d), for some given d and 9γ, is guaranteed by the Cauchy-
Peano-Arzelà theorem.

The third relation (3c) also appears as an implicit evolution equation for d. The strain en-
ergy release rate Y is defined as the dual variable associated to the state variable d, i.e.
Y “ ´ρ Bψ{Bd “ p´A1pdqγeq :γe. This concept, set forth by Erdogan and Sih [16], is a natural
and obvious generalization of Griffith’s [21] original energy release rate that explains the extension

of cracks in a material (see e.g. [37, p. 41]). Then, (3c) writes Y P Bφd

´

rγe, ds;
9d
¯

or equivalently

9d P Bφ˚d prγe, ds; Y q with the convex conjugate φ˚d . Assuming that φ˚p is continuously differentiable,
which is the case for our practical choices of this potential, then (3c) expresses as an explicit time-
differential equation in terms of the damage d:

9d “ ∇φ˚d
`

rγe, ds;
 

´A1pdqγe
(

:γe
˘

(3e)

Remark 1 (undamaged Maxwell model).
Let us choose the damage potential φd “ 0. Then, from (3e), assuming d “ 0 at t “ 0, the
material remains undamaged at any time. Moreover, choosing the elasticity operator Aγe “ Gγe
and the viscoplastic potential φppδq “ η|δ|2 for any γe and δ P RN N̂

s , with G ą 0 and η ą 0, then
the rheological model (2a)-(2b) coincides with the Maxwell viscoelastic model [41], as extended
by Oldroyd [45] in a tensor framework, and with a characteristic relaxation time equal to η{G.

1.3. Clausius-Duhem inequality

An equivalent expression of the second principle of thermodynamics, stated in theorem 1, is the
Clausius-Duhem inequality (see e.g. [51, p. 221]), that writes here, since the process is isothermal,
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as:

w “ ´ρ 9ψ ` σ : 9γ ě 0

where w denotes the total dissipation. From (1) and (2a), the first term expands as:

´ρ 9ψ “ ´ρ
Bψ

Bγ
: 9γ ´ ρ

Bψ

Bγp
: 9γp ´ ρ

Bψ

Bd
9d “ ´σe : 9γe ` Y

9d

where σe is the elastic stress and Y the strain energy release rate. Then, using (3a), the dissipation

becomes w “ 2ηs| 9γ|
2 ` σe : 9γp ` Y

9d. Observe that

wp “ 2ηs| 9γ|
2 ` σe : 9γp “ 2ηs|σe|

2| 9γ|2 ` σe :∇φ˚p prds, σeq ě 0 (4a)

wd “ Y 9d “ Y ∇φ˚d prγe, ds; Y q ě 0 (4b)

where we have used (3b) and (3c). Note that the positivity of both wp and wd is a direct
consequence of the convexity of the two positive potentials φp and φd vanishing in zero. Then
w “ wp ` wd ě 0. The first term wp represents the dissipation due to viscoplastic effects and the
second one wd, the dissipation due to damage. For the present mathematical model, we finally
obtain a stronger proposition than the second principle (theorem 1): each of the two contributions
to the dissipation are separately positive.

1.4. General problem statement

The three constitutive equations (3a), (3d) and (3e) are coupled here with the conservation of
mass and momentum. The deformation rate 9γ is identified as the symmetric part of the ve-
locity gradient tensor Dpuq “ p∇u`∇uT q{2, where u denotes the velocity of the material and
∇u “ pBui{Bxjq1ďi,jďN is the gradient of velocity tensor. Conversely, the time derivative 9γe is

replaced by the upper-convected tensor derivative
∇
γe. Assuming a constant density ρ, the mass

conservation coincides with the incompressibility constraint. The problem expresses as a system
of four equations for four unknowns:

pP q: find the elastic deformation γe, the damage d, the velocity u and the pressure p satisfying

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

∇
γe `∇φ˚p prds; Apdqγeq ´Dpuq “ 0

Bd

Bt
` pu.∇qd “ ∇φ˚d

`

rγe, ds; p´A1pdqγeq :γe
˘

ρ

ˆ

Bu

Bt
` pu.∇qu

˙

´ div p´pI ` 2ηsDpuq ` Apdqγeq “ f

divu “ 0

(5a)

(5b)

(5c)

(5d)

where f is some given external force applied. This set of equations is closed by suitable initial
and boundary conditions. The material functions A, φp and φd are still quite general. In the rest
of the paper, possible choices for these material functions are discussed.

Remark 2 (objective tensor derivatives).
Note that, in (5a), a Gordon-Schowalter [20] tensor derivative could be used instead of the upper-
convected one (see also [51, p. 150])). The Gordon-Schowalter derivative introduces an additional
material parameter that interprets as a control of the slip of the micro-structure with respect to
the macro-scale frame. Recall that both the upper-convected and the Jaumann tensor derivatives
are obtained as a special case of it. See e.g. [22] for some discussion about material derivatives in
the context of plasticity of solids in large deformations and [48, 7] for some numerical experiences
of the Gordon-Schowalter derivative in the context of viscoelastic fluids.
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Remark 3 (plastic strain rate).
Observe that (1) leads to 9γe ` 9γp “ 9γ, i.e. a decomposition of the deformation rate. Since the
deformation rate 9γ is identified as the symmetric part of the velocity gradient tensorDpuq while the

elastic deformation rate 9γe is replaced by
∇
γe, then, from the constitutive equation (5a), the plastic

deformation rate 9γp coincides with ∇φ˚p prds; Apdqγeq. Remark that this plastic deformation rate
mainly depends upon the elastic stress σe “ Apdqγe. See e.g. [28] for a discussion on the plastic
deformation rate for elastoviscoplastic materials and its possible dependence upon other fields.

1.5. Example: the BMP thixotropic model

This model, first introduced in [5], combines the Maxwell viscoelatic model with the kinetic equa-
tion proposed by [17], for destruction and construction of structure. It presents three independent
thermodynamic variables: the total deformation γ, the plastic deformation γp, and the fluidity ϕ,
that has the dimension of the inverse of a viscosity. The fluidity acts here similarly to the previous
damage variable d: indeed, it describes the microscopic state of the material. The free energy and
the dissipation potential are given by

ψpr 9γs; γ,γp, ϕq “
G

ρ

ˇ

ˇγ´γp
ˇ

ˇ

2

`
α

ρ

ˆ

ϕ2

2
´ ϕ0ϕ

˙

`
β

ρ

ˆ

ϕ2

2
´ ϕ8ϕ

˙

pγ ´ γpq : 9γ

φ
`

rϕs; 9γ, 9γp, 9ϕ
˘

“ Ikerptrqp 9γq ` ϕ´1
ˇ

ˇ 9γp
ˇ

ˇ

2
`
cf
2

9ϕ2

where G, ϕ0, ϕ8, α, β and cf are given positive constants with 0 ď ϕ0 ă ϕ8. Recall the no-
tation with square brackets: it indicates the dependence of the free energy and the dissipation
potential upon parameters. The Ikerptrq term imposes a traceless rate of deformation 9γ, i.e. an
incompressible fluid (see proposition 17 in appendix).

Observe that theorem 1 applies and then both the second principle of thermodynamics and the
Onsager symmetry are satisfied. Moreover, results of paragraph 1.3 apply and, from (4a)-(4b),
the dissipation writes w “ 4G2ϕ|γe|

2 ` cf 9ϕ2 ě 0. Note that Y “ Bφ{B 9ϕ “ cf 9ϕ is the dual variable
associated to the fluidity 9ϕ. The first term in the expression of w represents the dissipation due
to viscoelastic effects and the second one, those due to changes in the microstructure. Note that
both are positive. To our best knowledge, these results was not yet stated for the BMP model.

Next, let us expand the constitutive equations. Using γe “ γ ´ γp, the constitutive equations
write (see [51, p. 223]):

σ “ ´pI ` 2Gγe

0 “ ´2Gγe ` 2ϕ´1p 9γ ´ 9γeq

0 “ αpϕ´ ϕ0q ` βpϕ´ ϕ8q pγ ´ γpq : 9γ ` cf 9ϕ

where p is the pressure that acts as a Lagrange multiplier for imposing the fluid incompressibility
(see proposition 17 in appendix). These equations write equivalently

σ “ ´pI ` τ

9τ

G
` ϕτ “ 2 9γ

9ϕ`
ϕ´ ϕ0

λ
` kpϕ´ ϕ8q τ : 9γ “ 0

where we have introduced the notations τ “ 2Gγe, λ “ cf {α and k “ β{pcfGq. Finally, replacing
2 9γ by Dpuq and 9τ by the upper-convected tensor derivative, we exactly obtain relations (1)-(2)
of the BMP model, as formulated in [5]. See also [39] for a different thermodynamic approach of
the BMP model and [18] for an investigation of the yield stress limit ϕ0 “ 0.
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2. Practical choices for the material functions

In this section, the previous theoretical framework is instantiated for building a practical rheo-
logical model that combines viscous effects with elasticity, plasticity and damage. The elasticity
is presented first, with a discussion on the Poisson ratio. Then, plasticity effects are introduced,
with a in-depth exploration of the Drucker-Prager criterion which describes at the macroscopic
level the friction between grains at the microscopic one. Damage evolution is then introduced,
with a yield criterion similar to the plasticity one. Merging all together, the obtained rheological
model is compared with previous existing models and could be considered an extension of several
of them.

2.1. Choosing the elasticity operator A versus the damage

Here, we assume the material to be isotropic. Then, from [30], the linear elasticity operator Apdq
expresses, for any δ P RN N̂

s , as:

Apdqδ “ 2Gpdqδ ` λpdqptr δqI (6a)

where λpdq and Gpdq are the Lamé coefficients of the damaged material and trp.q denotes the trace
of a matrix. The Lamé coefficients express equivalently in terms of the elastic modulus Epdq and
the Poisson ratio νpdq (see e.g. [34, p. 107]):

λpdq “
Epdq νpdq

p1` νpdqqp1´ 2νpdqq
and Gpdq “

Epdq

2p1` νpdqq
(6b)

Kachanov [33] defined the damage variable d from the elastic modulus Epdq, assumed to vary
linearly versus 1´d, i.e.

Epdq “ p1´dqE0 (6c)

where E0 ą 0 is the elastic modulus associated to the undamaged material. The simplest choice
for the Lamé coefficients would be to choose them proportional to p1´dq, with the proportionality
constants i.e. λpdq “ p1´dqλ0 and Gpdq “ p1´dqG0 where λ0 and G0 are the Lamé coefficients
associated to the the undamaged material. With this choice, observe that Apdq “ p1´dqAp0q and
then p´A1pdqγeq :γe “ 2|γe|

2
Ap0q ě 0. This quantity, involved in the right-hand-side of the damage

equation (3e), represents the elastic energy of the undamaged material.

This simple choice leads to a constant Poisson ratio νpdq, which is in disagreement with many
experimental observations, as pointed out by Ju [32]. Indeed, the Poisson ratios is expected
to increase under increasing damage [25, 26], as a result of micro-cracking. For this reason, this
author suggested extending the damage variable d from a scalar to a tensor quantity (see also [24]).
See [53] for a discussion about the variation of the Poisson ratio versus damage. We consider here
the Poisson ratio to depends linearly upon d i.e

νpdq “ ν0 ` pν1´ν0qd (6d)

with ´1 ă ν0 ď ν1 ă 1{2. Observe also that when ν1 “ ν0, this choice coincides with the previous
one, when are simply λpdq and Gpdq proportional to 1´d. Otherwise, when ν1 ą ν0, then the
Poisson ratio is an increasing function of the damage, which is the expected behavior.

2.2. Choosing the viscoplastic potential φp

The Drucker-Prager [14] plasticity criterion considers the translated cone defined by

Tµ,σy “ tτ P RN N̂
s ; |dev τ | ´ σy ď

µ
?
N

tr τ u
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√
Nσy
µ

0
|devσe|σy

θ

Tµ,σy

−trσe

−150

0

250

0 σy 200
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Figure 2: (left) The viscoplastic Drucker-Prager translated cone Tµ,σy . (right) The Drucker-Prager translated
cone Tµ,σy together with experimental data represented by circles (from [56], Fig. 13, Baltimore in-situ sea ice

station). Adjusted parameters are µ “ 1{
?

2 and σy “ 56 kPa for N “ 2.

where σy is the cohesion and µ P r0,8r is the friction coefficient. The notation
dev δ “ δ ´ p1{Nqptr δqI represents the deviatoric part of any matrix δ. This cone is represented
in the stress plane on Fig. 2.left. Its boundary defines a straight line that intercepts the vertical
axis at ´

?
N σy{µ and has slope

?
N{µ. The angle θ that this line makes with the vertical axis is

given by θ “ tan´1pµ{
?
Nq and is known as the angle of internal friction [29, p. 90]. Fig. 2.right

represents in-situs sea ice observation [56] together with the Drucker-Prager cone. When the
elastic stress goes outside of this cone, the material develops irreversible deformations, and then
the elastic stress relaxes and goes back inside of the cone. Observe for N “ 2 that µ « 1{

?
2

and θ “ tan´1p1{2q « 27˝.

The viscoplastic part φp of the total dissipation potential φ is then defined for all δ P RN N̂
s by

φp prds; δq “ ηpdq |δ|
2
`
`

I´Tµ,σy
˘˚
pδq (6e)

The first term represents viscous effects. The second term is the expression in terms of convex
analysis of the classical Drucker-Prager plasticity criterion [14] with cohesion [1]. This formalism
was first introduced by Saxcé and coworkers [27, p. 1116] for applications to solid elastoplastic
materials. Here, I´Tµ,σy denotes the indicator to the translated Drucker-Prager cone (see propo-
sition 41). Note that the evolution equation (3d) for the elastic deformation γe involves ∇φ˚p
which is provided by the following result.

Theorem 2 (viscoplastic Drucker-Prager).
Let φp be the viscoplastic Drucker-Prager potential defined by (6e). Its convex conjugate φ˚p is con-

tinuous and differentiable, and its gradient ∇φ˚p is also continuous and expresses, for all τ P RN N̂
s ,

as

∇φ˚p pτ q “
κµ,σy pτ q

2η p1` µ2q

ˆ

τ ´
ξµ,σy pτ q
?
N µ

I

˙

(6f)
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N
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fluid

linear

fluid

nonlinear

solid

σe 6= 2ηγ̇p +
σyI√
N µ

σe = 2ηγ̇p +
σyI√
N µ

γ̇p = 0γ̇p 6= 0

κµ,σy (σe)

0
|devσe|

−trσe

−
√
Nσy
µ

0

−
√
Nσy
µ

0

Tµ,σy

|devσe|

−trσe

−
√
N µ

tractionσy

compression

sliding

loosing
contact

sticking

√
N

µ

Figure 3: Representation of the viscoplastic constitutive equation 9γp “ ∇φ˚
p pσeq. (top-left) The three flow regimes,

depending upon the pressure ´trσe{N . (right) Representation in the stress plane. (bottom-left) Elevation of the
κµ,σy function in the stress plane.

where

κµ,σy pτ q “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1` µ2 when ´ µ2|dev τ | ě σy ´
µ
?
N

tr τ

1´

σy ´
µ
?
N

tr τ

|dev τ |
when ´ µ2|dev τ | ă σy ´

µ
?
N

tr τ ă |dev τ |

0 otherwise

(6g)

ξµ,σy pτ q “ min

ˆ

σy,
µ tr τ
?
N

´ µ2|dev τ |

˙

(6h)

While the expression (6f) of ∇φ˚p is quite concise, the proof of theorem 2 requires some technical
developments and is postponed in Appendix A. The elevation view on Fig. 3.bottom-left shows
that κµ,σy is continuous except at the junction between the three cones and is differentiable except
along the cone boundaries. At this junction, the second factor in (6f) vanishes and finally, ∇φ˚p
is continuous everywhere. Recall that the potential φp involves three parameters: η, σy and µ.
Note that, for simplicity, the dependence of the coefficients η and σy upon the damage d has
been omitted in the statement of this result. When µ “ 0, the present potential describes the
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viscoplastic Bingham constitutive equation (see e.g. [49], eqn (2)):

∇φ˚p pτ q “

$

’

’

&

’

’

%

ˆ

1´
σy

|dev τ |

˙

τ

2η
when |dev τ | ą σy

0 otherwise

and then, the cohesion σy coincides with the usual yield stress. Finally, in the case µ “ 0, the
evolution equation (3d) for 9γe coincides with the elastoviscoplastic model, as introduced in [49].

When µ ą 0, from theorem 2, the constitutive equation 9γp “ ∇φ˚p pσeq develops three flow regimes,
as represented on Fig. 3.top-left. As expected, in compression and when the elastic stress σe
belongs to the Drucker-Prager translated cone (in red on Fig. 3.right), the material behaves as a
solid i.e. the irreversible deformation rate 9γp “ 0 and this is the sticking regime. In that case, the
material behaves as an incompressible Kelvin-Voigt viscoelastic solid and, from (1) and (3a) we get
σ “ ´pI ` 2ηs 9γ ` Aγ. When the elastic stress σe lives outside of the Drucker-Prager translated
cone, material behaves as a fluid, i.e. the irreversible deformation rate 9γp ‰ 0. In that case, the
situation is here more subtle than for Bingham viscoplasticity as there are now still two distinct flow
regimes. When the elastic stress σe belongs to the blue cone on Fig. 3.right, i.e. when the traction
is sufficient, this is the losing contact regime. We then have σe “ 2η 9γp ` pσy{p

?
N µqqI “ Aγe

i.e. the material is a viscoelastic fluid of Oldroyd kind. Indeed, from (1) and (3a) we obtain
σ “ ´pI ` 2ηs 9γ ` Aγe and, from (5a):

∇
γe `

1

2η

ˆ

Aγe ´
σy
?
N µ

I

˙

“ 9γ

Observe that, in that case, the elastic stress σe “ Aγe relaxes to σy{p
?
N µqI which locates on

the vertical axis, exactly at the junction between the three cones on Fig. 3.right. Finally, when
the elastic stress σe lives in the white cone between the sticking and the losing contact regions,
the material behaves as a complex nonlinear viscoelastic fluid.

This material could be interpreted in terms of a granular microstructure suspended in a bulk fluid
(see Fig. 3.top-left). In the sticking regime, the grains are sticking together and the collective
behavior is a solid one. For the sliding regime, the grains are moving while maintaining fric-
tional contacts. For the losing contact regime, the microstructure corresponds to a granular gas
suspended in a bulk fluid.

Note that the viscoplastic potential φp introduced here shares many similarities with the vis-
coplastic model developed by Daviet and Bertails [11] (see also [10]). These authors introduced a
truncated cone (see [11, p. 18], Fig. 2) while the cone Tµ,σy is here not truncated, similar to those
of Saxcé and coworkers [27, p. 1116]. For instance, when µ “ 0, these authors obtained a variant
of the Bingham model with a dilatancy constraint divu ě 0.

Finally, let us turn to damage effects. While µ is considered here as constant, the viscosity η and
the cohesion σy are assumed to vary upon the damage as

ηpdq “ p1´ dqη0 (6i)

σypdq “ p1´ dqσy0 (6j)

where η0 ą 0 is the viscosity of the undamaged material and σy0 ě 0 its cohesion. The next
paragraph develops the evolution equation for the damage.

2.3. Choosing the brittle-damage potential φd

A simple damage function – The simplest choice for the damage potential would be
φdprds; 9dq “ ηd 9d2{p1´dq where ηd ě 0 has the dimension of a viscosity. Recall that d and 9d
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are considered as independent variable: here, the rate 9d acts as a variable while d is a parame-
ter of the potential. Then φ˚d prds; Y q “ p1´dqY

2{p4ηdq is such that the Fenchel-Young relation

Y “ ∇φdp 9dq ðñ 9d “ ∇φ˚d pY q is satisfied. Replacing in (3c), we would obtain:

9d “
p1´dq

2ηd
p´A1pdqγeq :γe

Note that the ratio ηd{E0 represents a characteristic time associated to the damage while the 1´d
prefactor assures that ∇φ˚d smoothly vanishes at the limit d “ 1. Others expressions of d that
vanishes at d “ 1 could be considered similarly. See e.g. [40, p. 211] for alternative power-law
index or [37, chap. 3].

Brittle damage based on a yield criterion – Experimental observations showed that the
previous damage criterion is unrealistic: damage develops only when the stress goes outside of a
given cone. See again Fig. 2.right that represents in-situs sea ice observation [56]. The proposed
criterion bases again on the translated Drucker-Prager cone. We now consider that the brittle-
damage potential φd is expressed by defining its convex conjugate:

φ˚d prγe, ds; Y q “
p1´dq κµ,σc pApdqγeq

4ηdp1` µ2q
Y 2 (6k)

where κµ,σc is expressed by (6g). Here, σc is the yield stress in pure shear, or material cohesion,
µ is the friction coefficient, as for the Drucker-Prager cone. and ηd ą 0 is a constant that has the
dimension of a viscosity. Observe that φ˚d is differentiable and

∇φ˚d prγe, ds; Y q “
p1´dq κµ,σc pApdqγeq

2ηdp1` µ2q
Y

The evolution equation (3e) becomes:

9d “
p1´dq κµ,σcpApdqγeq

2ηdp1` µ2q
p´A1pdqγeq :γe (6l)

where Y has been replaced by its expression. Note that the ratio ηd{E0 still represents a character-
istic time associated to the damage. This damage criterion is represented on Fig. 2.right together
with in-situs sea ice observation [56]. When the elastic tensor σe “ Apdqγe belongs to the trans-
lated Drucker-Prager cone ´Tµ,σc , then κµ,σcpσeq “ 0 and, from (6l), the damage do not develop.
Otherwise, κµ,σcpσeq ą 0 and some damage will occur. For the damage to nicely interact with
plasticity, we also assume σc ě σy0. Note that, for bidimensional problems, the Drucker-Prager
criterion coincides with the Mohr-Coulomb one, defined in terms of the two real eigenvalues σ1, σ2

of the elastic stress (see e.g. [1]). Indeed |devσe| “
?

2pσ1 ´ σ2q and trσe “ σ1 ` σ2. This crite-
rion is widely used in models representing the progressive failure of brittle materials (see e.g. [56]).
It recently has been used in the sea-ice coupled viscoelastic-damage model [8, 9].

2.4. The new brittle-elastoviscoplastic model

Let us group the previous choices (6b) for the elasticity operator and (6e) and (6l) for the vis-
coplastic and damage the dissipation potentials, respectively. The rheological model is represented
on Fig. 1.right. It shares many similarities with a previous elastoviscoplastic (EVP) model [49]:
it consists in a dash-pot and a dry-friction elements connected in parallel, together with a spring
connected in series. The main differences are (i) the dependence of the rheological parameters
upon the damage variable d, (ii) the introduction of a Coulomb friction coefficient µ and (iii) the
Poisson ratio νpdq for an elastic compressibility. This model shares some similarities with several
existing ones, as shown on Fig. 4. When the damage effects are not considered, the present model
reduces to an elastoviscoplastic model that extends with a Coulomb friction the authors’ previous
one [49], and represented on the center axis of Fig. 4. When cohesion and friction are not con-
sidered (σy “ µ “ 0), the present model reduces to a brittle-viscoelastic one, similar to the MEB
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Daviet-Bertails (2016)

untruncating

Figure 4: A hierarchy of rheological models, where new models are in blue.

one [8], and represented on the left side of Fig. 4. Note that the mathematical structure then shares
some similarities with the BMP model, the damage variable being replaced by the fluidity for the
description of thixotropic effects. Both MEB and BMP reduce to the Maxwell viscoelastic model
by neglecting damage or thixotropy, respectively. Conversely, on the right side of Fig. 4, when
elastic effects are not considered (1{E “ 0), the present model reduces to a brittle-viscoplastic
material (BVP). This BVP model bases on a new Drucker-Prager viscoplastic (DP-VP) model by
including damage effects. This new DP-VP model itself extends the usual Bingham viscoplastic
model and shares many similarities with the Daviet and Bertails [11] viscoplastic model based on
a truncated translated Drucker-Prager cone (see [11, p. 18], Fig. 2). When neglecting Coulomb
friction (µ “ 0), the present model then reduces to the usual incompressible Bingham model while
the Daviet and Bertails one reduces to a dilatant Bingham (divu ě 0 while here divu “ 0).

3. Results and discussion

This last section is dedicated to a preliminary exploration of the previously obtained model: the
uniaxial compression benchmark is considered. The boundary conditions are described and the
material parameters are chosen in order to be representative of applications in geosciences. Next,
numerical approximation parameters, such as meshes and time step, are introduced. This section
closes with an exploration of the time-dependent solution.

3.1. Material parameters and flow conditions

Our aim is to study the interplay between the main nonlinearities introduced by the two dissipation
potentials φp and φd, expressed by (6e) and (6k), respectively, while the elasticity operator A
is given by (6a). In that purpose, let us consider the transition between an elastic solid to a
damaged elastoviscoplastic material that undergoes permanent deformations. A simple test-case
is considered: the uniaxial compression of a rectangular sample of an initially undamaged elastic
solid. This benchmark permits to point out both the pre- and post-failure behavior of materials.
Since the flow is slow, inertia terms could be neglected. Since deformations are small, convective
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and tensor upper derivative terms are also neglected. See Appendix B.1 for the complete problem
statement after these simplifications.

u2 = 0 and σ12 = 0

σ
11

=
σ
12

=
0

σ
11

=
σ
12

=
0

L/2

L

x1

u2 = −U and σ12 = 0
x2

h “ L{20 h “ L{40 h “ L{80 h “ L{160

Figure 5: (left) The uniaxial compression experiment. (right) Family of quasi-uniform unstructured meshes.

The horizontal dimensions of the sample are taken much larger than its thickness, hence the prob-
lem could be considered as two-dimensional. Let Ω “s0, L{2r̂ s0, Lr be the computational domain
where L ą 0 is the characteristic length (see Fig. 5.left) and p0, x1, x2q denotes the Cartesian
coordinate system. Compression is applied by prescribing at any time t ą 0 a constant vertical
velocity, ´U , where U ą 0, on the top edge of the plate, while, on the bottom edge, the plate is
maintained by imposing a vertical velocity to zero and no confinement is applied on the lateral
edges:

u2pt, x1, Lq “ ´U and σ12pt, x1, Lq “ 0, @x1 P r0, L{2s

u2pt, x1, 0q “ 0 and σ12pt, x1, 0q “ 0, @x1 P r0, L{2s

σ11pt, x1, x2q “ σ12pt, x1, x2q “ 0, @x1 P t0, L{2u, x2 P r0, Ls

The initial conditions for both the elastic deformation γe and the damage d are zero.

parameter value dimension

L 200ˆ103 m
U 2ˆ10´3 m.s´1

E0 28ˆ106 Pa
σy0 50ˆ103 Pa
σc 56ˆ103 Pa
η0 1.4ˆ1012 Pa.s
ηs 1.4ˆ108 Pa.s
ηd 2.8ˆ108 Pa.s

number value expression

We 5ˆ10´4 Upηs`η0q{pLE0q

Wed 10´7 Uηd{pLE0q

γy 1.8ˆ10´3 σy0{E0

γc 2ˆ10´3 σc{E0

ν0 0.30
ν1 0.49
µ 0.7

1´ α 10´4 ηs{pηs ` η0q

Table 2: Table of physical dimensional (left) and dimensionless (right) parameters.

Recall that the practical choices for A, φp and φd are given by (6k), (6e) and (6k), respectively.
A dimensionless analysis (see Appendix B.2) shows that there are eight dimensionless numbers
involved in the problem: We, Wed, γy, γc, ν0, ν1, µ and α, given in Table 2 together with
practical values for the dimensional parameters. Dimensional values are chosen in order to be
representative of a natural quasi-brittle material (rock or ice). Indeed, such large values for L
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and U correspond to geophysical applications. Values for both the friction coefficient µ and the
damage yield stress parameter σc base on experimental measurements on the Baltimore in-situ sea
ice station presented on Fig. 2. The viscoplastic cohesion σy0 is about 10% smaller than σc in order
for the viscoplastic cone Tµ,σy to be included in the damage one Tµ,σc . The elastic modulus E0 and
the Poisson ratio ν0 are also representative of some undamaged rocks and ice, while ν1, associated
to a fully damaged one, is close to 1{2. See [53] for a thorough discussion about the variation of
the Poisson ratio versus damage. The characteristic time for damage propagation ηd{E0 is much
smaller than both the time scale L{U of loading and the time scale η0{E0 of viscoelasticity and the
viscosities η0 and ηd are chosen accordingly. This large separation of scales ensures quasi-static
conditions for damage. Finally, note that the fully damaged material pd “ 1q is represented here
by a Newtonian fluid with a very weak viscosity ηs, i.e. ηs is small compared to η0.

Observe that the geometry of the material is symmetric: this uniaxial compression problem admits
several solutions, e.g. left- or right- shaped solutions. Conversely, asymmetric geometries or the
presence or material heterogeneities suppress this indetermination. A typical example of such
non-unicity of the solution is the buckling of a beam. Here, both the viscoplastic σy0 cohesion
and its damage counterpart σc are assumed to contain an uniform random spatial heterogeneity
of 30% around their respective mean values. The final computational time tf is chosen sufficiently
large for the post-failure to be reached: pU{Lqtf “ 3ˆ10´2.

3.2. Space and time discretizations

h{L # elements pU{Lq∆t # time steps

1{20 508 1.2ˆ10´5 2500
1{40 2 064 0.6ˆ10´5 5000
1{80 8 518 0.3ˆ10´5 10000
1{160 33 858 1.5ˆ10´6 20000

Table 3: Table of numerical parameters.

The flow domain is discretized by a family of quasi-uniform unstructured meshes composed of
triangular elements and generated by the gmsh mesh generator [19]. The characteristic mesh size
is denoted as h: L{h is the number of elements along the vertical edge of the dimensionless com-
putational domain. Computations are performed with both h “ L{20, L{40, L{80 and L{160 (see
Fig. 5.right). The time step ∆t is chosen in order to solve the smallest dimensionless time scale as-
sociated to damage. For the first mesh, associated with h “ L{20, we choose pU{Lq∆t “ 1.2ˆ10´5.
Then, the time step is divided by two for each mesh refinement, as shown on Table 3. The system
of equation is then solved by a numerical algorithm postponed in Appendix B and implemented
by using the Rheolef finite elements [52]. Note that the mesh size grows by a factor four at each
mesh refinement while the number of time steps grows by a factor two. Thus, the computing
time is expected to grow at least by a factor eight at each refinement. Indeed, the resolution
on a workstation running ten CPUs (Intel-9 at 3.70GHz) requires about 7 mn on the first mesh
and about 70 hours for the fourth one: the effective growth factor of computing time for each
refinement is of about 8.4.

3.3. Interpretation of the solutions

Recall that the dissipation splits as w “ wp ` wd, where wp and wd are its two positive contribu-
tions, associated respectively to viscoplasticity and damage and defined by (4a)-(4b). Fig. 6 plots
the averaged value of these two terms during all the process. The averaged quantities, denoted
as wp and wd, are simply defined by

wβptq “
1

measpΩq

ż

Ω

wβpt,xqdx, β P tp, du
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For convenience, a dimensionless time γ “ pU{Lqt is introduced. Note that, in the context of
the present uniaxial compression benchmark, γ interprets as the amplitude of the deformation
on the top boundary, which justifies the notation. Also ηtot “ ηs ` η0 denotes the total viscosity.
Observe first on Fig. 6 that wp and wd present similar global variations, while the maximums
differ by about one order of magnitude. Let us study with details the different flow regimes.

i) For small times, the elastic stress σe is still small, it belongs to the translated Drucker-
Prager cone Tµ,σy . Thus, the viscoplastic deformation rate 9γp is zero (Fig. 6.bottom-left)
and, from (1), we get 9γ “ 9γe. Then, from its definition (4a), the viscous dissipation wp
reduces to bulk viscous effects i.e. wp “ 2ηs| 9γ|

2, which is small, as shown on Fig. 6.top-left,
since both ηs and 9γ are small. Next, observe on Fig. 6.top-right that wd “ 0. Indeed,
since σy ă σc, we have σe P Tµ,σy Ă Tµ,σc and then damage is not yet able to develop. It
means that, during this first regime, the material behaves as an undamaged solid Kelvin-
Voigt viscoelastic one. Moreover, since the bulk viscosity ηs is small, the behavior is close to
those of a pure solid elastic and undamaged material: this is the quasi-elastic flow regime.

ii) This first regime stops at the dimensionless time γ1 « 5.16ˆ10´3 when a first plastic even
appears and a viscoplastic deformation 9γp starts to develop. Indeed, the elastic stress σe
goes outside of the translated Drucker-Prager cone Tµ,σy . Note that, during this second
flow regime, σe still lives inside second translated Drucker-Prager cone Tµ,σc associated to
damage. Recall that σc ą σy and then wp “ 0 i.e. the material is still undamaged. This
regime stops at γ2 « 5.73ˆ10´3 when a first damage even appears (Fig. 6.top-right). Here,
σc is only 10% larger than σy and then, this second flow regime is short. Since 9γp ‰ 0 the
material behaves as an undamaged elastoviscoplastic one. Both the two quasi-elastic and
elastoviscoplastic flow regimes correspond to a global pre-failure regime.

iii) The third flow regime starts at γ2, when a first damage even appears. Now, the elastic
stress σe lives outside of the second translated Drucker-Prager cone Tµ,σc . Observe on

Fig. 6 the fast grown of both the damage dissipation wd and the damage rate 9d. Both
viscoplastic wp and damage wd dissipation grow in this third flow regime: this is the failure
regime.

iv) The fourth and last flow regime starts at γ3 « 1.83ˆ10´2 when both wd and wp reach a
maximum and start a fast decrease: this is the post-failure regime.

After this interpretation of the process in terms of global flow regimes, let us turn to a local
representation of the solution. Fig. 7 shows the isocontours of the damage d at γ3, when the damage
rate is maximum, and of the deformation rate | 9γ| at the end of the process (γ “ 0.03). Observe
the correspondence of the localization for these two quantities: damage develops where stress
and deformation are important and, correspondingly, the deformation rate localizes in damaged
regions. For all the four meshes, the corresponding numerical solution are represented.

First, observe that the damage d develops a dense network of fracture at all scales: the finer the
mesh is, the denser the fracture network appears, with new small scales features. As a result,
the network of fracture presents a fractal-like pattern. See [8, p. 1354] for a thorough analysis
of scale invariance for such damage processes. Simultaneously, observe on the | 9γ| maps that the
deformation rate localizes and tends to collapse on few main fractures that enforce the existing
damage in a coupled mechanism. Second, observe that the main localization of the deformation
rate 9γ develops from top-right to bottom-left for the second mesh h “ L{40, while solutions based
on other meshes present an alternative direction. The mesh-based space discretization introduces
an additional heterogeneity that induces a different direction for the main failure. Recall that
the behavior of approximate solutions depends upon all local heterogeneities, including the mesh
discretization. Third, observe on Fig. 7.right the direction of the localization for both the damage
and the deformation: the present model predicts an angle of about 30˝ with the vertical axis,
which is in good agreement with experimental observations (see e.g. [29], pages 76 and 88). This
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could be considered as an improvement of a previous work on the MEB model, where an angle of
about 40˝ was predicted (see [8], Fig. 5 p. 1352).

The behavior of the material on the top boundary, where the normal velocity is imposed, is
of major importance: the normal stress component σyy on the top boundary of the domain is
averaged as

σnptq “
2

L

ż L{2

x“0

σ22pt, x1, Lqdx1

Fig. 8.left shows that σn grows linearly during the first regime, as expected. In the second flow
regime, the stress continues to increase, and reaches a maximum in the third flow regime. The
last regime is related to a fast decrease of the normal stress: cracks collapse and the deformation
localizes on global directions that cross all the domain.

Finally, Fig. 8.right shows the deformed geometry at the end of the process (γ “ 0.03) together
with the isoline separating the fluid and solid regions. Recall that, in the solid regions, the
material is not rigid: it behaves as a Kelvin-Voigt viscoelastic solid. Observe that the geometry
is now spitted in several bricks separated by cracks. The grayscale represents the norm | 9γ| of the
deformation rate.

The results presented on Figs. 6, 7 and 8.left show a convergence versus mesh refinement that looks
random to a certain extent, e.g. for the location of fluid regions during the last flow regime. Recall
that the geometry of the material is symmetric: this uniaxial compression problem admits several
solutions, e.g. left- or right- shaped solutions and a typical similar problem is the buckling of a
beam. The introduction of material heterogeneities suppresses this indetermination: here, both
the viscoplastic σy0 cohesion and its damage counterpart σc are assumed to contain an uniform
random spatial heterogeneity of 30% around their respective mean values. Finally, note that
others kind of data heterogeneities could be introduced similarly: instead of σy0 and σc cohesions,
we could consider varying e.g. boundary conditions. The unstructured mesh-based discretization
also introduces an additional kind of heterogeneity. Observe first that global quantities such as
those shown on Fig. 6 clearly converge with mesh refinement until time γ3: during the last flow
regime, Figs. 6 and 8.left show that the behavior is only qualitatively similar when changing the
mesh. Indeed, during the last flow regime, the process is characterized by the formation of local
bricks separated by cracks, as shown on Fig. 8.right, and these features are sensible to the local
heterogeneities of both σy0 and σc. Nevertheless, some mesoscale features, such as the 30˝ angle
for the direction of the localization for both the damage and the deformation, appear to be robust
with mesh refinement, as shown on Fig. 7.

Conclusion and perspectives

A new brittle-elastoviscoplastic (BEVP) fluid model is presented in this paper. This model is
relatively simple to use, as it contains few material parameters and a simple fixed-point algo-
rithm is effective for solving the coupled system of equations. The model combines some existing
fundamental features such as elasticity, plasticity and brittle damage. The combination of them
bases on thermodynamics that ensures the positivity of the dissipation and the Onsager symmetry.
Moreover, thermodynamics points out the link between thixotropy and damage in the context of
elastoviscoplastic (EVP) fluids. Theoretical results on the Drucker-Prager plasticity criterion are
completed in order to use it for general EVP fluids. Preliminary results with the proposed BEVP
model are very encouraging. Indeed, the model allows both the representation of the pre-failure,
failure and post-failure behavior of quasi-brittle materials. Future works will consider applications
in geosciences, namely sea ice flows and earthquake modeling. Finally, the new theoretical results
on Drucker-Prager plasticity presented in this paper open new paths for the mathematical mod-
eling of a large class of materials that presents microstructure of particles with frictional contacts
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Figure 6: Averaged value of (top-left) the viscoplastic dissipation wp ; (top-right) the damage dissipation wd ;
(bottom-left) the viscoplastic deformation rate | 9γp| ; (bottom-right) the damage rate.
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Figure 7: Isocontours of the solution for increasing mesh resolution: (top) damage d at the end of the failure regime
(γ “ γ3) ; (bottom) norm of the deformation rate | 9γ| at the end of the process (γ “ 0.03).
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and large scale rearrangements, e.g. dry or wet granular flows, concentrated suspensions and rocks
and cements undergoing large and unbounded deformations.
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Appendix A. Convex analysis applied to viscoplasticity

The aim of this appendix is to present the complete proof of theorem 2, page 2, in a self-contained
way. This appendix starts with several well-known results from convex analysis due to Rockafel-
lar [47] and Moreau [43]. Next, new results are established concerning von Mises and Drucker-
Prager plasticity criteria. These new results extend previous works from Saxcé and coworkers [27]
and Daviet [10, app. A] on Drucker-Prager plasticity.

Appendix A.1. Notations and definitions

Let N ě 1 be the physical space dimension. The space of symmetric real NˆN matrix is denoted
by RN N̂

s . Its scalar product is δ :τ for all δ, τ P RN N̂
s and |δ| “ pδ :δq

1
2 is the associated norm.

Definition 4 (convex set).
A set C Ă RN N̂ is convex when

θδ1 ` p1´ θqδ2 P C, @δ1, δ2 P C, @θ P r0, 1s

The set C is strictly convex if and only if

θδ1 ` p1´ θqδ2 P intpCq, @δ1, δ2 P C, δ1 ‰ δ2, @θ P s0, 1r

where intpSq “ SzBS denotes the interior of S.

Definition 5 (convex function).
A function ϕ : RN N̂ Ñ R is convex if and only if

ϕpθδ1 ` p1´ θqδ2q ď θϕpδ1q ` p1´ θqϕpδ2q, @δ1, δ2 P RN N̂ , @θ P r0, 1s

The function ϕ is strictly convex if and only if

ϕpθδ1 ` p1´ θqδ2q ă θϕpδ1q ` p1´ θqϕpδ2q, @δ1, δ2 P RN N̂ , δ1 ‰ δ2, @θ P s0, 1r

Definition 6 (proper function).
For any function ϕ : RN N̂ Ñ R, let

dompϕq “
 

δ P RN N̂ { ϕpδq ă 8
(

Then, ϕ is said to be proper if and only if

dompϕq ‰ H and ϕpδq ‰ ´8, δ P RN N̂

Definition 7 (closed function).
For any function ϕ : RN N̂ Ñ R, let us introduce the epigraph of ϕ, defined by

epipϕq “
 

pδ, zq P RN N̂ˆR { ϕpδq ď z
(

Then, ϕ is said to be closed if and only if the set epipϕq is closed.

Definition 8 (lower semi-continuous function).
A function ϕ : RN N̂ Ñ R is said to be lower semi-continuous at δ0 P RN N̂ if and only if

@ε ą 0, Dα ą 0 such that |δ ´ δ0| ă αñ ϕpδq ě ϕpδ0q ´ ε, @δ P RN N̂

Proposition 9 (lower semi-continuous).
The following propositions are equivalent

• ϕ is lower semi-continuous
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• ϕ is closed

• the set
 

δ P RN N̂ { ϕpδq ď z
(

is closed for all z P R.

Proof: See [43], paragraph 4.a. �

Definition 10 (indicator).
Let C Ă RN N̂

s . Then, the indicator to C, denoted by IC is defined for all δ P RN N̂
s by

ICpδq “

"

0 when δ P C
`8 when δ R C

Proposition 11 (indicator).

IC is convex ðñ C is convex

IC is proper ðñ C ‰ H

IC is closed ðñ C is closed

Appendix A.2. Subdifferentials

Lemma 12 (differentiable convex function).
Let E Ă RN N̂ and ϕ : E Ñ R be a differentiable convex function. Then

ϕpδ0q `
Bϕ

Bδ
pδ0q :pδ ´ δ0q ď ϕpδq, @δ, δ0 P E (A.2)

Proof: See [15, p. 24], proposition 5.4. �

∂ϕ(δ2)

δ1 δ2 δ

∂ϕ(δ1) = {∇ϕ(δ1)}

ϕ(δ)

int(C)

∂C

δ

δ2

δ1

NC(δ)

Figure A.9: (left) Subdifferential of a convex function. (right) Normal cone NC to a convex set C.

Definition 13 (subdifferential).
Let ϕ : RN N̂ Ñ R be a convex function and δ0 P RN N̂ . If there exists τ P RN N̂ such that

ϕpδ0q ` τ :pδ ´ δ0q ď ϕpδq, @δ P RN N̂

then τ is a subdifferential of ϕ at δ0.

The subdifferential at δ0, denoted by Bϕpδ0q, is the set of all subdifferentials at δ0.

It interprets as a generalization of the usual derivative and it coincides with the convex envelop of
all directional derivatives (see Fig. A.9.left).

25



Theorem 3 (subdifferential of a sum).
Let ϕ1, ϕ2 : RN N̂ Ñ R be two convex functions.

If there exists δ0 P dompϕ1q X dompϕ2q such that ϕ1 is continuous at δ0, then

Bpϕ1 ` ϕ2q “ Bϕ1 ` Bϕ2

Proof: See [43], proposition 10.7, page 62. It always holds Bpϕ1 ` ϕ2q Ă Bϕ1 ` Bϕ2, but the
additional condition is required for the equality to be achieved. �

Corollary 14 (subdifferential of sum).
Let ϕ,ψ : RN N̂ Ñ R be two convex functions with ϕ proper and closed.

If intpdompϕqq X dompψq ‰ H then

Bpϕ` ψq “ Bϕ` Bψ

Proof: From theorem 3. �

Corollary 15 (subdifferentials and equality).
Let ϕ,ψ : RN N̂ Ñ R be two convex functions such that Bϕpδq Ă Bψpδq for all δ P RN N̂ . Then
ϕ and ψ differ from a finite constant.

Proof: See [43], paragraph 10.j, page 70. �

Proposition 16 (subdifferential and affine map).
Let F : RN N̂ Ñ RN N̂ be and affine map, i.e. Fpδq “ A :δ ` F ˚, for all δ P RN N̂ and where A
is a fourth-order tensor and F ˚ P RN N̂ . Let ϕ : RN N̂ Ñ R be a convex function.

‚ Then, for all δ P RN N̂

Bpϕ ˝ Fqpδq Ą AT :BϕpFpδqq

where AT denotes the transpose of A.

‚ Moreover, if ϕ is proper and closed, and if there exists δ˚ P dompϕ ˝ Fq such that ϕ is continuous
at Fpδ˚q, then, for all δ P RN N̂

Bpϕ ˝ Fqpδq “ AT :BϕpFpδqq

Proof: See [10], page 215, property A.12. �

Proposition 17 (indicator to deviatoric and spherical matrix).
Let us consider the following sets:

kerptrq “
 

δ P RN N̂ ; tr δ “ 0
(

kerpdevq “
 

τ P RN N̂ ; dev τ “ 0
(

“ tpI ; p P Ru

Then
I˚kerptrq “ Ikerpdevq and I˚kerpdevq “ Ikerptrq

BIkerptrq “ kerpdevq and BIkerpdevq “ kerptrq

Proof: Observe first that both kerptrq and Ikerpdevq are convex cones, as introduced in definition 20.
Then, from proposition 23, the conjugate is the indicator to the polar, and from by definition 22
of the polar: pker trq˝ “ kerpdevq and pker devq˝ “ kerptrq.

Next, from proposition 26.c, we have BIkerptrq “ Nkerptrq and, from definition 24, we easily check
that Nkerptrq “ kerpdevq. Finally, the last computation of BIkerpdevq is similar. �
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Appendix A.3. Convex conjugate

Definition 18 (convex conjugate).
Let ϕ : RN N̂ Ñ R be a convex function. The convex conjugate of ϕ also called the Legendre
transformation of ϕ, denoted by ϕ˚, is defined for all τ P RN N̂ by

ϕ˚pτ q “ sup
δPRN N̂

δ :τ ´ ϕpδq

Proposition 19 (convex conjugate).
The convex conjugate ϕ˚ of a convex function ϕ is always convex and closed. Moreover, if ϕ is
proper and closed, then ϕ˚˚ “ ϕ i.e. it is equal to its biconjugate.

Proof: See [43], paragraphs 6.b and 6.d. �

Theorem 4 (Fenchel-Young relations).
For any convex function ϕ : RN N̂ Ñ R, and all δ, τ P RN N̂ , we have

ϕpδq ` ϕpτ q ě δ :τ

Moreover, if ϕ is proper and closed:

ϕpδq ` ϕpτ q “ δ :τ ðñ τ P Bϕpδq ðñ δ P Bϕ˚pτ q

Proof: From the definition 18 of the convex conjugate:

ϕpδq ` ϕ˚pτ q “ ϕpδq ` sup
µPRN N̂

`

µ :τ ´ ϕpµq
˘

ě ϕpδq `
`

δ :τ ´ ϕpδq
˘

“ δ :τ

Then

ϕpδq ` ϕ˚pτ q “ δ :τ ðñ ϕ˚pτ q “ δ :τ ´ ϕpδq

ðñ µ :τ ´ ϕpµq ď δ :τ ´ ϕpδq, @µ P RN N̂

ðñ ϕpδq ` pµ´ δq :τ ď ϕpµq, @µ P RN N̂

ðñ τ P Bϕpδq

The second part of the equivalence is obtained, when ϕ is proper and closed, by replacing ϕ by ϕ˚

and using ϕ˚˚ “ ϕ from proposition 19. �

Appendix A.4. Convex and normal cones

Definition 20 (convex cone).
A subset K Ă RN N̂ is a convex cone if and only if a1δ1 ` a2δ2 P K for all δ1, δ2 P K and
a1, a2 ě 0.

Proposition 21 (convex cone).
Let K Ă RN N̂ be convex cone. Then 0 P K if and only if K ‰ H.

Proof: Assume that K ‰ H. Then, from the definition of the convex cone and taking zero
coefficients, we obtain 0 P K. �

Definition 22 (polar and dual cones).
For all convex cone K Ă RN N̂ , we define the polar cone K˝ and the dual cone K˚ by

K˝ “ tτ P RN N̂ ; δ :τ ď 0, @δ P Ku

K˚ “ ´K˝
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Proposition 23 (convex conjugate of the indicator to a convex cone).
Let K ‰ H be a convex cone. Then

pIKq˚ “ IK˝

Proof: Following the definition 18 of the convex conjugate, we have, for all δ, τ P RN N̂ :

pIKq˚ pτ q “ sup
δPRN N̂

`

δ :τ ´ IKpδq
˘

“ sup
δPK

δ :τ

As K is a non-empty cone, then 0 P K, from proposition 21, and then, from the previous relation,
pIKq˚ pτ q ě 0. Moreover, if δ0 P K such that δ0 :τ ą 0, then, for all β ě 0, we can choose
α “ β{pδ0 :τ q and we have both pαδ0q :τ “ β ě 0 and αδ0 P K. By taking the supremum on
any β ě 0, we obtain pIKq˚ pτ q “ 8. This means

pIKq˚ pτ q “

"

8 when Dδ0 P K { δ0 :τ ą 0
0 othewise

*

“

"

8 when τ P K˝

0 othewise

*

“ IK˝

from the definition 22 of the polar. �

Definition 24 (normal cone).
Let C Ă RN N̂

s be a convex set. Then, the normal cone to C, denoted by NC is defined for all
δ P RN N̂

s by (see Fig. A.9.right):

NCpδq “

$

&

%

 

τ P RN N̂
s ; pξ ´ δq :τ ď 0, @ξ P C

(

when δ P C

H when δ R C

Remark 25 (normal cone).
The name normal cone takes its origin from the fact that it belongs to the class of convex cones,
which possesses interesting properties with respect to the convex conjugate.

We can easily check that NCpδq “ t0u when δ P intpCq. Conversely, when δ P BC, the normal
cone NCpδq interprets as the cone of outward normals to C, as shown on Fig. A.9.right.

Proposition 26 (normal cone).
Let C Ă RN N̂

s be a convex set and any δ P RN N̂
s . We have:

1. 0 P NCpδq ðñ δ P C

2. if C ‰ H then NCpδq “ BICpδq

3. if δ P intpCq then NCpδq “ t0u

Proof: 1. is trivial from the definition of the normal cone.

2. if C ‰ H then IC is proper. Assume first δ R C. Then NCpδq “ BICpδq “ H. Next,
assume δ P C. Then

τ P BICpδq ðñ ICpξq ě ICpδq ` pξ ´ δq :τ , @ξ P RN N̂
s

ðñ ICpξq ě pξ ´ δq :τ , @ξ P RN N̂
s

ðñ 0 ě pξ ´ δq :τ , @ξ P C

ðñ τ P NCpδq

3. Let δ P intpCq. There exists ε ą 0 such that ICpδq is zero on the closed ball Bpδ, εq. Then
ICpδq is Gâteaux-differentiable at δ and ∇ICpδq “ 0. Then BICpδq “ t0u. �

Proposition 27 (normal cone to a convex cone).
Let K be a convex cone. Then, the normal cone NK admits the following expression, for all δ P K:

NKpδq “

"

K˝ X tδuK when δ P K
H when δ R K
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Proof: The second case holds for any normal cone on any convex set. Let us prove the first one.
Let δ P K and τ P NKpδq. By definition, we have

pξ ´ δq :τ ď 0, ξ P K

Choosing ξ “ 0 P K we get ´δ : τ ď 0. Next, choosing ξ “ 2δ P K we get also δ : τ ď 0. Then
δ : τ “ 0 or equivalently τ P tδuK. Moreover, for all ζ “ 0 P K, we have δ ` ζ “ 0 P K and
then ζ :τ ď 0 i.e. τ P K˝. Thus, we have NKpδq Ă K˝ X tδuK. Now, let us prove the reciprocal
inclusion. Let τ P K˝ X tδuK and ξ P K. Then δ :τ “ 0 since τ P tδuK and ξ :τ ď 0 for any ξ P K
since τ P K˝. Then ξ :τ ´ δ :τ ď 0 for any ξ P K. By definition, it means τ P NKpδq and then
NKpδq “ K˝ X tδuK. �

Proposition 28 (bipolar and bidual of a convex cone).
For any non-empty closed convex cone K we have

K˚˚ “ K˝˝ “ K

Proof:

δ P K˝˝ ðñ δ P NK˝p0q from proposition 27

ðñ δ P BIK˝p0q from proposition 26.c

ðñ δ P B pIKq˚ p0q from proposition 23

ðñ 0 P B pIKq˚˚ pδq from theorem 4

ðñ 0 P BIKpδq from proposition 19

ðñ 0 P NKpδq from proposition 26.c

ðñ δ P K from proposition 26.b

�

Proposition 29 (conic complementarity).
For any non-empty closed convex cone K and any δ, τ P RN N̂ , we have

K Q δ K τ P K˝ ðñ τ P NKpδq ðñ δ P NK˝pτ q

where δ K τ denotes δ :τ “ 0.

Proof:

τ P NKpδq ðñ τ P BIKpδq from proposition 26.c

ðñ IKpδq ` IK˚pτ q “ δ :τ from theorem 4

ðñ IKpδq ` IK˝pτ q “ δ :τ

The equality is only possible on the effective domain of the left-hand-side, on which
IKpδq ` IK˝pτ q “ 0. This means

IKpδq ` IK˝pτ q “ δ :τ ðñ δ P K and τ P K˝ and δ :τ “ 0

The rightmost equivalence follows from proposition 28. �

Appendix A.5. Von Mises plasticity criterion

Lemma 30 (subdifferential of the matrix norm).
The subdifferential of the function ϕ : RN N̂

s Ñ R is defined for all δ P RN N̂
s by

ϕpδq “ |δ|

writes

Bϕpδq “

$

’

&

’

%

"

τ “
δ

|δ|

*

when δ ‰ 0

 

τ P RN N̂
s { |τ | ď 1

(

otherwise
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Proof: We have ϕ0pδq “ f ˝ gpδq with fpξq “
?
ξ, for all x P R, and gpδq “ |δ|2. Observe that

f 1pξq “ 1{p2
?
ξq and g1pδq “ 2δ. Assume first that δ ‰ 0. Then, ϕ is differentiable in δ and

∇ϕpδq “ f 1 ˝ gpδq g1pδq “ δ{|δ|

Next, assume δ “ 0 and let us show that Bϕp0q “
 

τ P RN N̂
s { |τ | ď 1

(

. The proof of this result
is done in two steps. We first assume that |τ | ď 1 and show that then τ P Bϕp0q. Next, we will
show the reciprocal.

step 1: assume |τ | ď 1. By definition of the subdifferential:

τ P Bϕp0q ðñ ϕp0q ` τ :µ ď ϕpµq, @µ P RN N̂
s

ðñ τ :µ ď |µ|, @µ P RN N̂
s

From the Cauchy-Schwartz inequality τ :µ ď |τ | |µ| ď |µ| by assumption, and then
|τ | ď 1 ñ τ P Bϕp0q.

step 2: let us turn to the reciprocal. By contraposition:

τ P Bϕp0q ùñ |τ | ď 1

ðñ τ R Bϕp0q ðù |τ | ą 1

By definition of the subdifferential:

τ P Bϕp0q ðñ ϕp0q ` τ :pµ´ 0q ď ϕpµq, @µ P RN N̂
s

ðñ τ :µ ď |µ|, @µ P RN N̂
s

τ R Bϕp0q ðñ Dµ P RN N̂
s { τ :µ ą |µ|

Assume |τ | ą 1. We have τ ‰ 0 µ “ τ {|τ |. Observe that |µ| “ 1 and then

τ :µ´ |µ| “
τ :τ

|τ |
´ 1 “ |τ | ´ 1 ą 0

Finally τ P Bϕp0q ùñ |τ | ď 1 and the proof is complete. �

Definition 31 (von Mises dissipation potential).
The von Mises dissipation potential ϕm : RN N̂

s Ñ R is defined for all δ P RN N̂
s by

ϕmpδq “ σy|dev δ| (A.3a)

where σy ě 0 is the yield stress.

Proposition 32 (subdifferential of the von Mises dissipation potential).
Let ϕm denotes the von Mises viscoplastic dissipation potential, as introduced in definition 31. Its
subdifferential expresses, for all δ P RN N̂

s , as

Bϕmpδq “

$

’

&

’

%

"

τ “ σy
dev δ

|dev δ|

*

when dev δ ‰ 0

 

τ P RN N̂
s { tr τ “ 0 and |dev τ | ď σy

(

when dev δ “ 0

(A.3b)

Proof: Observe that the von Mises potential writes also as ϕmpδq “ σyϕpdev δq where ϕpδq “ |δ|
is the matrix norm. Then, applying proposition 16 and lemma 30, we get

Bϕmpδq “ σydev Bϕpσydev δq “

$

’

&

’

%

"

τ “ σy
dev δ

|dev δ|

*

when dev δ ‰ 0

 

σydev τ ; τ P RN N̂
s and |τ | ď 1

(

otherwise

which leads to (A.3b) after rearrangements. �
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Definition 33 (von Mises set).
For all σy ě 0, the von Mises set is defined by

Bσy “
 

τ P RN N̂
s ; |dev τ | ď σy

(

Note that the von Mises set is a convex cone, that corresponds to a vertical band of width σy in
the deviatoric-trace stress plane representation.

Proposition 34 (von Mises set).
For all σy ě 0, we have

´

I´Bσy
¯˚

“ Ikerptrq ` ϕm

Proof: From corollary 15, the equality could be shown from the equality of the subdifferentials.
From definition 24 and proposition 26, a necessary condition for BIkerptrqpδq to be non-empty is
δ P kerptrq i.e. tr δ “ 0. Next, proposition 17, gives BIkerptrqpδq “ kerpdevq.

‚ forward inclusion: B
`

I´Bσy
˘˚

Ă kerpdevq ` Bϕm

Let τ P B
`

I´Bσy
˘˚
pδq or equivalently δ P BI´Bσy pτ q “ N´Bσy

pτ q where we have used the
Fenchel-Young theorem 4 and proposition 26. From definition 24, for N´Bσy

pτ q to be non-empty,
we necessarily have τ P ´Bσy i.e., by definition 40, |dev τ | ď σy. Expanding definition 24 of a
normal cone, we have

tr δ “ 0

|dev τ | ď σy

pξ ´ τ q :δ ď 0, @ξ { |dev ξ| ď σy

(A.4)

(A.5)

(A.6)

First, observe that
tr τ

N
I P kerpdevq. Assume first that dev δ “ 0, which means from (A.4) that

δ “ 0, then, from proposition 32, we obtain dev τ P Bϕmpδq. Next, assume dev δ ‰ 0. Suppose,
by reductio ad absurdum that τ R Bϕmpδq. Since we necessarily have |τ | “ σy for (A.6) to be

satisfied, there exists δ2 such that dev τ “ σy
dev δ2

|dev δ2|
and pdev δ2q :pdev δq ă |dev δ2| |dev δ|

i.e. dev δ and dev δ2 are not aligned. Then, choosing dev ξ “ σy
dev δ

|dev δ|
in (A.6) leads to

pdev δ2q :pdev δq ě |dev δ2| |dev δ| which is impossible. Then τ P Bϕmpδq and the forward inclu-
sion is complete.

‚ backward inclusion: B
`

I´Bσy
˘˚

Ą kerpdevq ` Bϕm

Let any τ P kerpdevq ` Bϕmpδq with
tr τ

N
I P kerpdevq and dev τ P Bϕmpδq. Then, from proposi-

tion 32, we have |dev τ | ď σy and thus, by definition 40 we obtain τ P Bσy . From definition 24,
note also that N´Bσy

pτ q ‰ H. Assume first that dev δ ‰ 0. Then, from proposition 32, and

since τ P Bϕmpδq we get dev τ “ σy
dev δ

|dev δ|
. Note that τ :δ “ σy|dev δ|. For all ξ such that

|dev ξ| ď σy we have

ξ :δ “ pdev ξq :pdev δq ď |dev ξ| |dev δ| ď σy|dev δ| “ τ :δ

ðñ pξ ´ τ q :δ ď 0 (A.7)

Assume next that dev δ “ 0. Since we also have tr δ “ 0 we get δ “ 0 and (A.7) is also trivially

satisfied. It means that δ P N´Bσy
pτ q or equivalently τ P B

`

I´Bσy
˘˚
pδq where we have used the

Fenchel-Young theorem 4 and proposition 26. Then the proof of the subdifferentials equality is
complete. �
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Appendix A.6. Drucker-Prager plasticity criterion

Definition 35 (Drucker-Prager cone).
For all µ P r0,8s, the Drucker-Prager cone, denoted by Kµ is the second-order cone defined by:

Kµ “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

kerpdevq when µ “ 0

"

τ P RN N̂
s ; |dev τ | ď

µ tr τ
?
N

*

when µ P s0,8r

kerptrq when µ “ 8

Proposition 36 (Drucker-Prager cone is convex).
For all µ P r0,8s, the Drucker-Prager cone Kµ is a convex cone.

Proof: Consider any τ 1, τ 2 P Kµ and β1, β2 ě 0. Assume first µ P r0,8r. We have:

|devpβ1τ 1 ` β2τ 2q| ď β1|dev τ 1| ` β2|dev τ 2|

ď
β1µ tr τ 1
?
N

`
β2µ tr τ 2
?
N

“
µ trpβ1τ 1 ` β2τ 2q

?
N

and then β1τ 1 ` β2τ 2 P Kµ. Next, assume µ “ 8. We have:

trpβ1τ 1 ` β2τ 2q “ β1tr τ 1 ` β2tr τ 2 “ 0

and then β1τ 1 ` β2τ 2 P K8. Then, from definition 20, Kµ is a convex cone for all µ P r0,8s. �

Proposition 37 (polar and dual Drucker-Prager cones).
For all µ P r0,8s, the polar and dual of the Drucker-Prager cone Kµ are respectively:

K˝µ “ ´K 1
µ

K˚µ “ K 1
µ

Proof: When µ “ 0, from proposition 17 we have pker devq˝ “ kerptrq and from definition 35 we
deduce immediately K˝0 “ ´K8. Tacking the polar of the previous relation and using proposi-
tion 28, we get K˝8 “ ´K

˝˝
0 “ ´K0 which completes the proof for µ “ 8. The rest of the proof

is devoted to the case µ P s0,8r.

‚ forward inclusion K˝µ Ă ´K 1
µ

.

Let δ P K˝µ and let us prove that δ P ´K 1
µ

. If δ “ 0 then δ P ´K 1
µ

. Next, assume δ ‰ 0. By

definition 22, for all τ P Kµ, the inequality δ :τ ď 0 holds. Then, let us choose:

τ “
dev δ

|dev δ|
`

1
?
N µ

I

such that |dev τ | “
µ tr τ
?
N

and then τ P Kµ. With this choice, we get:

δ :τ ď 0 ðñ
ptr δq ptr τ q

N
` pdev δq :pdev τ q ď 0 by expansion

ðñ |dev δ| ď ´
tr δ
?
N µ

ðñ δ P ´K 1
µ

32



‚ backward inclusion K˝µ Ą ´K 1
µ

.

Conversely, let δ P ´K 1
µ

and let us prove that δ P K˝µ. For all τ P Kµ we have:

0 ď |dev δ| ď ´
tr δ
?
Nµ

0 ď |dev τ | ď
µ tr τ
?
N

Then

δ :τ “ pdev δq :pdev τ q `
ptr δq ptr τ q

N
by expansion in deviatoric and spherical parts

ď |dev δ| |dev τ | `
ptr δq ptr τ q

N
from the Cauchy-Schwartz inequality

ď ´
tr δ
?
N µ

ˆ
µ tr τ
?
N

`
ptr δq ptr τ q

N
since δ P ´K 1

µ
and τ P Kµ

“ 0

By definition 22, it means that δ P K˝µ. Thus, we have K˝µ “ ´K 1
µ

for all µ P r0,8s. Finally,

from definition 22, pKµq
˚
“ ´pKµq

˝
“ K 1

µ
and the proof is complete.

�

Corollary 38 (conjugate of the indicator to the Drucker-Prager cone).
For all µ P r0,8s, we have

`

I´Kµ
˘˚

“ IK 1
µ

As a consequence, for all δ, τ P RN N̂
s ,

´τ P BIK 1
µ

pδq ðñ ´δ P BIKµpτ q

ðñ K 1
µ
Q δ and δ :τ “ 0 and τ P Kµ

Proof: From corollary 15, the equality could be shown from the equality of the differentials.
The equality of the differentials B

`

I´Kµ
˘˚

“ BIK 1
µ

is obtained by using the Fenchel-Young

theorem 4, and then successively propositions 23, 37 and 26. The consequence is then deduced
from proposition 29. �

sticking sliding loosing contacts

δ = 0 δ 6= 0, τ 6= 0 τ = 0

Figure A.10: Disjunctive formulation of the Drucker-Prager plasticity condition τ P BIK 1
µ

pδq.

Proposition 39 (disjunctive formulation).
For all µ P s0,8r, and all δ, τ P RN N̂

s , we have τ P BIK 1
µ

pδq, or equivalently ´δ P BIKµp´τ q,
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if and only if one of the three condition is satisfied (see Fig. A.10):

(i) sticking: |dev τ | ď ´
µ tr τ
?
N

and δ “ 0 (A.8a)

(ii) sliding: dev τ “ ´
µ tr τ
?
N

dev δ

|dev δ|
tr τ ď 0

,

.

-

and |dev δ| “
tr δ
?
N µ

‰ 0 (A.8b)

(iii) losing contact: τ “ 0 and |dev δ| ă
tr δ
?
N µ

(A.8c)

When µ “ 0: τ P BIK8pδq ðñ tr δ “ 0 and dev τ “ 0.

When µ “ 8: τ P BIK0
pδq ðñ dev δ “ 0 and tr τ “ 0.

Proof: The case µ P t0,8u is a direct consequence of definition 35 and proposition 38, so
let assume µ P s0,8r. From proposition 38, τ P BIK 1

µ

pδq if and only if K 1
µ
Q δ and δ :τ “ 0

and τ́ P Kµ i.e.

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

|dev δ| ď
tr δ
?
N µ

pdev δq :pdev τ q `
ptr δq ptr τ q

N
“ 0

|dev τ | ď ´
µ tr τ
?
N

(A.9a)

(A.9b)

(A.9c)

It is easy to check, from the definition of the Drucker-Prager cone, that any of the three case of
the disjunctive formulation is a sufficient condition for τ P BIK 1

µ

pδq. So, let us turn to show that

it is a necessary condition.

‚ Let us first assume δ “ 0. Then (A.9c) directly gives the sticking case (A.8a).

‚ Next, assume δ ‰ 0 and tr δ “
?
N µ |dev δ|. Then dev δ ‰ 0. From (A.9b) and (A.9c), we

have:

pdev δq :pdev τ q “ ´
ptr δq ptr τ q

N
from (A.9b)

ě |dev δ| |dev τ | from (A.9a) and (A.9c)

and from the Cauchy-Schwartz inequality, the equality occurs. Thus, there exists a constant k P R
such that dev τ “ k dev δ. From (A.9b) and since dev δ ‰ 0, we obtain an expression for k

k “ ´
ptr δq ptr τ q

N |dev δ|2
“ ´

?
N µ tr τ

N |dev δ|
since tr δ “

?
N µ |dev δ|

Note that k ě 0 since tr τ ď 0 from (A.9c) and finally, the sliding case (A.8b) is complete.

‚ Finally, assume δ ‰ 0 and tr δ ‰
?
N µ |dev δ|. From (A.9a), we then have tr δ ą

?
N µ |dev δ|

and thus tr δ ‰ 0. From (A.9c), we obtain tr τ ď 0 and suppose, by reductio ad absurdum that
tr τ ă 0. Then, from the Cauchy-Schwartz inequality:

pdev δq :pdev τ q ď |dev δ| |dev τ | ă ´
tr δ
?
N µ

µ tr τ
?
N

“ ´
ptr δq ptr τ q

N

This implies δ :τ ă 0 which is in contradiction with (A.9b). Then tr τ “ 0. Again from (A.9c) we
obtain dev τ “ 0 and finally τ “ 0. Then, the losing contact case (A.8c) is complete. �
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Appendix A.7. Translated Drucker-Prager plasticity criterion

This criterion extends the original Drucker-Prager one [14] by incorporating the cohesion σy ě 0
(see e.g. [1]).

Definition 40 (translated Drucker-Prager cone).
For all µ P r0,8s and σy ě 0, the translated Drucker-Prager cone, denoted by Tµ,σy , is defined
by:

Tµ,σy “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

 

τ P RN N̂
s ; |dev τ | ď σy

(

“ Bσy when µ “ 0

"

τ P RN N̂
s ; |dev τ | ď σy `

µ tr τ
?
N

*

when µ P s0,8r

tτ P RN N̂
s ; tr τ “ 0u “ kerptrq when µ “ 8

(A.10)

Proposition 41 (translated Drucker-Prager cone).
For all µ P r0,8s and σy ě 0, the translated Drucker-Prager cone Tµ,σy is a convex set and the
dual of its indicator function writes: for all δ P RN N̂

s :

`

I´Tµ,σy
˘˚
pδq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Ikerptrqpδq ` ϕmpδq when µ “ 0

IK 1
µ

pδq `
σy
?
N µ

tr δ when µ P s0,8r

Ikerpdevqpδq when µ “ 8

Proof: Note that when σy “ 0, we have Tµ,σy “ Kµ which is a convex set and the result is given
by proposition 38. Thus, the present result extends proposition 38.

Let us turn now to the general case σy ě 0. The convexity of Tµ,σy is established by using an
argument similar to those of the proof of proposition 36. For establishing the main result, we then
successively consider the three cases µ “ 0, µ “ 8 and µ P s0,8r. When µ “ 0, since T0,σy “

Bσy , the result is directly obtained from proposition 34. When µ “ 8, from definition 35, we
have ´T8,σy “ kerptrq and then, from proposition 17 we get pI´T8,σy q

˚ “ I ˚
kerptrq “ Ikerpdevq

and then, the proof is also complete when µ “ 8. The rest of the proof is dedicated to the
case µ P s0,8r.

From corollary 15, the equality could be shown from the equality of the differentials. Assume first
that δ R K 1

µ
then both BIK 1

µ

and B
`

I´Tµ,σy
˘˚

are empty and the equality is satisfied. Then,

assume δ P K 1
µ

such that BIK 1
µ

pδq ‰ H. For the equality, we successively prove the forward and

reverse inclusions of the subdifferentials.

‚ forward inclusion: B
`

I´Tµ,σy
˘˚

Ă BIK 1
µ

`
σy
?
N µ

I

Let τ P B
`

I´Tµ,σy
˘˚
pδq or equivalently δ P BI´Tµ,σy pτ q “ N´Tµ,σy

pτ q where we have used the
Fenchel-Young theorem 4 and proposition 26. From definition 24, we necessarily have τ P ´Tµ,σy
for N´Tµ,σy

pτ q to be non-empty. Expanding δ P K 1
µ

, τ P ´Tµ,σy and definition 24 of a normal

cone, we have
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

|dev δ| ď
tr δ
?
N µ

|dev τ | ď ´
µ tr τ
?
N

` σy

pξ ´ τ q :δ ď 0, @ξ { |dev ξ| ď ´
µ tr ξ
?
N
` σy

(A.11)

(A.12)

(A.13)
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By definition 40 of Tµ,σy , note that τ P ´Tµ,σy is equivalent to τ ´
σy
?
N µ

I P ´Kµ. Next, let us

expand
ˆ

τ ´
σy
?
N µ

I

˙

:δ “ pdev τ q :pdev δq `
ptr τ qptr δq

N
´

σy
?
N µ

tr δ

ď |dev τ | |dev δ| `
ptr τ qptr δq

N
´

σy
?
N µ

tr δ

from the Cauchy-Schwartz inequality

ď

ˆ

´
µ tr τ
?
N

` σy

˙

tr δ
?
N µ

`
ptr τ qptr δq

N
´

σy
?
N µ

tr δ

from (A.11) and (A.12)

“ 0

Conversely, choosing ξ “
σy
?
N µ

I P ´Tµ,σy in (A.13) leads to

ˆ

τ ´
σy
?
N µ

I

˙

:δ ď 0 and then
ˆ

τ ´
σy
?
N µ

I

˙

:δ “ 0. Then τ ´
σy
?
N µ

I P ´Kµ X tδu
K “

`

K 1
µ

˘˝
X tδuK “ BIK 1

µ

pδq where we

have used propositions 26, 27 and 37. This means that τ P BIK 1
µ

pδq `
σy
?
N µ

I and the forward

inclusion is complete.

‚ backward inclusion: B
`

I´Tµ,σy
˘˚

Ą BIK 1
µ

`
σy
?
N µ

I

Let any τ P BIK 1
µ

pδq `
σy
?
N µ

I. We have

$

’

&

’

%

δ P K 1
µ

τ ´
σy
?
N µ

I P BIK 1
µ

pδq “ NK 1
µ

pδq “
`

K 1
µ

˘˝
X tδuK “ ´Kµ X tδu

K

where we have used propositions 26, 27 and 37. Expanding definition 35, this writes equivalently

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

|dev δ| ď
tr δ
?
N µ

|dev τ | ď ´
µ tr τ
?
N

` σy

δ :τ “
σy
?
N µ

tr δ

(A.14)

(A.15)

(A.16)

Let any ξ P ´Tµ,σy . From definition 40 of Tµ,σy , we have

|dev ξ| ď ´
µ tr ξ
?
N
` σy (A.17)
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Then, expanding

pξ ´ τ q :δ “ ξ :δ ´
σy
?
N µ

tr δ from (A.16)

“ pdev ξq :pdev δq `
ptr ξqptr δq

N
´

σy
?
N µ

tr δ

ď |dev ξ| |dev δ| `
ptr ξqptr δq

N
´

σy
?
N µ

tr δ from the Cauchy-Schwartz inequality

ď |dev ξ|
tr δ
?
N µ

`
ptr ξqptr δq

N
´

σy
?
N µ

tr δ from (A.14)

ď

ˆ

´
µ tr ξ
?
N
` σy

˙

tr δ
?
N µ

`
ptr ξqptr δq

N
´

σy
?
N µ

tr δ

from (A.17) and since tr δ ě 0 from (A.14)

“ 0

Thus pξ ´ τ q :δ ď 0 for all ξ P ´Tµ,σy while (A.15) means that τ P ´Tµ,σy . Recalling the def-
inition 24 of the normal cone, this means that δ P N´Tµ,σy

pτ q. From proposition 26, we
have N´Tµ,σy

“ BI´Tµ,σy and then δ P BI´Tµ,σy pτ q or, thanks to the Fenchel-Young theo-

rem 4, τ P B
`

I´Tµ,σy
˘˚
pδq which proves the backward inclusion and then completes the proof

when µ P s0,8r. �

Appendix A.8. Viscoplastic Drucker-Prager potential

Proof: of theorem 2, page 9.

Let δ P Bφ˚p pτ q or equivalently τ P Bφppδq, thanks to the the Fenchel-Young theorem 4. Then,

from the definition (6e) of φp, we have τ P 2ηδ ` B
`

I´Tµ,σy
˘˚
pδq.

Assume first µ P s0,8r. Using proposition 41, for expanding
`

I´Tµ,σy
˘˚

, we get

τ ´ 2ηδ ´
σy
?
N µ

I P BIK 1
µ

pδq (A.18a)

Next, let us turn to the expansion of BIK 1
µ

by using proposition 39: the three cases of the

disjunction are successively considered.

‚ sticking. Injecting (A.18a) in (A.8a) and rearranging, we get

$

&

%

δ “ 0

σy ´
µ tr τ
?
N

ě |dev τ |

(A.18b)

(A.18c)

From (A.18b), the subdifferential Bφ˚p pτ q “ t0u. Since it contains exactly one element, φ˚p is
differentiable in that case and ∇φ˚p pτ q “ 0. Let us check that the right-hand-side of (6f) coincides

with the expected result. Using (A.18c) we obtain σy ´
µ tr τ
?
N

ě |dev τ | ě 0 ě ´µ2|dev τ |

and then (6g) gives κµ,σcpτ q “ 0. Finally (6f) leads to ∇φ˚p pτ q “ 0 which is the expected result
since δ “ 0.

‚ sliding. Injecting (A.18a) in (A.8b), we get, after rearrangements
$

’

’

’

’

’

&

’

’

’

’

’

%

dev τ “

"

2η `
1

|dev δ|

ˆ

σy ´
µ
?
N

trpτ ´ 2η δq

˙*

dev δ

tr δ “
?
N µ |dev δ| ‰ 0

σy ´
µ
?
N

tr pτ ´ 2ηδq ě 0

(A.18d)

(A.18e)

(A.18f)
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Let us take the norm of (A.18d). Using (A.18f) for solving the sign, we obtain successively

|dev τ | “ 2η|dev δ| ` σy ´
µ trpτ ´ 2η δq

?
N

“ 2η
`

1` µ2
˘

|dev δ| ` σy ´
µ tr τ
?
N

from (A.18e)

ðñ |dev δ| “
1

2η p1` µ2q

ˆ

|dev τ | ´ σy `
µ tr τ
?
N

˙

Note that (A.18e) leads to |dev δ| ą 0 that also expresses as a condition upon τ only as

σy ´
µ tr τ
?
N

ă |dev τ | (A.18g)

Replacing the previous expression of |dev δ| in (A.18e), we get

tr δ “

?
N µ

2η p1` µ2q

ˆ

|dev τ | ´ σy `
µ tr τ
?
N

˙

The condition (A.18f) could now be expressed in terms of τ only by replacing the previous ex-
pression of tr δ. After rearrangements, we get

σy ´
µ tr τ
?
N

ě ´µ2|dev τ | (A.18h)

Note that satisfying together (A.18g) and (A.18h) implies |dev τ | ‰ 0. Observe from (A.18d) that
dev τ and dev δ are two collinear tensors and then

dev δ “ |dev δ|
dev τ

|dev τ |
“

1

2η p1` µ2q

ˆ

|dev τ | ´ σy `
µ tr τ
?
N

˙

dev τ

|dev τ |

Grouping the two previous expressions yields

δ “ dev δ `
tr δ

N
I “

1

2η p1` µ2q

ˆ

|dev τ | ´ σy `
µ tr τ
?
N

˙ˆ

dev τ

|dev τ |
`

µ
?
N
I

˙

(A.18i)

Thus, the subdifferential Bφ˚p pτ q contains exactly one element, i.e. φ˚p is differentiable in the
sliding case also. Let us check that the right-hand-side of (6f) coincides with the expected
result. Using the inequalities (A.18g) and (A.18h), we obtain successively from (6g)-(6h)

that ξµ,σy pτ q “
µ tr τ
?
N

´ µ2|dev τ | and κµ,σy pτ q “

ˆ

|dev τ | ´ σy `
µ tr τ
?
N

˙

{|dev τ | ą 0. Fi-

nally (6f) furnishes an expression of ∇φ˚p pτ q that coincides with (A.18i).

‚ losing contact. Injecting (A.18a) in (A.8c), we get

$

’

’

&

’

’

%

τ ´ 2ηδ ´
σy
?
N µ

I “ 0

|dev δ| ă
tr δ
?
N µ

(A.18j)

(A.18k)

and (A.18j) yields

δ “
1

2η

ˆ

τ ´
σy
?
N µ

I

˙

(A.18l)

Thus, Bφ˚p pσq contains exactly one element and φ˚p is differentiable. The condition (A.18k) ex-
presses equivalently in terms of τ as

σy ´
µ tr τ
?
N

ă ´µ2|dev τ | (A.18m)
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Let us check again that the right-hand-side of (6f) coincides with the expected result. Us-
ing (A.18m), we obtain from (6g)-(6h) that ξµ,σy pτ q “ σy and κµ,σy pτ q “ 1` µ2. Finally (6f)
furnishes an expression of ∇φ˚p pτ q that coincides with (A.18i).

For all these three cases, Bφ˚p pτ q contains exactly one element and thus φ˚p is globally differentiable.
The elevation view on Fig. 3.bottom-left shows that κµ,σy is continuous except at the junction
between the three cones and is differentiable except along the cone boundaries. At this junction,
the second factor in (6f) vanishes and finally, ∇φ˚p is continuous everywhere. �

Appendix B. Numerical resolution

Appendix B.1. Problem simplification

Before its numerical resolution, the full problem (5a)-(5d) is simplified as:

pQq: find the elastic deformation γe, the damage d and the velocity u satisfying

$

’

’

’

’

&

’

’

’

’

%

Bγe
Bt

`∇φ˚p prds; Apdqγeq ´Dpuq “ 0

Bd

Bt
“ ∇φ˚d

`

rγe, ds;
 

´A1pdqγe
(

:γe
˘

´div p2ηsDpuq ` Apdqγeq “ f

(B.1a)

(B.1b)

(B.1c)

Note that, in (B.1a), the upper-convected tensor derivative is replaced by a simple time derivative.
Correspondingly, in (B.1b), the Lagrange derivative of the damage is also replaced by a simple
time derivative. In the conservation of momentum (B.1c), the inertia terms are neglected, since
only slow flows are considered here. Finally, the original incompressibility constraint (5d) is not
considered here and the corresponding Lagrange multiplier, the pressure p, disappears in (B.1c).
All these simplifications are very classical when only small deformations are considered, which is
the case for the uniaxial compression benchmark considered here. The system (B.1a)-(B.1c) is
closed by suitable initial and boundary conditions.

Such simplifications allow us to focus on the interplay between the main nonlinearities introduced
by the two dissipation potentials φp and φd, expressed by (6e) and (6k), respectively, while the elas-
ticity operator A is given by (6a). Note that the numerical procedure developed in this appendix
could be easily adapted to others choices of the dissipation potentials and to the reintroduction
of incompressibility and full time derivatives. While the final numerical algorithm is relatively
simple, its correct derivation requires some technical computations.

Appendix B.2. Dimensionless procedure

Let L and U be characteristic length and velocity, respectively. The characteristic time is L{U and
the characteristic stress is pηs ` η0qU{L. The dimensionless variables and unknown are denoted
with tildes and defined by

x̃ “
x

L
, t̃ “

U t

L
, ũ “

u

U
, σ̃ “

Lσ

pηs ` η0qU
, w̃ “

L2

pηs ` η0qU2
w

while d and γe, which are already dimensionless, are unchanged. In the rest of this appendix, only
dimensionless variables are considered. Thus, for simplicity and since there is no ambiguity, tildes
are omitted on the dimensionless variables.

Recall that E, η and σy are defined by (6c), (6i) and (6j) respectively, and all of them present a
singular factor 1´d. Thus, in expression(6f) of ∇φ˚p , both the numerator and the denominator
involve this 1´d factor that is zero at the limit of a fully damaged material. The expression
of ∇φ˚p could be nicely extended by continuity at this limit: for this, all expressions, both in
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the numerator and the denominator, are divided by 1´d, and the corresponding coefficients are
denoted with a hat. Relation (3d) writes in dimensionless form:

Btγe `
κµ,γy ppσeq

2αWe p1` µ2q

ˆ

pσe ´
ξµ,γy ppσeq
?
N µ

I

˙

“ Dpuq

where pσe “ pApdqγe “ 2 pGpdqγe `
pλpdq ptrγeq I

pλpdq “
νpdq

p1` νpdqqp1´ 2νpdqq
and pGpdq “

1

2p1` νpdqq

Recall that, from (6d), the Poisson ratio writes νpdq “ ν0 ` pν1´ν0qd. The dimensionless numbers
involved in the previous equations are given by

We “
Upηs ` η0q

LE0
and γy “

σy0

E0
, α “

η0

ηs ` η0

Here, We is the Weissenberg number, γy is a plastic yield deformation and α is a viscosity ra-
tio. Note that the usual Bingham number, defined by Bi “ Lσy0{pUpηs ` η0qq is such that
γy “ BiWe. Relation (3e) writes in dimensionless form:

Bd

Bt
“

p1´dq κµ,γcppσeq

2Wedp1` µ2q
p´A1pdqγeq :γe

with the dimensionless elasticity operator Apdq “ p1´1qpApdq and where the dimensionless numbers
are defined by

Wed “
Uηd
LE0

and γc “
σc
E0

Here, Wed is a damage-related Weissenberg number, and γc is a damage yield deformation. Con-
versely, by introducing a damage related Bingham dimensionless number Bid “ Lσc{pηdUq, we
have γc “ WedBid. The dimensionless Cauchy stress writes:

σ “ 2p1´αqDpuq `
p1´dq

We
pσe

and the dimensionless dissipation writes

wp “ 2p1´αq|Dpuq|2 `
p1´dq

αWe2

κµ,γy ppσeq

2p1` µ2q
pσe :

ˆ

pσe ´
ξµ,γy ppσeq
?
N µ

I

˙

wd “
p1´dq

WeWed

κµ,γcppσeq

2p1` µ2q

 

p´A1pdqγeq :γe
(2

Finally, the present model contains eight independent dimensionless numbers: We, Wed, γy γc,
µ, ν0, ν1 and α.

Appendix B.3. Implicit time discretization and fixed-point algorithm

Let ∆t ą 0 be the dimensionless time step and tn “ n∆t, n ě 0. The two constitutive equations
are discretized with respect to time by using a fully implicit first order scheme. At time step tn,
n ě 1, assume that γe,ń 1, uń 1 and dń 1 are known. Then, the first order time discretization of the
problem leads to compute γe,n, dn and un by a fixed-point inner loop for solving the nonlinearities.
Let k denotes the index of this inner loop. The fixed point algorithm writes:

‚ When k “ 0, let
`

γe,n,0, dn,0,un,0
˘

“
`

γe,ń 1, dń 1,uń 1

˘

40



‚ When k ě 1, assume that pγe,n,ḱ 1, dn,ḱ 1,un,ḱ 1q are known.
step 1: find γe,n,k and un,k such that

$

’

’

’

’

’

&

’

’

’

’

’

%

γe,n,k´γe,ń 1

∆t
` Vpdn,ḱ 1,γe,n,ḱ 1; γe,n,kq ´Dpun,kq “ 0

´ div

ˆ

2p1´αqDpun,kq `
p1´dq

We
pApdn,ḱ 1qγe,n,k

˙

“ fptnq

un,k “ uΓptnq on BΩ

(B.2a)

(B.2b)

(B.2c)

step 2: compute explicitly

Yn,ḱ 1 “ p´A1pdn,ḱ 1qγe,n,kq :γe,n,k

d̆n,k “ dń 1 `

∆t p1´dn,ḱ 1q κµ,γc

´

pApdn,ḱ 1qγe,n,k

¯

2Wedp1` µ2q
Yn,ḱ 1

dn,k “ maxp0, minp1, d̆n,kqq

(B.2d)

(B.2e)

(B.2f)

‚ The fixed point loop stops when the residual terms drops below a prescribed tolerance and then
we set pγe,n, dn,unq “ pγe,n,k, dn,k,unq.

In (B.2a), the notation Vpd,γe,n,ḱ 1; γe,n,kq stands for

Vpdn,ḱ 1,γe,n,ḱ 1; γe,n,kq “
pκn,ḱ 1

2αWe p1` µ2q

˜

pApdn,ḱ 1qγe,n,k ´
pξn,ḱ 1
?
N µ

I

¸

where pκn,ḱ 1 “ κµ,γy

´

pApdn,ḱ 1qγe,n,ḱ 1

¯

pξn,ḱ 1 “ ξµ,γy

´

pApdn,ḱ 1qγe,n,ḱ 1

¯

(B.3)

Observe that Vp., .; .q is affine with respect to its last variable: it represents a rearrangement of
∇φ˚p prds, Apdqγe,n,kq by re-balancing the evaluation of terms from the k´1 and k iterations of the
fixed point. Note that, after this splitting between γe,n,ḱ 1 and γe,n,k, the consistency of the fixed
point is still satisfied, i.e.:

Vpd,γe; γeq “ ∇φ˚p prds; γeq, @d P r0, 1s and γe P RN N̂
s

Observe that the first subproblem (B.2a)-(B.2c) is now linear: the two unknowns γe,n,k and un,k
are highlighted in blue for clarity. The second one (B.2d)-(B.2e) is now explicit. An additional
projection on r0, 1s has been introduced, since, after time discretization, there is no more guaranty

for d̆n,k to belongs in r0, 1s.

The constitutive (B.2a) and momentum (B.2b) equations are solved simultaneously for the elastic
deformation γe,n,k and the velocity un,k, using the known damage dn,ḱ 1. Then, using (B.2d)-
(B.2f), the damage is re-evaluated as dn,k, based on this value of γe,n,k.

The linear subproblem (B.2a)-(B.2c) is solved in two steps. First, (B.2a) writes equivalently as

´

1` 2∆t qGn,ḱ 1

¯

γe,n,k `∆t
´

qλn,ḱ 1ptrγe,n,kq ´
qξn,ḱ 1

¯

I “ γe,ń 1 `∆tDpun,kq

where qGn,ḱ 1 “ cn,ḱ 1
pGpdn,ḱ 1q, qλn,ḱ 1 “ cn,ḱ 1

pλpdn,ḱ 1q, qξn,ḱ 1 “ cn,ḱ 1

pξn,ḱ 1
?
N µ

and cn,ḱ 1 “
pκn,ḱ 1

2αWe p1` µ2q
for convenience.

41



Tacking the deviatoric and trace parts of the previous equation, it explicitly solves as

dev γe,n,k “ an,ḱ 1dev
`

γe,ń 1 `∆tDpun,kq
˘

trγe,n,k “ bn,ḱ 1

!

tr
`

γe,ń 1 `∆tDpun,kq
˘

`N∆t qξn,ḱ 1

)

with an,ḱ 1 “

´

1` 2∆t qGn,ḱ 1

¯´1

bn,ḱ 1 “

ˆ

1` 2∆t

ˆ

qGn,ḱ 1 `
N

2
qλn,ḱ 1

˙˙´1

and then γe,n,k “ dev γe,n,k ` ptrγe,n,kq
I

N

“ an,ḱ 1dev
`

γe,ń 1 `∆tDpun,kq
˘

` bn,ḱ 1

!

tr
`

γe,ń 1 `∆tDpun,kq
˘

`N∆t qξn,ḱ 1

) I

N
(B.4)

This explicit expression of γe,n,k in terms of the unknown velocity un,k is then replaced in (B.2b),
in order to obtain a problem for un,k only:

(S): find un,k such that

$

’

&

’

%

´div

ˆ

2η1,n,ḱ 1devDpun,kq ` 2η2,n,ḱ 1pdivun,kq
I

N

˙

“ fptnq ` divχn,ḱ 1

un,k “ uΓptnq on BΩ

(B.5a)

(B.5b)

where

η1,n,ḱ 1 “ 1´ α`
p1´dn,ḱ 1q∆t

We
an,ḱ 1

pGpdn,ḱ 1q

η2,n,ḱ 1 “ 1´ α`
p1´dn,ḱ 1q∆t

We
bn,ḱ 1

ˆ

pGpdn,ḱ 1q `
N

2
pλpdn,ḱ 1q

˙

χn,ḱ 1 “
2p1´dn,ḱ 1q

We

!

an,ḱ 1
pGpdn,ḱ 1qdev γe,ń 1

`bn,ḱ 1

ˆ

pGpdn,ḱ 1q `
N

2
pλpdn,ḱ 1q

˙

´

trγe,ń 1 `N∆t qξn,ḱ 1

¯ I

N

*

Remark that χn,ḱ 1 depends upon both trγe,ń 1 and trγe,n,ḱ 1 via an,ḱ 1 and bn,ḱ 1. Assuming
α ă 1, observe that η1,n,ḱ 1 and η2,n,ḱ 1 are always strictly positive, even in the full damaged
case dn,ḱ 1 “ 1. Then, subproblem (B.5a)-(B.5b) is always well-posed: this elliptic system can be
solved by completely standard methods (see e.g. [52, chap 2]). After this resolution, un,k is known
and then γe,n,k can be computed explicitly from (B.4). Finally, the right-hand-side of (B.2f) can
therefore be evaluated: this leads to an explicit computation for dn,k that solves the second step
of the fixed point loop.

Appendix B.4. Space discretization

Let us turn to the numerical resolution of subproblem (B.5a)-(B.5b). Consider the following

bilinear form a and linear form `, defined for all u,v P
`

H1pΩq
˘N

by:

an,ḱ 1pu,vq “

ż

Ω

ˆ

2η1,n,ḱ 1devpDpuqq :devpDpvqq `
2η2,n,ḱ 1

N
divpuqdivpvq

˙

dx

`n,ḱ 1pvq “

ż

Ω

`

fptnq.v ´ χn,ḱ 1 :Dpvq
˘

dx
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For all ub P
´

H
1
2 pBΩq

¯N

, we also introduce the following function space:

V pubq “

!

v P
`

H1pΩq
˘N

; v “ ub on BΩ
)

Then, the variational formulation of (B.5a)-(B.5b) writes: find un,k P V puΓptnqq such that

an,ḱ 1pun,k,vq “ `n,ḱ 1pvq, @v P V p0q

The space for the velocities
`

H1pΩq
˘N

is approximated by piecewise linear and continuous func-
tions on a finite element mesh of the flow domain Ω. Conversely, the elastic deformation γe and
the damage d are approximated by piecewise constant functions. The numerical resolution is
implemented by using the Rheolef finite element library [52].
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